
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: 0162-1459 (Print) 1537-274X (Online) Journal homepage: http://www.tandfonline.com/loi/uasa20

Identifying Cointegration by Eigenanalysis

Rongmao Zhang, Peter Robinson & Qiwei Yao

To cite this article: Rongmao Zhang, Peter Robinson & Qiwei Yao (2018): Identifying
Cointegration by Eigenanalysis, Journal of the American Statistical Association, DOI:
10.1080/01621459.2018.1458620

To link to this article:  https://doi.org/10.1080/01621459.2018.1458620

View supplementary material 

Accepted author version posted online: 03
Apr 2018.
Published online: 11 Jul 2018.

Submit your article to this journal 

Article views: 454

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=uasa20
http://www.tandfonline.com/loi/uasa20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2018.1458620
https://doi.org/10.1080/01621459.2018.1458620
http://www.tandfonline.com/doi/suppl/10.1080/01621459.2018.1458620
http://www.tandfonline.com/doi/suppl/10.1080/01621459.2018.1458620
http://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2018.1458620&domain=pdf&date_stamp=2018-04-03
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2018.1458620&domain=pdf&date_stamp=2018-04-03


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, VOL. , NO. , –, Theory and Methods
https://doi.org/./..

Identifying Cointegration by Eigenanalysis

Rongmao Zhanga, Peter Robinsonb, and Qiwei Yaoc,d

aSchool of Mathematics and School of Economics, Zhejiang University, Hangzhou, China; bDepartment of Economics, London School of Economics,
London, UK; cDepartment of Statistics, London School of Economics, London, UK; dGuanghua School of Management, Peking University, China

ARTICLE HISTORY
Received August 
Revised January 

KEYWORDS
Cointegration; Eigenanalysis;
I(d); Nonstationary
processes; Vector time series

ABSTRACT
Wepropose a new and easy-to-usemethod for identifying cointegrated components of nonstationary time
series, consisting of an eigenanalysis for a certain nonnegative definite matrix. Our setting is model-free,
andwe allow the integer-valued integration orders of the observable series to be unknown, and to possibly
differ. Consistency of estimates of the cointegration space and cointegration rank is established both when
the dimension of the observable time series is fixed as sample size increases, and when it diverges slowly.
The proposed methodology is also extended and justified in a fractional setting. A Monte Carlo study of
finite-sample performance, and a small empirical illustration, are reported. Supplementarymaterials for this
article are available online.

1. Introduction

Cointegration entails a dimensionality reduction of certain
observable multiple time series that are dominated by common
components. In particular, a multiple time series can be said
to be (linearly) cointegrated, if there exists an instantaneous
linear combination, or cointegrating error, with lower integra-
tion order. Much of the vast literature, following Box and Tiao
(1977), Granger (1981), Engle and Granger (1987), has focused
on unit root series, which have one or more short memory
cointegrating errors, but there have been extensions to nonsta-
tionary series with other integer orders of integration, allow-
ing also for the possibility of some nonstationary cointegrating
errors, as well as to fractional nonstationary, and even station-
ary, observable series and cointegrating errors, with unknown
integration orders. Much of the early literature, in particular,
assumed a complete parameterization of second-order prop-
erties, where in particular the observable series are generated
from short memory inputs that have finite autoregressive mov-
ing average (ARMA) structure, but it has also been common
to study semiparametric settings, with underlying short mem-
ory inputs having nonparametric autocorrelation, see, for exam-
ple, Phillips (1991) and Stock (1987), in some cases without
sacrificing precision relative to a correctly specified parametric
structure.

Given knowledge of the cointegration rank, r, of a p-
dimensional observable series, that is the number of cointegrat-
ing relations, various methods are available for estimating the
unknownparameters of themodel, such as the coefficients of the
cointegrating errors, and even of unknown integration orders,
and for carrying out asymptotically valid, and sometimes even
efficient, statistical inference. However, rmight not be known to
the practitioner, and various approaches for estimating r from
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the data have been developed, starting from Engle and Granger
(1987) and Johansen (1991), in their parametric, unit root vector
autoregressive (VAR) setting, and continuing with, for exam-
ple, Saikkonen and Lütkepohl (2000) and Aznar and Salvador
(2002). If, however, the order of the VAR is underspecified, or all
observable series donot have a single unit root, then typically the
resulting specification error will invalidate such approaches, not
tomention rules of statistical inference on unknown coefficients
in the model. It is possible that one or more of the nonstation-
ary observable processes could have two or more unit roots, or
indeed could have fractional orders of integration, as supported
by some empirical investigations. References that allow for non-
parametric autocorrelation and/or unknown integration orders
include Phillips andOuliaris (1988, 1990), Bierens (1997), Stock
(1999), Shintani (2001), Harris and Poskitt (2004), and Li, Pan,
and Yao (2009) in the case of integer integration orders, and
Robinson and Yajima (2002), Chen and Hurvich (2006), and
Robinson (2008) in case of fractional integration orders, includ-
ing in the latter setting cases, where observables are stationary
and the cointegrating errors are stationary with less memory.

Like Phillips and Ouliaris (1988), Robinson and Yajima
(2002), Harris and Poskitt (2004), and Li, Pan, and Yao (2009),
we employ methods based on eigenanalysis. In our case, in the
setting of nonparametric autocorrelation and unknown (and
possibly different) integration orders, we employ eigenvalues
of a certain nonnegative definite matrix function of sample
autocovariance matrices of the observable series, for estimating
cointegration rank, with the cointegration space then estimated
by selection of eigenvectors, and cointegrating errors thereby
proxied. Though the initial development assumes that observ-
able series have integer orders and cointegrating errors have
short memory, we extend these results to allow for observables
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to be fractionally nonstationary, and cointegrating errors to
be fractionally stationary. In both circumstances, we establish
consistency of our estimates of cointegration rank and space
with p fixed as the length n of our time series diverges. In
case of integer integration orders, we also establish consistency
allowing p to diverge slowly with n.

The rest of the article is organized as follows. The proposed
methodology is presented in Section 2. Asymptotic theory with
integer orders of integration is developed in Section 3. In Section
4, both the proposed method and part of the asymptotic the-
ory are extended to the fractional case. Simulations and a small
real data example are reported in Section 5. All statements and
proofs are relegated to an Appendix, which also contains a num-
ber of technical lemmas.

2. Methods

2.1. Setting

We call a vector process ut weakly stationary if (i) Eut is a
constant vector independent of t , and (ii) E‖ut‖2 < ∞, and
Cov(ut ,ut+s) depends on s only for any integers t, s, where ‖ · ‖
denotes the Euclidean norm. Denote by ∇ the difference oper-
ator, that is, ∇ut = ut − ut−1, and ∇dut = ∇(∇d−1ut ) for any
integer d ≥ 1. We use the convention ∇0ut = ut . Further, if ut
has spectral density matrix that is finite and positive definite
at zero frequency we say ut is an I(0) process. An example of
an I(0) process is a stationary and invertible vector ARMA,
and many I(0) processes satisfy Condition 1 of Section 3.1
below, imposed for our asymptotic theory, including the exam-
ples described immediately after Condition 1. Now denote by
uit the ith element of ut and define u+

it = uit1(t ≥ 1), where
1(·) is the indicator function. For an m-dimensional I(0) pro-
cess ut and nonnegative integers d1, . . . , dm, we say that vt =
(∇−d1u+

1t , . . . ,∇−dmu+
mt )

′ is an (m-dimensional) I(d1, . . . , dm)

process, with some abuse of notation whenm = 1, d1 = 0. Note
that for d1 = · · · = dm = 0, vt is not I(0) or even weakly sta-
tionary or equivalent to ut due to the truncation (implying vt =
0, t ≤ 0) that is imposed to achieve bounded variance in case of
positive di, but it is “asymptotically” weakly stationary and I(0).
When d1 = · · · = dm = 1, all elements of vt have a single unit
root, but we are concerned with processes for which di can vary
over i.

Nowassume a p× 1 observable time series yt is I(d1, . . . , dp)
for nonnegative integers, and admits the form

yt = Axt , (1)

where A is an unknown and invertible constant matrix, xt =
(x′

t1, x
′
t2)

′ is a latent p× 1 process, xt2 is an r × 1 I(0) process,
and xt1 is an I(c1, . . . , cp−r) process, where each ci is an ele-
ment of the set {d1, . . . , dp}. Furthermore, no linear combina-
tion of xt1 is I(0), as such a stationary variable can be absorbed
into xt2. Each component of xt2 is a cointegrating error of yt
and r ≥ 0 is the cointegration rank. In the event that there
exists no cointegration among the components of yt , r = 0.
When yt itself is I(0, . . . , 0), r = p. But these are two extreme
cases. Note that cointegration requires equality of at least two
di. For many economic and financial applications, there exist a

small number of cointegrated variables, that is, r ≥ 1 is a small
integer.

The pair (A, xt) in (1) is not uniquely defined, as it can be
replaced by (AH−1,Hxt) for any invertibleH of the form(

H11 H12
0 H22

)
where H11 and H22 are square matrices of size (p− r), r,
respectively, and 0 denotes a matrix with all entries equal
to 0. Therefore, there is no loss of generality in assuming
A to be orthogonal, because any nonorthogonal A admits the
decompositionA = QU,whereQ is orthogonal andU is upper-
triangular, and we may then replace (A, xt) in (1) by (Q,Uxt).
In the sequel, we always assume that A in (1) is orthogonal, that
is,A′A = Ip, where Ip denotes the p× p identity matrix. Write

A = (A1,A2),

where A1 and A2 are, respectively, p× (p− r) and p× r
matrices. As now xt2 = A′

2yt , the linear space spanned by the
columns of A2, denoted by M(A2), is called the cointegration
space. In fact, this cointegration space is uniquely defined by
(1), though A2 itself is not.

To highlight the key idea of the new approach, we only con-
sider in this section and also Section 3 below the cointegration
with xt2 ∼ I(0). The extension of our method to the cases when
xt2 ∼ I(d)with 0 < d < min1≤ j≤p d j are presented in Section 4
that also allows d j ’s and d to be fractional numbers.

2.2. Estimation

The goal is to determine the cointegration rank r in (1) and
to identify A2, or more precisely M(A2). Then, M(A1) is the
orthogonal complement ofM(A2), and xit = A′

iyt for i = 1, 2.
Our estimation method is motivated by the following observa-
tion. For j ≥ 0, let

�̂ j = 1
n

n− j∑
t=1

(yt+j − ȳ)(yt − ȳ)′, ȳ = 1
n

n∑
t=1

yt.

For any a ∈ M(A2), a′�̂ ja is the sample autocovariance func-
tion at lag j for the weakly stationary univariate time series a′yt ,
and it converges to a finite constant (i.e., the autocovariance
function of a′yt at lag j) almost surely under some mild condi-
tions. However, for any a /∈ M(A2), a′yt is I(d) for some d ≥ 1,
and

a′�̂ ja = Oe(n2d−1) or Oe(n2d ), (2)

depending onwhether E(a′yt ) = 0 or not, see Theorems 1 and 2
of Peña andPoncela (2006). In the above expression,U = Oe(V )

indicates that P(0 < |U/V | < ∞) → 1. Hence, intuitively the r
directions in the cointegration space M(A2) make |a′�̂ ja| as
small as possible for all j ≥ 0.

To combine information over different lags, define

Ŵ =
j0∑
j=0

�̂ j�̂
′
j, (3)
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where j0 ≥ 1 is a prespecified and fixed integer with respect
to n throughout. We use the product �̂ j�̂

′
j instead of �̂ j to

ensure each term in the sum is nonnegative definite, and that
there is no information cancellation over different lags. Note that
a′�̂ ja = Oe(1) if a ∈ M(A2), and is at least of the order of n2d−1

if a ∈ M(A1), where d is the minimum integration order of the
components xt1. It can be shown that the (p− r) largest eigen-
values of Ŵ are at least of the ordern2d−1, while the other r eigen-
values areOe(1). Hence, intuitivelyM(A2) can be estimated by
the linear space spanned by the r eigenvectors of Ŵ correspond-
ing to the r smallest eigenvalues, and M(A1) can be estimated
by that spanned by the (p− r) eigenvectors of Ŵ corresponding
to the (p− r) largest eigenvalues.

Let (̂γ1, . . . , γ̂ p) be the orthonormal eigenvectors of Ŵ cor-
responding to the eigenvalues arranged in descending order.
Define

Â = (Â1, Â2), x̂t1 = Â′
1yt and x̂t2 = Â′

2yt. (4)

Then, M(Â1) and M(Â2), the linear spaces spanned by the
eigenvectors of Ŵ, are consistent estimators for M(A1) and
M(A2), respectively; see Theorem 3.1 below.

The idea of using an eigenanalysis based on a quadratic
form of sample autocovariance matrices has been used for fac-
tor modeling for dimension reduction (Lam and Yao 2012, and
references within), and for segmenting a high-dimensional time
series into several both contemporaneously and serially uncor-
related subseries (Chang, Guo, and Yao 2017). One distinctive
advantage of using the quadratic form �̂ j�̂

′
j instead of �̂ j in (3)

is that there is no information cancellation over different lags.
Therefore, this approach is insensitive to the choice of j0 in (3).
Often small values such as j0 = 5 are sufficient to catch the rel-
evant characteristics, as serial dependence is usually the most
predominant at small lags. Using different values of j0 hardly
changes the results; see Table 5 in Section 5 below, and also Lam
and Yao (2012) and Chang, Guo, and Yao (2017).

2.3. Determining Cointegration Ranks

The components of x̂t = Â′yt ≡ (x̂1t , . . . , x̂
p
t )

′, defined in (4),
are arranged according to descending order of the eigenvalues
of Ŵ. Therefore, the order of the components reflects inversely
the closeness to stationarity of the component series, with {x̂pt }
most likely being stationary, and {x̂1t }most likely being I(d)with
largest possible integer d ≥ 1. Let Si(m) = ∑m

k=1 ρ̂i(k), where
ρ̂i(·) is the sample autocorrelation function (ACF) of x̂it defined
as

ρ̂i(k) =
(

1
n − k

n−k∑
t=1

(x̂it+k − x̂
i
)(x̂it − x̂

i
)

)
/(

1
n

n∑
t=1

(x̂it − x̂
i
)2

)
, i = 1, 2, . . . , p,

where x̂
i = ∑n

t=1 x̂
i
t/n. When x̂it is stationary and suitable addi-

tional conditions hold, limm→∞ Si(m) < ∞ in probility, how-
ever, when x̂it is nonstationary, ρ̂i(k) → 1 in probability for any
fixed k. Hence, limm→∞ Si(m) = ∞.Therefore, we can estimate

the cointegration rank r by

r̂ =
p∑

i=1

I{Si(m)/m < c0} (5)

for some constant 0 < c0 < 1 and largem. For a classical station-
ary ARMA time series, the autocorrelation ρi(k) decays expo-
nentially, that is, there exists a ρ ∈ (0, 1) such that ρi(k) =
O(ρk). Hence, it is usually sufficient to use a moderatem in (5).
In our numerical experiments reported in Section 5, we always
set c0 = 0.3 andm = 20, and the estimator r̂ performs very well
and is robust across the different settings.

Remark 2.1. For unit-root processes, r̂ defined in (5) typically
takes the value 0 with probability approaching 1. To appreciate
this, let yt = yt−1 + εt be a unit root process and ρ̂(k) be its sam-
ple ACF ρ̂(k) = γ̂ (k)/γ̂ (0), where

γ̂ (i) = 1
n

n−i∑
t=1

(Yt −Y )(Yt+i −Y ), Y =
n∑

i=1

Yi/n.

Under some regularity conditions on εt , similar to those in The-
orem 1 of Bierens (1993), it can be shown that

n
m + 1

(∑m
k=1 ρ̂(k)
m

− 1
)

d−→

−
(
W (1) − ∫ 1

0 W (t ) dt
)2

+
(∫ 1

0 W (t ) dt
)2

+ dm

4
[∫ 1

0 W 2(t ) dt −
(∫ 1

0 W (t ) dt
)2] ,

(6)

where

dm = 1
σ 2

(
c(0) + 2

m−1∑
i=1

(m − i)(m − i + 1)
m(m + 1)

c(i)

)
,

c(i) = cov(ε0, εi), σ 2 = lim
n→∞

1
n
E

( n∑
s=1

εs

)2

.

Thus,
∑m

t=1 ρ̂(k)/m
p−→ 1, provided that n/m is large enough.

We may also estimate r by unit-root tests. For a given integer
r0 ≤ 1, testing a hypothesis on cointegration order H0 : r < r0
can be transformed to testing a unit-root hypothesis

H0 : x̂
p−r0+1
t ∼ I(d) for some integer d ≥ 1. (7)

We can apply the test method of Phillips and Ouliaris (1988) to
test (7) as dmay be greater than 1. When the null hypothesisH0
is rejected, we conclude r is at least as large as r0.

2.4. Estimation for High Integration Orders

Let r1, . . . , rq be q positive integers, and r1 + · · · + rq =
p− r. Let 1 ≤ a1 < · · · < aq be q integers such that xt1 =
(xt1q, . . . , xt11) = (A′

1qyt , . . . ,A′
11yt ), where xt1 j is an r j × 1

I(a j) process. Let

Â1 = (Â1q, . . . , Â11), (8)
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where Â1 j has r j columns. Then, x̂t1 j = Â′
1 jyt is the estimated

component of xt1 of integration order a j.
Similar to Section 2.3 above, a unit-root test can be adapted

to estimate the sizes r1, . . . , rq and the integration orders
a1, . . . , aq. We illustrate the idea below by outlining the
steps in estimating (a1, r1), they can be repeated to estimate
(a2, r2), (a3, r3), . . . .

For r̂ defined in (5), let â1 be the minimum integer d ≥ 1
such that a unit-root test rejects H0 : ∇dx̂p−̂r

t ∼ I(1) against
H1 : ∇dx̂p−̂r

t ∼ I(0). Then, the size r1 can be estimated by apply-
ing estimator (5) to the (p− r̂) × 1 series {∇ â1 x̂ j

t , j = 1, . . . ,
p− r̂}.

3. Asymptotic Properties

In this section, we investigate the asymptotic properties of the
proposed statistics. First, we show that with r given, the lin-
ear space M(Â2) consistently estimate the cointegration space
M(A2). We measure the distance between the two spaces by

D(M(Â2),M(A2)) =
√
1 − 1

r
tr(Â2Â′

2A2A′
2). (9)

Then, D(M(Â2),M(A2)) ∈ [0, 1], being 0 if and only if
M(Â2) = M(A2), and 1 if and only ifM(Â2) andM(A2) are
orthogonal. Furthermore, we show that the estimator r̂, defined
in (5), is consistent. We consider two asymptotic regimes: (i) p
is fixed while n → ∞, and (ii) p → ∞ more slowly than n.

Put xt1 = (x1t , . . . , x
p−r
t )′. Under (1), x j

t is I(d j) for 1 ≤ j ≤
p− r and z jt ≡ ∇d j x j

t is I(0), where d j ≥ 1 is an integer. Write
zt = (z1t , . . . , z

p−r
t )′ and εt = (z′

t , x′
t2)

′. Denote the vector of
partial sums of components of εt by

Sn(t) ≡ (S1n(t1), . . . , S
p
n(tp))′

=
⎛⎝ 1√

n

[nt1]∑
l=1

(
ε1l − Eε11

)
, . . . ,

1√
n

[ntp]∑
l=1

(
ε
p
l − Eε

p
1
)⎞⎠′

,

where 0 < t1 < · · · < tp ≤ 1 are constants and t = (t1, . . . , tp)′.

3.1. When n → ∞ and p is Fixed

We introduce a regularity condition first.

Condition 1.
(i) There exists a Gaussian process W (t ) =

(W 1(t1), . . . ,Wp(tp))′ such that as n → ∞,

Sn(t)
J1=⇒ W(t), on Dp(0, 1),

where J1=⇒ denotes weak convergence under Skorohod
J1 topology (Chap. 3 in Billingsley 1999), and W(1) has
a positive definite covariance matrix � = (σi j).

(ii) The sample autocovariance matrix of xt2 satisfies

max
0≤ j≤ j0

∥∥ 1
n

n− j∑
t=1

(xt+ j,2 − x̄2)(xt2 − x̄2)′

− cov(x1+ j,2, x1,2)
∥∥
2

p−→ 0,

where ‖H‖2 = max‖a‖=1 ‖Ha‖ is the L2-norm of matrix
H, x̄2 is the samplemean of xt2, and

p−→ denotes conver-
gence in probability.

Note that our definition of cointegration is formally dif-
ferent from that of Johansen (1995), which is based on
ARIMA framework. There are some subtle technical differ-
ences between the respective conditions. For example, Condi-
tion 1(i) above implies det(var(εt )) �= 0 while Johansen’s setting
allows the ARIMA process driven by a degenerate innovation
process.

In fact, Condition 1 is mild. It is fulfilled when {εt} is weakly
stationary with det(var(εt )) �= 0, E‖εt‖2γ < C for some con-
stants γ > 1 and C < ∞, and {εt} is also α-mixing with mix-
ing coefficients αm satisfying the condition

∑∞
m=1 α

1−1/γ
m < ∞;

see Theorem 3.2.3 of Lin and Lu (1997). It is also fulfilled
when εt = ∑∞

j=0 C jηt− j, where ηt are iid. with nonsingular
covariance matrix and E‖ηt‖4γ < ∞ for some constant γ > 1,
and det(

∑∞
j=0 C j) �= 0,

∑∞
j=1 ||C j|| < ∞. See Fakhre-Zakeria

and Lee (2000). Note that our setting accommodates the cases
when yt contains linear deterministic components, as we allow
E(εt ) �= 0.

Theorem 3.1. Let r be known. Under Condition 1,
D(M(Â2),M(A2)) = op(1). Furthermore,

(i) D(M(Â2),M(A2)) = Oe(n−2a1+1) provided either (a)
|I0| ≥ 2 or (b) |I0| = 1 and EzI0t = 0,

(ii) D(M(Â2),M(A2)) = Oe(n−2a1 ) provided |I0| = 1 and
EzI0t �= 0, and

(iii) D(M(Â1 j),M(A1 j)) = Oe(n−2α j ) for j = 1, . . . , q
provided Ezt = 0,

where I0 = {i : xit ∼ I(a1), 1 ≤ i ≤ p− r}, |I0| denotes the
number of elements in I0, α j = min{a j − a j−1, a j+1 −
a j}, a0 = 1/2 and a j, j = 1, . . . , q are defined in Section
2.4.

Remark 3.1. When Ezt �= 0, we can express the components xit
of xt1 as

(1 − B)dixit = (
zit − Ezit

) + Ezit =: εit + μi.

Hence,

xit = (1 − B)−diεit + μi

di−1∏
l=0

(t + l)/(di!)

= : ξ i
t + μi

di−1∏
l=0

(t + l)/(di!).

This entails yt = Axt = A(ξ′
t , x′

t2)
′ + B(1, t, t2, . . . , taq )′,

where B is a p× aq matrix. We can estimate B by the least
squares method based on {yt}, and identify the cointegra-
tion subspaces spanned by A1 j using the detrending series
ỹt = yt − B̂(1, t, t2, . . . , taq )′. It can then be shown that Theo-
rem 1 (iii) still holds.

Theorem 3.2. Under Condition 1, limm→∞ P( r̂ = r ) = 1.
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3.2. When n → ∞, p → ∞ and p = O(nc)

We extend the asymptotic results in the previous section to the
cases when p → ∞ and p = O(nc) for some c ∈ (0, 1/2). Tech-
nically, we employ a normal approximation method to establish
the results. See Condition 2(i).

Condition 2.
(i) Suppose that there exists an q-dimensional vector et

with mean zero and independent components such that
zt = Bet , whereB is a (p− r) × qmatrix, q ≥ p− r and
‖B‖2 < ∞. For each component eit of et , there exists
an independent and standard normal sequence {ν i

t} for
which as n → ∞,

max
1≤i≤m

max
0≤t≤1

E

[ [nt]∑
s=1

(
eis − σiiν

i
s
)]2

= O(n2τ ), (10)

where 0 < τ < 1/2 is a constant, b1 ≤ σ 2
ii ≡

limn→∞ Var(
∑n

s=1 e
i
s)/n ≤ b2 for any i, and b1, b2

are two positive constants.
(ii) The sample autocovariance matrix of xt2 satisfies

max
0≤ j≤ j0

∥∥∥ 1
n

n− j∑
t=1

(xt+ j,2 − x̄2)(xt2 − x̄2)′

−Cov(x1+ j,2, x1,2)
∥∥∥
2

p−→ 0.

(iii) Suppose {zt} and {xt2} are independent and for τ given
above

max
p−r< j≤p

n∑
s,t=1

∣∣∣E (
ε
j
s ε

j
t

)∣∣∣ = O(n1+2τ ).

Remark 3.2. The inequalities immediately below (10) holds
when all components series of zt are I(0) with spectral density
continuous at zero frequency. This is guaranteed by the fact that
their variance is proportional to the Cesaro sum of the Fourier
series of the spectral density at zero frequency, and thus con-
verges to the latter (which is positive and finite under I(0)) after
normalization.
Remark 3.3. The form zt = Bet in Condition 2 (i), has been used
by Bai and Saranadasa (1996) and Chen and Qin (2010). Many
classic vector time series, including stationary VAR, VARMA,
and more generally the linear process

zt =
∞∑
j=0

B jet− j

with
∑∞

j=0 ‖B j‖2 < ∞ follow this from. We require m ≥ p−
r, which ensures that no linear combination of zt is I(0).
The assumption on the independence between {zt} and {xt2}
in Condition 2(iii) ensures that cross-correlation of {zt} and
{xt2} is negligible in deriving the properties of the eigen-
values of Ŵ, which can be replaced by the condition that
E(n−(di+1/2) ∑n

t=1 x
i
txht )2 = o(1/(pr)).

Remark 3.4. Let p = o(n1/2). Condition 2 is implied by any of
the three assertions below.

(i) The components of εt are independent of each
other, and each component series {εit} is a mar-
tingale difference sequence with max1≤i≤p E|εit |q <

∞ for some q > 2. Furthermore, for some
2 < q∗ ≤ min{4, q},

max
1≤i≤p

E

∣∣∣∣∣
n∑

t=1

[(
εit
)2 − σ 2

ii

]∣∣∣∣∣ = O(n2/q
∗
).

(ii) The components of εt are independent, Eεt = 0, and
max
1≤i≤p

E|εit |κ < ∞ for some κ > q ∈ (2, 4]. The process

{εt} is α-mixing with mixing coefficients αm satisfying
∞∑

m=1

α
(κ−q)/(κq)
m < ∞. (11)

(iii) The components of εt are independent. Each component
εit satisfies the following conditions.
(a) There exists an iid random sequence {ηi

t} such that

εit =
∞∑
j=0

ci jηi
t− j.

(b) Eεit = 0, E|εit |q < ∞ for some q > 2 and∑∞
j=0 j|ci j| < ∞.

Theorem 3.3. Let r be known and Condition 2 hold. If
p = o(n1/2−τ ) and τ given in Condition 2,

D(M(Â2),M(A2)) = Op(p1/2n−2a1+1(λ∗)−1),

where λ∗ is the smallest eigenvalue of
∫ 1
0 F(t )F′(t ) dt defined in

Lemma 9 in the online supplementary materials.

Remark 3.5. Theorem 3.3 is derived under the condition p =
o(n1/2−τ ), while there are no direct constraints on either r or
p− r. However, when p− r is fixed,

∫ 1
0 F(t )F′(t ) dt is a (p−

r) × (p− r) positive definite matrix, and, hence, λ∗ is positive
and Oe(1). When the integration orders of all the nonstation-
ary components are the same and equal to dmin, then (λ∗)−1 =
Op((p− r)2dmin−1).

Theorem 3.4. Let Condition 2 hold and p = o(n1/2−τ ). Then,

lim
n→∞P( r̂ = r ) = 1,

provided (λ∗)−1p1/2n−a1+1/2 = o(1).

4. Fractional Cointegration

Fractional cointegration has attracted increasing attention in
recent years, see, for example, Robinson and Hualde (2003),
Chen andHurvich (2006), and Robinson (2008). In this section,
we generalize the method presented in Section 2 to cases when
the components of yt may be fractionally integrated. For sim-
plicity, we now assume p is fixed.

Let v+
t = vt1(t > 0) and for any α ∈ R,


−α =
∞∑
j=0

a j(α)Bj, a j(α) = �( j + α)

�(α)�( j + 1)

be formally defined as in Hualde and Robinson (2010), where B
is the backshift operator. With these definitions, we can extend
the definition of the I(d1, . . . , dm)process vt in Section 2 to non-
negative real-valued di, such that di �= k − 1/2 for any integer
k. Note that for di < 1/2 the ith element of vt is “asymptotically



6 R. ZHANG ET AL.

stationary” (due again to the truncation in the definition of vt ),
while di > 1/2 represents the “nonstationary” region.

With this extended definition to cover fractional time series,
we again consider a p× 1 observable I(d1, . . . , dp) time series
yt satisfying (2.1), partitioning xt as before. However, we also
extend the definition of cointegration, saying that yt is cointe-
grated if at least two di are equal and exceed 1/2 and there exists
a linear combination giving nonzero weight to two or more of
these that is I(c) for 0 ≤ c < di. Thus, let a1 > 1/2 be the small-
est integration order of elements of xt1 and let δ ∈ [0, a1) be the
integration order of elements of xt2. Thus, each component of
xt2 is a cointegrating error of yt . Let A = (A1,A2) andM(A2)

be defined as in Section 2. Then, M(A2) is called the frac-
tional cointegration space and r is called the fractional cointe-
gration rank. We estimateM(A2) and r in the same manner as
in Section 2.

Furthermore, let r1, . . . , rq be q positive integers with
r1 + · · · + rq = p− r, and 1/2 < a1 < · · · < aq. Suppose that
xt1 consists of r j I(a j) components. Let

Â1 = (Â1q, . . . , Â11), (12)

where Â1 j has r j columns. Then, x̂t1 j = Â′
1 jyt is the estimated

components of xt1 (i.e., xt1 j = A′
1 jyt ) of integration order a j.

Let εi = (ε1i , . . . , ε
p
i )

′ be the p-dimensional I(0) with mean
zero such that ∇d j x j

i = ε
j
i + μ j. Let Sn(t ) = ∑[nt]

i=1 εi and I1 =
{i : di < 1/2, 1 ≤ i ≤ p}.
Condition 3.

(i) E||εt ||q2 < ∞ for some q > max(4, 2/(2a1 − 1)) and for
any i, j ∈ I1, as n → ∞,

1
n

n∑
t=1

xitx
j
t

p−→ E
[
xi1x

j
1

]
.

(ii) There exists an iid mean zero p× 1 normal vector {wi}
such that as n → ∞,

max
0≤t≤1

||Sn(t ) −
[nt]∑
i=1

wi||2 = op(n1/s), for some s > 2.

Remark 4.1. Condition 3 is mild and satisfied by either of the
following processes.

1. Suppose εt follows a linear process:

εt =
∞∑
k=0

Cket−k, t = 1, 2, . . .

and {et} are iid vectors with mean zero, Eete′
t =

�e > 0, E||et||q2 < ∞ for some q > 4, the p× p coef-
ficient matrices Ck satisfy

∑∞
k=0 k||Ck||2 < ∞. Then, by

Lemma 2 of Marnucci and Robinson (2000), we have (ii)
of Condition 3 holds. (i) follows by ergodicity.

2. Suppose εt follows a generalized random coefficient
autoregressive model:

εt = Ctεt−1 + et (13)

and {(Ct , et)} are iid random variables with E||C1||q2 < 1
and E||e||q < ∞ for some q > 2, then (ii) of Condition 3
holds with s < min{q, 4}, see Liu and Lin (2009, Corol-
lary 3.4). Similarly, (i) follows by ergodicity.

Theorem 4.1. Let r be known. Under Condition 3,
D(M(Â2),M(A2)) = op(1). Furthermore,

(i) when δ < 1/2,
(a) D(M(Â2),M(A2)) = Oe(n−2a1+1) provided either

|I0| ≥ 2 or |I0| = 1 and μI0 = 0;
(b) D(M(Â2),M(A2)) = Oe(n−2a1 ) provided |I0| =

1, μI0 �= 0;
(ii) when δ > 1/2 and μ j = 0 for j ≥ p− r,

D(M(Â2),M(A2)) = Oe(n−2(a1−δ));
(iii) when μ j = 0 for j = 1, . . . , p− r,

D(M(Â1 j),M(A1 j)) = Oe(n−2α j ) for j = 1, . . . , q,

where I0 and α j are defined as in Theorem 3.1.

Theorem 4.2. Let Condition 3 hold. Then, limn→∞ P( r̂ = r ) =
1, provided 1 ≤ r < p.

5. Numerical Properties

We illustrate the proposed method with four simulated exam-
ples and one real dataset. Note that the comparison with
Johansen’s (1991) likelihood method is carried out for Example
1 and the real data example only, as Examples 2 concerns differ-
ent integration orders for different components, Example 3 illus-
trates the method in the presence of an additional deterministic
linear trend, and Example 4 is a model of fractional cointegra-
tion. Johansen’s method is not applicable to Examples 2–4.

Example 1. Let the first three components of yt be the same as
Exercise 3.1 in Johansen (1995), that is,⎛⎝ yt1

yt2
yt3

⎞⎠ =
⎛⎝ 1 1 0
1/2 0 1
0 1 0

⎞⎠⎛⎝ xt1
xt2
xt3

⎞⎠ =: A11

⎛⎝ xt1
xt2
xt3

⎞⎠ ,

where xt1 is an I(1) process, xt2, xt3 and the innovations in
xt1 are independent N(0, 1). For p > 3, we add to yt1, yt2, yt3
above r − 2 extra stationary AR(1) components and p− r − 1
ARIMA(1,1,1) components. All the coefficients inAR(1) are 0.5,
the coefficients in ARIMA(1,1,1) are (0.6, 0.8), and all the inno-
vations are independentN(0, 1). Except for the elements inA11
specified above, all the other elements of A are generated inde-
pendently fromU (−3, 3). For each setting, with different com-
binations of p, r, and n (see Table 1), we draw 500 samples. We
set j0 = 5 in (3), and estimate the cointegration rank r by (5)
with c0 = 0.3 for each of the 500 samples. Then, with r = r̂, we
estimate Â by (4). Since r̂ is not necessarily equal to r, and A is
not a half orthogonal matrix (as specified above), we extend the
definition of discrepancy measure (9) as follows:

D1(M(Â2),M(B2)) =
{
1 − tr

(
Â2Â′

2B2(B′
2B2)

−1B′
2
)

max(r, r̂)

}1/2

,

(14)
where B2 is the p× r matrix consisting of the last r columns
of (A−1)′, as now xt2 = B2yt . Then, D1(M(Â2),M(B2)) ∈
[0, 1], being 1 if and only if M(Â2) and M(B2) are mutu-
ally orthogonal, and 0 if and only if the two subspaces
are the same. When r̂ = r and A′A = Ip, B2 = A2 and
D1(M(Â2),M(B2)) = D(M(Â2),M(A2)) defined in (9).
The relative frequencies (RF) for the occurrence of the event
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Table . Relative frequencies (RF) of correct estimation of r and average distance D1 defined in () in simulation with  replications for Example .

n=  n=  n=  n=  n=  n= 

Method RF D1 RF D1 RF D1 RF D1 RF D1 RF D1

p=  Jo(.) . . . . . . . . . . . .
r =  Jo(.) . . . . . . . . . . . .

New . . . . . . . . . . . .
p=  Jo(.) . . . . . . . . . . . .
r =  Jo(.) . . . . . . . . . . . .

New . . . . . . . . . . . .
p=  Jo(.) . . . . . . . . . . . .
r =  Jo(.) . . . . . . . . . . . .

New . . . . . . . . . . . .
p=  Jo(.) . . . . . . . . . . . .
r =  Jo(.) . . . . . . . . . . . .

New  . . . . . . . . . . .
p=  Jo(.)  . . . . . . . . . . .
r =  Jo(.) . . . . . . . . . . . .

New  .  . . . . . . . . .
p=  Jo(.)  .  .  . . . . . . .
r =  Jo(.)  .  .  . . . . . . .

New  .  .  . . . . . . .
p=  Jo(.)  .  .  .  .  . . .
r =  Jo(.)  .  .  . . . . . . .

New  .  .  . . . . . . .

{̂r = r} and the average value of D1 = D1(M(Â2),M(B2))

over 500 replications are listed in Table 1 under the name new
method (New).

Also included in Table 1 are the results of Johansen’s likeli-
hood estimationwith cointegration rank r estimated by the trace
test; see Johansen (1991). We apply the method twice with test-
ing level set at 0.05 and 0.01, respectively,marked as Jo(0.05) and
Jo(0.01) in Table 1. The null-distribution of the trace test statistic
is approximated by that of[ T∑

t=1

εt (X t−1 − X̄ )′
][ T∑

t=1

(X t−1 − X̄ )(X t−1 − X̄ )′
]−1

×
[ T∑

t=1

(X t−1 − X̄ )ε′
t

]
,

where εt = (εt,1, . . . , εt,p−r)
′,X0 = 0 and X t = ∑t

j=1 εt , and
{εt,i} are independentN(0, 1). See Johansen and Juselius (1990).
This approximate distribution is calculated by simulation with
T = 1000 and 6000 replications.

Table 1 indicates clearly that the newly proposed method
always outperforms Johansen’s method. More precisely, the esti-
mator r̂ defined in (5) achieves higher relatively frequencies
for hitting the true value r than those achieved by the trace

test with significance level at either 0.05 or 0.01. Note that
the first part of Table 1 with p = 3 and r = 2 corresponds to the
same setting of Example 3 of Johansen (1995). The inference is
more challenging when p and r increase. When p = 30, r = 10,
our new method works reasonably well when the sample size
n = 1000 and it works almost perfectly when n ≥ 1500. On the
other hand, Johansen’s method, which is not designed for large
p, fails to perform even when n = 2000 or 2500.

Example 2. Now in model (1) let xt2 consist of r stationary
AR(1) processeswith coefficients−0.4 + i/r (i = 1, . . . , r), and
let s components of xt1 be ARIMA(1,1,1) with coefficients 0.3 +
0.5i/s and 0.2 + 0.6i/s (i = 1, . . . , s), and the other p− r − s
components be ARIMA(0,2,1) with coefficients generated inde-
pendently fromU (−0.95, 0.95). Hence, xt1 consists of amixture
of I(1) and I(2)processes. All innovations involved are indepen-
dent N(0, 1). Let the elements of A be generated independently
fromU (−3, 3). We estimate the cointegration rank r by (5), and
apply the same method to the differenced x̂t1 to estimate s; see
Section 2.4 above. For each setting, we replicate the exercise 500
times. The RF for the occurrence of events {̂r = r} and {̂s = s}
are listed in Table 2.

Also included in Table 2 are the results from applying the
Phillips–Perron unit-root test (PP.test), with significance level

Table . Relative frequencies of correct estimation of r and s by the Phillips–Perron test (PP.test) and method () in simulation with  replications for Example .

n      

(p, r, s) Method r s r s r s r s r s r s

(, , ) PP.test . . . . . . . . . . . .
() . . . . . . . . . . . .

(, , ) PP.test . . . . . . . . . . . .
() . . . . . . . . . . . .

(, , ) PP.test . . . . . . . . . . . .
() . . . . . . . . . . . .

(, , ) PP.test . . . . . . . . . . . .
() . . . . . . . . . . . .

(, , ) PP.test . . . . . . . . . . . .
() . . . . . . . . . . . .
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Figure . Example : Boxplots ofD1(M(Â2),M(B2)) (left panel) andD1(M(Â11),M(B11)) (right panel) when (p, r, s) = (6, 2, 2). The labels on the horizontal axis are
sample size n.

set at 0.01, for estimating r; see (7). By applying the same
procedure to the differenced x̂t1, we also obtain the estimated s.
When p is small, the PP.test estimates r slightly better than (5)
though both methods perform well. For estimating s, the PP.test
is much worse than (5). When p is large, (5) performs substan-
tially better than the PP.test. Also noticeable in Table 2 is the
fact that the larger r/p is, the more accurate are the estimates
for r, and the larger s/(p− r) is, the more accurate are the
estimates for s. Overall (5) provides a more stable performance
than PP.test.

Figures 1–2 present the boxplots of D1(M(Â2),M
(B2)) and D1(M(Â11),M(B11)) for (p, r, s) = (6, 2,
2) and (10, 4, 4), respectively, where M(B11) is the true
cointegration space specified by the I(1) components of xt1.
As expected, the estimation errors decrease as sample size n
increases, and the errors with (p, r, s) = (10, 4, 4) are greater
than those with (p, r, s) = (6, 2, 2).

Example 3. Now, we consider an example in which the compo-
nents of yt are I(1) with linear trend, that is,

yt = μ1 + μ2t + Zt = Ax∗
t (15)

for some (x∗
t )

′ = (x∗
t1, xt2), where x∗

t1 = μ∗
1 + μ∗

2t + xt1, xt1
is nonstationary process and xt2 is stationary process. In our
simulation, all component of μ∗

1 and μ∗
2 are taken as 0.3 and

0.5, respectively, all components of xt2 are AR(1) with coeffi-
cients generated from U (−0.8, 0.8), all components of xt1 are
ARIMA(1,1,1) with AR coefficients generated from U (0, 0.8)
and MA coefficients generated from U (0, 0.95), and all inno-
vations are independent N(0, 1). Table 3 reports the RF of the

occurrence of the event {̂r = r} and the average distance (14)
in a simulation with 500 replications, where the cointegration
rank is estimated by (5) with c0 = 0.3. Also, included in Table 3
are the results obtained from applying the Phillips–Perron unit-
root test to estimate r, see (7). Table 3 indicates that (5) works
well even in the presence of a deterministic linear trend, where
our theoretical setting exclude. However, the Phillips-Perron
test performs poorly for large p and small r/p.

Example 4. We consider fractional cointegration cases now. Let
the components of xt1 be I(d) processes with a fractional order
d = 4/5 or 3/4, the components of xt2 be AR(1) with autore-
gressive coefficients 0.2i (i = 1, . . . , r), the elements of A be
generated independently fromU (−3, 3), and all innovations be
independent andN(0, 1).We consider various combinations for
p, r, s, and the sample size n. For each setting, we replicate the
simulation 500 times and estimate the cointegration rank r using
(5) with c0 = 0.3. The RF for the occurrence of the event {̂r = r}
and the mean of distance (14) over 500 replications are listed in
Table 4. While the proposedmethodology works well, the accu-
racy is slightly lower than that integer cointegration orders. See
the examples above. We also notice that the estimation errors
with d = 3/4 are greater than those with d = 4/5.

To illustrate the impact of the choice of j0 on the estima-
tion, we consider the above fractional cointegration with p = 6,
r = 4 and order d = 4/5, 3/4, and 2/3. By setting sample size
n = 1000 and j0 between 5 and 100, the RF for the occurrence of
the event {̂r = r} and the mean of the distance (14) are reported
in Table 5. As mentioned in Section 2, using different values of
j0 hardly changes the results.
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Figure . Example : Boxplots of D1(M(Â2),M(B2)) (left panel) and D1(M(Â11),M(B11)) (right panel) when (p, r, s) = (10, 4, 4). The labels on the horizontal axis
are sample size n.
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Table . Relative frequencies of correct estimation of r and average distance in simulation with  replications for Example .

n=  n=  n=  n=  n=  n= 

(p, r) Method RF D1 RF D1 RF D1 RF D1 RF D1 RF D1

PP.test . . . . . . . . . . . .
(, ) New . . . . . . . . . . . .

PP.test . . . . . . . . . . . .
(, ) New . . . . . . . . . . . e-

PP.test . . . . . . . . . . . .
(, ) New . . . . . . . . . . . .

PP.test . . . . . . . . . . . .
(, ) New . . . . . . . . . . . .

PP.test . . . . . . . . . . . .
(, ) New  . . . . . . . . . . .

PP.test . . . . . . . . . . . .
(, ) New . . . . . . . . . . . .

PP.test  .  .  .  .  .  .
(, ) New  .  .  . . . . . . .

PP.test  . . . . . . . . . . .
(, ) New  . . . . . . . . . . .

Table . Relative frequencies (RF) of the occurrence of event {̂r = r} and average distance D1 defined in () in simulation with  replications for Example .

n=  n=  n=  n=  n=  n= 

d (p, r) RF D1 RF D1 RF D1 RF D1 RF D1 RF D1

(, ) . . . . . . . . . . . .
/ (, ) . . . . . . . . . . . .

(, )  . . . . . . . . . . .
(, )  .  . . . . . . . . .
(, ) . . . . . . . . . . . .

/ (, ) . . . . . . . . . . . .
(, )  .  . . . . . . . . .
(, )  .  . . . . . . . . .

Table . Relative frequencies (RF) of the occurrence of event {̂r = r} and average distance D1 defined in () with n = 1000 in simulation with  replications for
Example .

j0 =  j0 =  j0 =  j0 =  j0 =  j0 = 

d RF D1 RF D1 RF D1 RF D1 RF D1 RF D1

/ . . . . . . . . . . . .
/ . . . . . . . . . . . .
/ . . . . . . . . . . . .

Example 5. We consider the 8 monthly US Industrial Produc-
tion indices for January 1947–December 1993 published by
the US Federal Reserve, namely the total index, manufactur-
ing index, durable manufacturing, nondurable manufacturing,
mining, utilities, products, and materials. The original 8 time
series are plotted in Figure 3. Applying the proposed method
to these data, the transformed series x̂t = Â′yt are plotted in

Figure 4 together with their sample ACF. The proposedmethod
(5) leads to r̂ = 4 withm = 40, c = 0.3, and j0 = 50 or 100.

We also apply Johansen’s (1991) likelihood method to this
dataset. Both the trace and the maximum tests indicate r = 4.
The corresponding transformed series together with their sam-
ple ACF are plotted in Figure 5.

Table . Relative frequencies (RF) of the occurrence of event {̂r = r} for p = 2with different c0 and  replications.

r n . . . . . . . . . . . . . . . . . . .

 . . . . . . . . . . . . . . . . . . 
 . . . . . . . . . . . . . . . . . . 

  . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . .

  . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . .

  . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . .
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Figure . Time series plots of the  monthly U.S. Industrial Production indices in January –December .
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Figure . Time series plots of the estimated x̂t by the proposed method and their sample ACF for the  monthly U.S. Industrial Production indices.
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Table . Relative frequencies (RF) of the occurrence of event {̂r = r} for p = 3with different c0 and  replications.

r n . . . . . . . . . . . . . . . . . . .

 . . . . . . . . . . . . . . . .   
 . . . . . . . . . . . . . . . . .  

  . . . . . . . . . . . . . . . . . . 
 . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . .  
 . . . . . . . . . . . . . . . . . . 

  . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . .

  . . . . . . . . . . . . . . . . . . .
 . . . . . . . . . . . . . . . . . . .

Let Â2 denote the last 4 columns of Â and B̂2 consist of
the loadings for the last four component series displayed in
Figure 5, that is, the columns of Â2 are the loadings of the
four cointegrated variables identified by the proposed method
in this article, and the columns of B̂2 are the loadings of the
four cointegrated variables identified by Johansen’s likelihood
method. Then,

D1
(M(Â2),M(B̂2)

)2 = 1 − 1
4
tr
{
Â2Â′

2B̂2(B̂′
2B̂2)

−1B̂′
2
}

= 1 − 0.9816 = 0.0184.

This indicates that the two sets of cointegrated variables identi-
fied by the two methods are effectively equivalent.

To illustrate the impact of the choice of c0 on the estimation,
we consider model (1) with p = 2 and the following three spec-
ifications for xt :

(i) r = 0, both components of xt are ARIMA(1, 1, 1) pro-
cesses with coefficient (0.6, 0.4) and (0.8, 0),

(ii) r = 1, xt1 is ARIMA(1, 1, 1) with (0.6, 0.4) and xt2 is
AR(1) with coefficient 0.6,

(iii) r = 2, xt1 is AR(1) with coefficient 0.6 and xt2 is
ARMA(1, 1) with coefficient (0.6, 0.4).

The elements of A are generated independently from
U (−3, 3) and c0 is taken from 0.05 to 0.95. In each setting,
we replicate the simulation 500 times with sample size n =
200, 300, 500, and 1000. The RF for the occurrence of the event
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Figure . Time series plots of the estimated x̂t by Johansen’s method and their sample ACF for the  monthly U.S. Industrial Production indices.
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{̂r = r} are reported in Table 6. When r = 0, smaller c0 would
lead to better performance, however when r = 2, larger c0 may
result in better performance. It is because that as r = 0, both the
components are I(1), smaller c0 tends to estimate r as 0, while as
r = 2, both the components are I(0), larger c0 tends to estimate
r as 2, see Remark 1. Further, it is shown that when c0 is taken
away from the endpoints, say c0 ∈ (0.2, 0.5), then the proposed
procedure works well for all cases, especially when n is large.

Table 7 reports the simulation results with p = 3,A generated
in the same manner as the above, and three settings for xt :

(i) r = 0, the components of xt are all ARIMA(1, 1, 1) with
coefficients (0.6, 0), (0.3, 0.7), and (0.8, 0.4),

(ii) r = 1, xt1 and xt2 are both ARIMA(1, 1, 1) with coeffi-
cients (0.5, 0), (0.8, 0.4), and xt3 is AR(1) with coeffi-
cient 0.6,

(iii) r = 2, xt1 is ARIMA(1, 1, 1) with coefficient
(0.8, 0.4), xt2 is AR(1) with coefficient 0.6 and xt3
is ARMA(1, 1) with coefficient (0.5, 0.5).

The pattern of Table 7 is very similar to that of Table 6, that
is, the estimation is stable for c0 ∈ (0.2, 0.5).

6. Conclusions

We propose in this article, a simple, direct and model-free
method for identifying cointegration relationships among mul-
tiple time series of which different components series may have
different integration orders. Themethod boils down to an eigen-
analysis for a nonnegative definitematrix.Onemay view that the
components of the transformed series x̂t = Â′yt are arranged
in ascending order according to the “degree” of stationarity;
reflected by the magnitude of the eigenvalues of Ŵ.

SupplementaryMaterials
The online supplementary materials contain additional proofs and
Lemmas.
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