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ABSTRACT

We propose a new and easy-to-use method for identifying cointegrated components of nonstationary time
series, consisting of an eigenanalysis for a certain nonnegative definite matrix. Our setting is model-free,
and we allow the integer-valued integration orders of the observable series to be unknown, and to possibly
differ. Consistency of estimates of the cointegration space and cointegration rank is established both when
the dimension of the observable time series is fixed as sample size increases, and when it diverges slowly.
The proposed methodology is also extended and justified in a fractional setting. A Monte Carlo study of
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finite-sample performance, and a small empirical illustration, are reported. Supplementary materials for this

article are available online.

1. Introduction

Cointegration entails a dimensionality reduction of certain
observable multiple time series that are dominated by common
components. In particular, a multiple time series can be said
to be (linearly) cointegrated, if there exists an instantaneous
linear combination, or cointegrating error, with lower integra-
tion order. Much of the vast literature, following Box and Tiao
(1977), Granger (1981), Engle and Granger (1987), has focused
on unit root series, which have one or more short memory
cointegrating errors, but there have been extensions to nonsta-
tionary series with other integer orders of integration, allow-
ing also for the possibility of some nonstationary cointegrating
errors, as well as to fractional nonstationary, and even station-
ary, observable series and cointegrating errors, with unknown
integration orders. Much of the early literature, in particular,
assumed a complete parameterization of second-order prop-
erties, where in particular the observable series are generated
from short memory inputs that have finite autoregressive mov-
ing average (ARMA) structure, but it has also been common
to study semiparametric settings, with underlying short mem-
ory inputs having nonparametric autocorrelation, see, for exam-
ple, Phillips (1991) and Stock (1987), in some cases without
sacrificing precision relative to a correctly specified parametric
structure.

Given knowledge of the cointegration rank, r, of a p-
dimensional observable series, that is the number of cointegrat-
ing relations, various methods are available for estimating the
unknown parameters of the model, such as the coefficients of the
cointegrating errors, and even of unknown integration orders,
and for carrying out asymptotically valid, and sometimes even
efficient, statistical inference. However, r might not be known to
the practitioner, and various approaches for estimating r from

the data have been developed, starting from Engle and Granger
(1987) and Johansen (1991), in their parametric, unit root vector
autoregressive (VAR) setting, and continuing with, for exam-
ple, Saikkonen and Liitkepohl (2000) and Aznar and Salvador
(2002). If, however, the order of the VAR is underspecified, or all
observable series do not have a single unit root, then typically the
resulting specification error will invalidate such approaches, not
to mention rules of statistical inference on unknown coefficients
in the model. It is possible that one or more of the nonstation-
ary observable processes could have two or more unit roots, or
indeed could have fractional orders of integration, as supported
by some empirical investigations. References that allow for non-
parametric autocorrelation and/or unknown integration orders
include Phillips and Ouliaris (1988, 1990), Bierens (1997), Stock
(1999), Shintani (2001), Harris and Poskitt (2004), and Li, Pan,
and Yao (2009) in the case of integer integration orders, and
Robinson and Yajima (2002), Chen and Hurvich (2006), and
Robinson (2008) in case of fractional integration orders, includ-
ing in the latter setting cases, where observables are stationary
and the cointegrating errors are stationary with less memory.
Like Phillips and Ouliaris (1988), Robinson and Yajima
(2002), Harris and Poskitt (2004), and Li, Pan, and Yao (2009),
we employ methods based on eigenanalysis. In our case, in the
setting of nonparametric autocorrelation and unknown (and
possibly different) integration orders, we employ eigenvalues
of a certain nonnegative definite matrix function of sample
autocovariance matrices of the observable series, for estimating
cointegration rank, with the cointegration space then estimated
by selection of eigenvectors, and cointegrating errors thereby
proxied. Though the initial development assumes that observ-
able series have integer orders and cointegrating errors have
short memory, we extend these results to allow for observables
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to be fractionally nonstationary, and cointegrating errors to
be fractionally stationary. In both circumstances, we establish
consistency of our estimates of cointegration rank and space
with p fixed as the length n of our time series diverges. In
case of integer integration orders, we also establish consistency
allowing p to diverge slowly with #.

The rest of the article is organized as follows. The proposed
methodology is presented in Section 2. Asymptotic theory with
integer orders of integration is developed in Section 3. In Section
4, both the proposed method and part of the asymptotic the-
ory are extended to the fractional case. Simulations and a small
real data example are reported in Section 5. All statements and
proofs are relegated to an Appendix, which also contains a num-
ber of technical lemmas.

2. Methods

2.1. Setting

We call a vector process u; weakly stationary if (i) Eu; is a
constant vector independent of ¢, and (ii) E|u||*> < oo, and
Cov(uy, usy) depends on s only for any integers ¢, s, where || - ||
denotes the Euclidean norm. Denote by V the difference oper-
ator, that is, Vu; = u; — w;_;, and V9u, = V(V41w,) for any
integer d > 1. We use the convention V’u, = u,. Further, if u,
has spectral density matrix that is finite and positive definite
at zero frequency we say u, is an I(0) process. An example of
an I(0) process is a stationary and invertible vector ARMA,
and many I(0) processes satisfy Condition 1 of Section 3.1
below, imposed for our asymptotic theory, including the exam-
ples described immediately after Condition 1. Now denote by
u;; the ith element of u; and define ”I = uy1(t > 1), where
1(-) is the indicator function. For an m-dimensional I(0) pro-
cess u; and nonnegative integers dy, ..., d,,, we say that v, =
(V=4 ..., V=4t ) is an (m-dimensional) I(d,, ..., dy)
process, with some abuse of notation when m = 1, d; = 0. Note
that for d; = --- =d,, =0, v; is not I(0) or even weakly sta-
tionary or equivalent to u; due to the truncation (implying v, =
0, t < 0) that is imposed to achieve bounded variance in case of
positive d;, but it is “asymptotically” weakly stationary and I(0).
When d; = --- =d, =1, all elements of v, have a single unit
root, but we are concerned with processes for which d; can vary
over i.

Now assumea p x 1 observable time seriesy; isI(dy, ..., dp)
for nonnegative integers, and admits the form
Y = Ax,, (1)

where A is an unknown and invertible constant matrix, x; =
(X4, X,)' 1s a latent p x 1 process, Xy, is an r x 1 1(0) process,
and X is an I(cy, ..., c,—,) process, where each ¢; is an ele-
ment of the set {d, ..., d,}. Furthermore, no linear combina-
tion of x¢; is I(0), as such a stationary variable can be absorbed
into x4,. Each component of x;; is a cointegrating error of y;
and r > 0 is the cointegration rank. In the event that there
exists no cointegration among the components of y;, r = 0.
When y; itself is I(0, ..., 0), r = p. But these are two extreme
cases. Note that cointegration requires equality of at least two
d;. For many economic and financial applications, there exist a

small number of cointegrated variables, that is, r > 1 is a small
integer.

The pair (A, x¢) in (1) is not uniquely defined, as it can be
replaced by (AH™!, Hx,) for any invertible H of the form

< H,, Hp )
where H;; and H,, are square matrices of size (p —r), 7,
respectively, and 0 denotes a matrix with all entries equal
to 0. Therefore, there is no loss of generality in assuming
A to be orthogonal, because any nonorthogonal A admits the
decomposition A = QU, where Q is orthogonal and U is upper-
triangular, and we may then replace (A, x;) in (1) by (Q, Ux;).
In the sequel, we always assume that A in (1) is orthogonal, that
is, A’A = I, where I, denotes the p x p identity matrix. Write

A= (A1, Ay),

where A; and A, are, respectively, px (p—r) and pxr
matrices. As now x;; = A%Y;, the linear space spanned by the
columns of A,, denoted by M (A;), is called the cointegration
space. In fact, this cointegration space is uniquely defined by
(1), though A, itself is not.

To highlight the key idea of the new approach, we only con-
sider in this section and also Section 3 below the cointegration
with x;, ~ I(0). The extension of our method to the cases when
X;y ~ I(d) with 0 < d < min, <<, d; are presented in Section 4
that also allows d;’s and d to be fractional numbers.

2.2. Estimation

The goal is to determine the cointegration rank r in (1) and
to identify A,, or more precisely M(A;). Then, M(A,) is the
orthogonal complement of M (A;), and x; = Ajy, fori =1, 2.
Our estimation method is motivated by the following observa-
tion. For j > 0, let

n—j n
(Yeuj — V(e — )_’),,

t=1 t=1

Y=

S|~

For any a € M(A,), %> ja is the sample autocovariance func-
tion at lag j for the weakly stationary univariate time series a’y;,
and it converges to a finite constant (i.e., the autocovariance
function of a’y; at lag j) almost surely under some mild condi-
tions. However, foranya ¢ M(A;), a'y; isI(d) for somed > 1,
and

a/fja = Oe(i’lZd_l) or Oe(nZd)a (2)

depending on whether E(a’y,;) = 0 or not, see Theorems 1 and 2
of Pefia and Poncela (2006). In the above expression, U = O, (V)
indicates that P(0 < |[U/V| < 00) — 1. Hence, intuitively the r
directions in the cointegration space M (A;) make |a'X;a] as
small as possible for all j > 0.

To combine information over different lags, define

Jo
W:Z):j):j, (3)

j=0



where jo > 1 is a prespecified and fixed integer with respect
to n throughout. We use the product p) fi; instead of ¥ jto
ensure each term in the sum is nonnegative definite, and that
there is no information cancellation over different lags. Note that
a'Yja = O,(1)ifa € M(A,),and isatleast of the order of n**~!
ifa € M(A;), where d is the minimum integration order of the
components x;;. It can be shown that the (p — r) largest eigen-
values of W are at least of the order n24~!, while the other r eigen-
values are O, (1). Hence, intuitively M (A;) can be estimated by
the linear space spanned by the r eigenvectors of w correspond-
ing to the r smallest eigenvalues, and M (A) can be estimated
by that spanned by the (p — r) eigenvectors of \ corresponding
to the (p — r) largest eigenvalues.

Let (¥, -- -, 571,) be the orthonormal eigenvectors of W cor-
responding to the eigenvalues arranged in descending order.
Define

A= (AL Ay, Xn=Ay and Xp=Ay. (4
Then, M(Kl) and M(Kz), the linear spaces spanned by the
eigenvectors of W, are consistent estimators for M(A;) and
M (A,), respectively; see Theorem 3.1 below.

The idea of using an eigenanalysis based on a quadratic
form of sample autocovariance matrices has been used for fac-
tor modeling for dimension reduction (Lam and Yao 2012, and
references within), and for segmenting a high-dimensional time
series into several both contemporaneously and serially uncor-
related subseries (Chang, Guo, and Yao 2017). One distinctive
advantage of using the quadratic form > ]f; instead of & jin (3)
is that there is no information cancellation over different lags.
Therefore, this approach is insensitive to the choice of jj in (3).
Often small values such as j, = 5 are sufficient to catch the rel-
evant characteristics, as serial dependence is usually the most
predominant at small lags. Using different values of j, hardly
changes the results; see Table 5 in Section 5 below, and also Lam
and Yao (2012) and Chang, Guo, and Yao (2017).

2.3. Determining Cointegration Ranks

The components of X; = K/yt = (x},...,x7), defined in (4),
are arranged according to descending order of the eigenvalues
of W. Therefore, the order of the components reflects inversely
the closeness to stationarity of the component series, with {x}
most likely being stationary, and {x} } most likely being I (d) with
largest possible integer d > 1. Let S;(m) = Y |, pi(k), where
0i(+) is the sample autocorrelation function (ACF) of x! defined
as

~ 1 S
pl(k) = (m (xt+k—x)(xt —X))

t=1
1 « ~
/<—§ @:—?)2>, i=1,2....p,
n
t=1

whereX = Y/, X /n. When X! is stationary and suitable addi-
tional conditions hold, lim,,_. Si(m) < oo in probility, how-
ever, when ¥ is nonstationary, p;(k) — 1 in probability for any
fixed k. Hence, lim,,,_, o, S;(m) = 00. Therefore, we can estimate
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the cointegration rank r by

P
F=) ISim)/m < o) )
i=1

for some constant 0 < ¢y < 1and large m. For a classical station-
ary ARMA time series, the autocorrelation p;(k) decays expo-
nentially, that is, there exists a p € (0, 1) such that p;(k) =
O(p"). Hence, it is usually sufficient to use a moderate m in (5).
In our numerical experiments reported in Section 5, we always
set co = 0.3 and m = 20, and the estimator 7 performs very well
and is robust across the different settings.

Remark 2.1. For unit-root processes, 7 defined in (5) typically
takes the value 0 with probability approaching 1. To appreciate
this,let y; = y:—1 + & be a unit root process and p(k) be its sam-
ple ACF p(k) = 7 (k)/7 (0), where

o 1 n—i . . . n
7)== =D =), Y=) Yin
t=1 i=1

Under some regularity conditions on &, similar to those in The-
orem 1 of Bierens (1993), it can be shown that

(TR0 )

m-+1 m

B (W(l) —Jy W(t)dt>2 + (fol W(t)dt>2 +d,,

4 [fol W2(t) dt — (fol W (t) dt)z]

’

(6)

where

1 m—iym—i+1)
dm—;<6(0)+2121: mm D c@ ),

2
1 n
N ) 2 s -
c(i) = cov(ey, &), O —nll)rglo nE(E 8s> .

s=1
Thus, Y i~ p(k)/m 2, provided that n/m is large enough.

We may also estimate r by unit-root tests. For a given integer
ro < 1, testing a hypothesis on cointegration order Hy : r < 1
can be transformed to testing a unit-root hypothesis

Hy : 555’_“’“ ~ I(d) for some integer d > 1. (7)

We can apply the test method of Phillips and Ouliaris (1988) to
test (7) as d may be greater than 1. When the null hypothesis Hy
is rejected, we conclude r is at least as large as r;.

2.4. Estimation for High Integration Orders

Let ri,...,r; be g positive integers, and 7 +---+ 71, =
p—r. Let 1<a; <---<a, be q integers such that x;,; =
(Xe1gs -+ Xe11) = (A’lqyt, ..., Al y1), where x;y; is an r; x 1
I(a;) process. Let

Kl = (Klqa-'-vxll)’ (8)
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where Kl j has r; columns. Then, X;,; = X/l hi is the estimated
component of X of integration order a;.

Similar to Section 2.3 above, a unit-root test can be adapted
to estimate the sizes ry,...,r, and the integration orders
ay,...,ag We illustrate the idea below by outlining the
steps in estimating (aj, r1), they can be repeated to estimate

(az,f’z):\(aa,ﬁ),-n- R

For 7 defined in (5), let a; be the minimum integer d>1
such that a unit-root test rejects Hy : VIxI™" ~ I(1) against
H, : V3" ~ I1(0). Then, the size r, can be estimated by apply-
ing estimator (5) to the (p —7) x 1 series {Va&?, j=1...,

=7,

3. Asymptotic Properties

In this section, we investigate the asymptotic properties of the
proposed statistics. First, we show that with r given, the lin-
ear space M(Xz) consistently estimate the cointegration space
M (A;). We measure the distance between the two spaces by

o~ 1 ~ -~
D(M(A;), M(Ay)) = \/1 - ;tr(AzAlezAé)' 9

Then, D(M(A,), M(A,)) € [0,1], being 0 if and only if
M(A,) = M(A,), and 1 if and only if M (A,) and M(A,) are
orthogonal. Furthermore, we show that the estimator 7, defined
in (5), is consistent. We consider two asymptotic regimes: (i) p
is fixed while n — oo, and (ii) p — oo more slowly than n.

Putx,; = (x},...,x" ") Under (1), x] is I(d;) for 1 < j <
p—rand z/ = V¥x/ is 1(0), where d; > 1 is an integer. Write
z,=(z,...,z2l"") and & = (z,X,)". Denote the vector of
partial sums of components of & by

S.(t) = (SL(h), ..., Shity))

[nt,] [nt,] '

1 1 1 1 P P
— e & _ES y ey T — & _Eg ’
\/ﬁ ;:1:( 1 1) \/E ;:1:( 1 1)

where0 < t; < --- < tp < lareconstantsandt = (¢, ..., tp)’.
3.1. Whenn — oo and pis Fixed
We introduce a regularity condition first.
Condition 1.
(i) There exists a Gaussian process W(t)=
(Wh(t1), ..., WP(t,)) such thatas n — oo,

S,(t) 25 W(t), on DP(0, 1),

where =25 denotes weak convergence under Skorohod
J1 topology (Chap. 3 in Billingsley 1999), and W (1) has
a positive definite covariance matrix £ = (03;).

(ii) The sample autocovariance matrix of x;, satisfies

max
0<j<jo

1«2
I " Z(Xtﬂ,z — %) (X2 — %)’
=1

p
— cov(X14j2. X12)||, — 0,

where ||H||; = max)a=; |Ha|| is the L,-norm of matrix

H, X, is the sample mean of x,, and —2 denotes conver-
gence in probability.

Note that our definition of cointegration is formally dif-
ferent from that of Johansen (1995), which is based on
ARIMA framework. There are some subtle technical differ-
ences between the respective conditions. For example, Condi-
tion 1(i) above implies det(var(e;)) # 0 while Johansen’s setting
allows the ARIMA process driven by a degenerate innovation
process.

In fact, Condition 1 is mild. It is fulfilled when {&;} is weakly
stationary with det(var(e;)) # 0, E||&;|*” < C for some con-
stants y > 1 and C < 00, and {&;} is also o-mixing with mix-
ing coefficients a,, satisfying the condition Y- ey /7 < o0;
see Theorem 3.2.3 of Lin and Lu (1997). It is also fulfilled
when &, = Z;’ZO Cjn;_j, where 7, are iid. with nonsingular
covariance matrix and E||9;||*” < oo for some constant y > 1,
and det(ZjiO Cj) #0, Z?; [|ICj|| < oo. See Fakhre-Zakeria
and Lee (2000). Note that our setting accommodates the cases
when y; contains linear deterministic components, as we allow

E(e,) # 0.

Theorem 3.1. Let r be known. Under
D(M(A,), M(A)) = 0,(1). Furthermore,
(i) DIM(A,), M(Az)) = O, (n~2T1) provided either (a)
\I,| > 2 or (b) |Ih| = 1 and Ez® = 0,
(ii) b(M (Kz), M(A3)) = O.(n=?") provided |Ij] = 1 and
Ez" # 0,and
(iii) D(M(A1j), M(A1))) = O (n™2) for j=1,...,q
provided Ez, = 0,
where Iy ={i:x ~I(a)), 1 <i<p—r}, || denotes the
number of elements in I, o;=min{a;—a; 1, aj; —
aj}, ap=1/2 and aj, j=1,...,q are defined in Section
2.4.

Condition 1,

Remark 3.1. When Ez; # 0, we can express the components x!
of x;; as

(1 —B)*xl = (2} — Ez}) + Ez} =: &} + ..

Hence,
di—1
X= (=B e+ [ [t +D/(d)
1=0
di—1
=&+ [ [E+D/@.
1=0
This entails y, = Ax;, = A(&,x,,) +B(1,t,12,...,t%),

where B is a p x a; matrix. We can estimate B by the least
squares method based on {y;}, and identify the cointegra-
tion subspaces spanned by A,; using the detrending series
Y=Yy — ﬁ(l, t,t%, ..., t%) . It can then be shown that Theo-
rem 1 (iii) still holds.

Theorem 3.2. Under Condition 1, lim,, oo P(T=1) = 1.



3.2. Whenn — oo, p — ooand p = O(n)

We extend the asymptotic results in the previous section to the
cases when p — oo and p = O(n°) for some ¢ € (0, 1/2). Tech-
nically, we employ a normal approximation method to establish
the results. See Condition 2(i).

Condition 2.
(i) Suppose that there exists an g-dimensional vector e
with mean zero and independent components such that
z; = Be;, where Bisa (p — r) x qmatrix,q > p — rand
[B|l, < co. For each component € of e, there exists
an independent and standard normal sequence {v/} for
which as n — oo,

2

[nt]

i i _ 2t

@i’; OrgsaxlE |:21: (es U,,vs):| = 0(n""), (10)
s=

where 0<7<1/2 is a constant, b <o?=
lim, o Var(}_\_, e!)/n < b, for any i, and by, b,
are two positive constants.

(ii) The sample autocovariance matrix of x;, satisfies

max
0<j<jo

n—j
% Z(XH—j.Z — %) (X2 — Xy)'
t=1
p
— COV(X1+]',2, X1,2) H2 — 0.
(iii) Suppose {z;} and {x¢,} are independent and for T given
above

max Z ‘E (ssjatj)‘ = O(n'™).

— i<
p—r<j=p si=1

Remark 3.2. The inequalities immediately below (10) holds
when all components series of z, are I1(0) with spectral density
continuous at zero frequency. This is guaranteed by the fact that
their variance is proportional to the Cesaro sum of the Fourier
series of the spectral density at zero frequency, and thus con-
verges to the latter (which is positive and finite under 1(0)) after
normalization.

Remark 3.3. The form z; = Be; in Condition 2 (i), has been used
by Bai and Saranadasa (1996) and Chen and Qin (2010). Many
classic vector time series, including stationary VAR, VARMA,
and more generally the linear process

oo
Zi = E Bjetfj
Jj=0

with Z;‘)o:() [IBjll> < oo follow this from. We require m > p —
r, which ensures that no linear combination of z; is I(0).
The assumption on the independence between {z;} and {x;,}
in Condition 2(iii) ensures that cross-correlation of {z;} and
{x:2} is negligible in deriving the properties of the eigen-
values of W, which can be replaced by the condition that
E(n=@r/2 5" xixh)?2 = o(1/(pr)).

Remark 3.4. Let p = o(n'/?). Condition 2 is implied by any of
the three assertions below.
(i) The components of & are independent of each
other, and each component series {¢/} is a mar-
tingale difference sequence with max;<;<,E|éf|? <
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oo for some ¢ > 2. Furthermore, for

2 < q* < min{4, q},

S [(ed) - o]

t=1

some

max E = 0?7,

1<i<p

(ii) The components of &; are independent, Ee; = 0, and

max E|&/|* < oo for some k > g € (2, 4]. The process
I<i<p

{&:} is a-mixing with mixing coefficients «,, satisfying

o0
Za,(,'f*q)/('(q) < 0. (11)

m=1
(iii) The components of ; are independent. Each component
g, satisfies the following conditions.

(a) There exists an iid random sequence {n'} such that

oo
i_ ol
& = E CijMly—j-
j=0

(b) Eel =0, Ele/|1 < o0
Ziio ]|C,J| < OQ.

Theorem 3.3. Let r be known and Condition 2 hold. If
p = o(n'/?>77) and 7 given in Condition 2,

D(M(A,), M(Ay)) = O,(p"2n 2+ (1*) 71,

for some g¢g>2 and

where A* is the smallest eigenvalue of fol F(t)F (t) dt defined in
Lemma 9 in the online supplementary materials.

Remark 3.5. Theorem 3.3 is derived under the condition p =
o(n'/2=7), while there are no direct constraints on either r or
p — r. However, when p — r is fixed, fol F(t)F (t)dtisa (p—
r) X (p — r) positive definite matrix, and, hence, A* is positive
and O,(1). When the integration orders of all the nonstation-
ary components are the same and equal to dpn, then )=
O, ((p — r)2dmn=1).

Theorem 3.4. Let Condition 2 hold and p = o(n!/>7%). Then,

lim P(t=r) =1,

n—00

provided (A*)~!p!/2n=@+1/2 = o(1).

4. Fractional Cointegration

Fractional cointegration has attracted increasing attention in
recent years, see, for example, Robinson and Hualde (2003),
Chen and Hurvich (2006), and Robinson (2008). In this section,
we generalize the method presented in Section 2 to cases when
the components of y; may be fractionally integrated. For sim-
plicity, we now assume p is fixed.

Letv;” = v,1(t > 0) and forany & € R,

S @B a@) = GO
A ;a](a)B, aj(@) F@rG1 D
be formally defined as in Hualde and Robinson (2010), where B
is the backshift operator. With these definitions, we can extend
the definition of the I(d}, . .., d,,) process v; in Section 2 to non-
negative real-valued d;, such that d; # k — 1/2 for any integer
k. Note that for d; < 1/2 the ith element of v; is “asymptotically
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stationary” (due again to the truncation in the definition of v;),
while d; > 1/2 represents the “nonstationary” region.

With this extended definition to cover fractional time series,
we again consider a p x 1 observable I(d, ..., d,) time series
y: satisfying (2.1), partitioning x; as before. However, we also
extend the definition of cointegration, saying that y; is cointe-
grated if at least two d; are equal and exceed 1/2 and there exists
a linear combination giving nonzero weight to two or more of
these thatis I(c) for 0 < ¢ < d;. Thus, leta; > 1/2 be the small-
est integration order of elements of x;; and let § € [0, a;) be the
integration order of elements of x;,. Thus, each component of
Xy, is a cointegrating error of y;. Let A = (A4, Ay) and M(A;)
be defined as in Section 2. Then, M (A,) is called the frac-
tional cointegration space and r is called the fractional cointe-
gration rank. We estimate M (A;) and r in the same manner as
in Section 2.

Furthermore, let 7, ..., rq be g positive integers with
r+---+rg=p—r,and 1/2 < a; < --- < a,. Suppose that
X;) consists of r; I(a;) components. Let

K1 = (Klq3t~-,Kll), (12)

where Ay has r; columns. Then, X;1; = A} has the estimated
components of x;; (i.e., X;1; = A jy,) of integration order a;.

Lete; = (g}, ... P)/ be the p-dimensional I(0) with mean
zero such that Vde =¢/ + ;. Let S,(t) = Sl g and I, =
{zd<1/21§1§p}

Condition 3.
(i) Elle/|]? < oo for some g > max(4, 2/(2a; — 1)) and for
anyi, j € I, asn — 00,
E[xx].

- E :xtxt

(ii) There exists an iid mean zero p x 1 normal vector {w;}
such that as n — 00,

[nt]
— A, = 1/s
Orgtagx1 [1S,(t) ZWle =0,(n’’?), for some s > 2.
i=1
Remark 4.1. Condition 3 is mild and satisfied by either of the
following processes.

1. Suppose &; follows a linear process:

oo
€t=ZCket7k, t=1,2,
k=0

and {e;} are iid vectors with mean zero, Eece; =
¥ >0, E||et||g < oo for some g > 4, the p x p coef-
ficient matrices Cy satisfy Y r-, k||Cx||* < oo. Then, by
Lemma 2 of Marnucci and Robinson (2000), we have (ii)
of Condition 3 holds. (i) follows by ergodicity.

2. Suppose &; follows a generalized random coeflicient
autoregressive model:

e =Cie1 + e (13)

and {(C;, e;)} are iid random variables with E||C,||? < 1
and E||e||? < oo for some q > 2, then (ii) of Condition 3
holds with s < min{q, 4}, see Liu and Lin (2009, Corol-
lary 3.4). Similarly, (i) follows by ergodicity.

Theorem 4.1.Let r be known. Under
D(M (Kz), M(A3)) = 0,(1). Furthermore,
(i) whend < 1/2,
(a) DIM(A,), M(A,)) = O.(n~24+1) provided either
o] > 2 or |lh] = 1and pu;, = 0;
(b) DIM(A), M(Az)) = O (n~>) provided || =
1, py, # 05
(i) when 6>1/2 and ;=0
D(M(A;), M(A)) = Op(n~2@ D)),
(ili) whenpu;=0forj=1,...,p—r,

DM(A,}), M(A1)) = Op(n ) for j=1,...,q,

Condition 3,

for j=p—r,

where I, and «; are defined as in Theorem 3.1.

Theorem 4.2. Let Condition 3 hold. Then, lim,_,.c P(T=7r) =
1, provided1 < r < p.

5. Numerical Properties

We illustrate the proposed method with four simulated exam-
ples and one real dataset. Note that the comparison with
Johansen’s (1991) likelihood method is carried out for Example
1 and the real data example only, as Examples 2 concerns differ-
ent integration orders for different components, Example 3 illus-
trates the method in the presence of an additional deterministic
linear trend, and Example 4 is a model of fractional cointegra-
tion. Johansen’s method is not applicable to Examples 2-4.

Example 1. Let the first three components of y; be the same as
Exercise 3.1 in Johansen (1995), that is,

i 1 10 X1 X
yol=11/2 0 1 Xp | =Au| x|,
Vi3 0 1 0 Xt3 Xt3

where x;; is an I(1) process, xs,, x;3 and the innovations in
Xy are independent N (0, 1). For p > 3, we add to y:1, yi2, i3
above r — 2 extra stationary AR(1) components and p —r — 1
ARIMA(1,1,1) components. All the coefficients in AR(1) are 0.5,
the coefficients in ARIMA(1,1,1) are (0.6, 0.8), and all the inno-
vations are independent N (0, 1). Except for the elements in A;;
specified above, all the other elements of A are generated inde-
pendently from U (-3, 3). For each setting, with different com-
binations of p, r, and n (see Table 1), we draw 500 samples. We
set jo = 5 in (3), and estimate the cointegration rank r by (5)
with ¢y = 0.3 for each of the 500 samples. Then, with r =7, we
estimate A by (4). Since 7 is not necessarily equal to r, and A is
not a half orthogonal matrix (as specified above), we extend the
definition of discrepancy measure (9) as follows:

_ tr(A,A;B, (B;B,)"'B))

max(r, 7)

Dy (M(A,), M(B,)) =

)

(14)
where B, is the p x r matrix consisting of the last  columns
of (A7), as now x; = Byy:. Then, D;(M(A,), M(B,)) €
[0, 1], being 1 if and only if M(Az) and M (B,) are mutu-
ally orthogonal, and 0 if and only if the two subspaces
are the same. When 7=1r and A'A = I,, B,=A; and
Di(M(Az), M(B,)) = D(M(A,), M(Ay)) defined in (9).

The relative frequencies (RF) for the occurrence of the event
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Table 1. Relative frequencies (RF) of correct estimation of r and average distance D, defined in (14) in simulation with 500 replications for Example 1.

n =200 n =300 n =500 n=1000 n =1500 n=2000
Method RF D, RF D, RF D, RF D, RF D, RF D,

p=3 Jo(005) 0930 0051 0964 0028 0944 0036 095 0028 0942 0034 096  0.020
r=2 Jo00) 0980 0026 099 001 0990 0.1 0992 0007 0994 0005 0984 0010
New 0968 0032 0998 0009 100 0005 100 0002 100 0002 100 0.001

p=6 Jo(0.05) 0558 0276 0636 0226 0644 0217 0640 0215 0702 0177 0640 0214
r=2 Jo0O) 0760 0184 085 0177 0802 0123 0862 0083 0852 0088 0866  0.079
New 0388 0375 0838 0117 0982 0027 0994 0013 1.00 0004 100 0.006

p=9 Jo(005) 0200 0445 0216 042 0312 0367 0344 0345 0352 033 0380 0323
r=3 Jo(00) 0558 0290 0598 0251 0666 0185 0708 0154 0742 0135 0752 0129
New 0016 0605 0384 0341 092 0066 0998 0018 1.00 0.010 1.00 0.006

p=12  Jo(005) 0064 0539 0144 0466 0198 0416 0254 0375 0270 0362 0288 0352
r= Jo0O) 0226 0426 0318 0354 0432 0282 0490 0243 050 025 0544 0212
New 0 0681 0054 054 0794 0120  09% 0.2 1.00 0.011 0998  0.009
p=18  Jo(0.05) 0 0653 0006 0586 0016 0535 005 0478 0090 0448 0092 0443
r= Jo(0O) 0006 0595 0020 052 0046 0468 0158 0379 0226 0349 0236 0333
New 0 0737 0 0675 0092 0429 098  0.032 1.00 0.016 1.00 0.011
p=24  Jo(005) 0 0742 0 0664 0 0580 0008 0507 0002 0488 0006 0480
r=8 Jo@o) 0 0703 0 0613 0 0532 0006 0468 0026 0438 0020 0435
New 0 0759 0 0719 0 0593 0898 0064 100 002 100 0.014

p=30  Jo(005) 0 0790 0 072 0 0628 0 055 0 0527 0002 0512
r=10 Jo©o) 0 0772 0 0691 0 0.591 0004 0514 0004 0480 0004  0.466
New 0 0771 0 0742 0 0662 0482 0186 0984 0030 100 0.018

{r=r} and the average value of D1 = D, (M(Xz), M(By))
over 500 replications are listed in Table 1 under the name new
method (New).

Also included in Table 1 are the results of Johansen’s likeli-
hood estimation with cointegration rank r estimated by the trace
test; see Johansen (1991). We apply the method twice with test-
inglevel setat 0.05 and 0.01, respectively, marked as Jo(0.05) and
Jo(0.01) in Table 1. The null-distribution of the trace test statistic
is approximated by that of

T -1
> X = X)Xy — XY
t=1

T
Y e X —X)
t=1

T

x| Y X —Xe |

t=1

where & = (&,1,...,p—r), Xo =0 and X, = 23:1 &, and
{&:.;} are independent N (0, 1). See Johansen and Juselius (1990).
This approximate distribution is calculated by simulation with
T = 1000 and 6000 replications.

Table 1 indicates clearly that the newly proposed method
always outperforms Johansen’s method. More precisely, the esti-
mator 7 defined in (5) achieves higher relatively frequencies
for hitting the true value r than those achieved by the trace

test with significance level at either 0.05 or 0.01. Note that
the first part of Table 1 with p = 3 and r = 2 corresponds to the
same setting of Example 3 of Johansen (1995). The inference is
more challenging when p and r increase. When p = 30, r = 10,
our new method works reasonably well when the sample size
n = 1000 and it works almost perfectly when n > 1500. On the
other hand, Johansen’s method, which is not designed for large
- fails to perform even when n = 2000 or 2500.

Example 2. Now in model (1) let x;; consist of r stationary
AR(1) processes with coeflicients —0.4 + i/r (i =1, ..., r),and
let s components of x;; be ARIMA(1,1,1) with coefficients 0.3 +
0.5i/s and 0.2+ 0.6i/s(i=1,...,s), and the other p—r —s
components be ARIMA(0,2,1) with coefficients generated inde-
pendently from U (—0.95, 0.95). Hence, x;; consists of a mixture
ofI(1) and I(2) processes. All innovations involved are indepen-
dent N (0, 1). Let the elements of A be generated independently
from U (—3, 3). We estimate the cointegration rank r by (5), and
apply the same method to the differenced X;; to estimate s; see
Section 2.4 above. For each setting, we replicate the exercise 500
times. The RF for the occurrence of events {r = r} and {5 = s}
are listed in Table 2.

Also included in Table 2 are the results from applying the
Phillips—Perron unit-root test (PP.test), with significance level

Table 2. Relative frequencies of correct estimation of r and s by the Phillips—Perron test (PPtest) and method (5) in simulation with 500 replications for Example 2.

n 200 300 500 1000 1500 2000
(b, 1,9) Method r s r s r s r s r s r s
(6,2,2) PPtest 0.964 0.412 0.970 0.440 0.978 0.420 0.982 0.416 0.970 0.448 0.960 0.460
(5) 0.614 0.486 0.908 0.766 0.962 0.814 0.944 0.876 0.942 0.892 0.924 0.898
6,3,1) PP.test 0.996 0.288 1.00 0.336 0.996 0.342 0.992 0.408 0.998 0.416 0.998 0.430
(5) 0.904 0.604 0.992 0.782 0.998 0.896 0.986 0.924 0.992 0.940 0.988 0.958
(10,4, 4) PP.test 0.840 0.348 0.874 0.392 0.854 0.392 0.852 0.446 0.842 0.430 0.824 0.454
(5) 0.078 0.162 0.538 0.480 0.924 0.798 0.940 0.866 0.896 0.858 0.880 0.870
(10,6,2) PPtest 0.984 0.262 0.986 0.276 0.978 0.330 0.984 0322 0.978 0.404 0.974 0.406
(5) 0.566 0.488 0.932 0.740 0.954 0.826 0.942 0.874 0.920 0.876 0.910 0.884
(15, 8, 4) PP.test 0.780 0.192 0.792 0.1774 0.812 0.218 0.750 0.232 0.726 0.260 0.658 0.310
(5) 0.006 0.110 0.326 0372 0.868 0.684 0.836 0.708 0.858 0.770 0.830 0.768
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Figure 1. Example 2: Boxplots of D, (M(/Iiz), M(B,)) (left panel) and D, (M (RH), M (B,,)) (right panel) when (p, r, s) = (6, 2, 2). The labels on the horizontal axis are

sample size n.

set at 0.01, for estimating r; see (7). By applying the same
procedure to the differenced X;;, we also obtain the estimated s.
When p is small, the PP.test estimates r slightly better than (5)
though both methods perform well. For estimating s, the PP.test
is much worse than (5). When p is large, (5) performs substan-
tially better than the PPtest. Also noticeable in Table 2 is the
fact that the larger r/p is, the more accurate are the estimates
for r, and the larger s/(p — r) is, the more accurate are the
estimates for s. Overall (5) provides a more stable performance
than PP.test.

Figures 1-2 present the boxplots of D;(M (Ay), M
(B2)) and Di(M(An), M(Bn)) for (p,rs)=(6,2,
2) and (10,4, 4), respectively, where M(B;;) is the true
cointegration space specified by the I(1) components of x;;.
As expected, the estimation errors decrease as sample size n
increases, and the errors with (p, r, s) = (10, 4, 4) are greater
than those with (p, , s) = (6, 2, 2).

Example 3. Now, we consider an example in which the compo-
nents of y; are I(1) with linear trend, that is,
Ve = My + Bt +Z; = Axy (15)
for some (xf) = (x}}, Xr2), where X} = p} + uit + x4, Xn
is nonstationary process and X, is stationary process. In our
simulation, all component of u} and p; are taken as 0.3 and
0.5, respectively, all components of x;, are AR(1) with coefhi-
cients generated from U(—0.8, 0.8), all components of x;; are
ARIMA(1,1,1) with AR coeflicients generated from U (0, 0.8)
and MA coeflicients generated from U (0, 0.95), and all inno-
vations are independent N (0, 1). Table 3 reports the RF of the

occurrence of the event {r'= r} and the average distance (14)
in a simulation with 500 replications, where the cointegration
rank is estimated by (5) with ¢p = 0.3. Also, included in Table 3
are the results obtained from applying the Phillips—Perron unit-
root test to estimate r, see (7). Table 3 indicates that (5) works
well even in the presence of a deterministic linear trend, where
our theoretical setting exclude. However, the Phillips-Perron
test performs poorly for large p and small r/ p.

Example 4. We consider fractional cointegration cases now. Let
the components of x;; be I(d) processes with a fractional order
d = 4/5 or 3/4, the components of x;, be AR(1) with autore-
gressive coeflicients 0.2i (i =1, ..., r), the elements of A be
generated independently from U (=3, 3), and all innovations be
independent and N (0, 1). We consider various combinations for
p, 1, s, and the sample size n. For each setting, we replicate the
simulation 500 times and estimate the cointegration rank r using
(5) with ¢y = 0.3. The RF for the occurrence of the event {7 = r}
and the mean of distance (14) over 500 replications are listed in
Table 4. While the proposed methodology works well, the accu-
racy is slightly lower than that integer cointegration orders. See
the examples above. We also notice that the estimation errors
with d = 3/4 are greater than those with d = 4/5.

To illustrate the impact of the choice of j, on the estima-
tion, we consider the above fractional cointegration with p = 6,
r =4 and order d = 4/5, 3/4, and 2/3. By setting sample size
n = 1000 and j, between 5 and 100, the RF for the occurrence of
the event {¥ = r} and the mean of the distance (14) are reported
in Table 5. As mentioned in Section 2, using different values of
jo hardly changes the results.
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Figure 2. Example 2: Boxplots of D, (M (ﬁz), M(B,)) (left panel) and D, (M (ﬁ"), M (By))) (right panel) when (p, r, s) = (10, 4, 4). The labels on the horizontal axis

are sample size n.
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Table 3. Relative frequencies of correct estimation of r and average distance in simulation with 500 replications for Example 3.

n =200 n =300 n =500 n=1000 n =1500 n = 2000
(b, Method RF D, RF D, RF D, RF D, RF D, RF D,
PPiest 0882 0087 0780 0143 0664 0200 0950 0030 0838 009 0746 0150
6.2 New 0452 0331 0858 0107 0982 0026 100 0002 100 0.004 0998  0.008
PPiest 0988 0010 0988 0007 100 0002 0998 0002 099 0002 099  0.005
6.4) New 097 0016 1.00 0002 100 0002 100 0.001 1.00 0002 100 Se-4
PPtest 0842 0092 0398 0293 064 0182 0330 0324 0334 0319 0488 0244
(10,4) New 0066 0485 0328 037 0966 0042 100 0.021 1.00 0007 100 0.012
PPtest 0766 0107 0316 0279 0664 0132 0846 0062 0806 0076 0876  0.048
(10, 6) New 0432 0231 0796 0103 0998 0010 1.00 0006 100 0003 100 0.002
PPiest 0082 0454 0166 0377 0094 0424 012 0388 0046 0468 0096 0436
(15,6) New 0 0651 0004 052 0506 0221 099  0.021 0998 0.021 1.00 0.005
PPtest 0290 0240 0592 013 0336 027 0484 0157 0798 0064 0446 0177
(15,10) New 0066 0332 0646 0124 0964 0034 100 0003 100 0004 100 0.007
PPtest 0 0628 0 0667 0 0.671 0 0686 0 0696 0 0703
(30,10) New 0 0769 0 0737 0 0655 0364 0234 0974 0062 0994 0040
PPiest 0 0346 0004 0329 0010 034 0010 034 0034 0294 0006 0329
(30,20) New 0 045 0002 0368 0344 0168 1.00 0.019 1.00 0.010 1.00 0.010

Table 4. Relative frequencies (RF) of the occurrence of event {r = r} and average distance D, defined in (14) in simulation with 500 replications for Example 4.

n =200 n =300 n =500 n=1000 n=1500 n=2000

d (. n RF D, RF D, RF D, RF D, RF D, RF D,
3,2) 0.828 0134 0948 0068 0978 0.040 1.00 0.017 0.998 0.014 1.00 0.010

4/5 6,2) 0.020 0.664 0240 0.507 0664 0294 0946 019 0.966 0.101 098  0.070
9,3) 0 0721 0004  0.656 0.188 0.488 0.766 0.250 0.868 0.181 0.920 0.156
(12, 4) 0 0743 0 0701 0.014 0.596 0528 0380 0716 0307 0788 0275
3.2 0770 0.174 0.902 0098 0964  0.058 0984  0.033 1.00 0.019 0998 0017

3/4 6,2) 0.018 0.685 0132 0.578 0.488 0380 0866 0193 0.916 0.151 0.942 0.8
9,3) 0 0733 0 0680  0.104 0.549 0604 0336 0.800 0240 0864 0205
(12,4) 0 0754 0 0719 0006  0.629 0328 0450  0.606 0378 0696 0344

Table 5. Relative frequencies (RF) of the occurrence of event {F = r} and average distance D, defined in (14) with n = 1000 in simulation with 500 replications for
Example 4.

Jo=5 jo=10 Jo=15 Jo=20 jo =50 jo =100
d RF D, RF D, RF D, RF D, RF D, RF D,
4/5 0.964 0.086 0.984 0.069 0.982 0.062 0.982 0.064 0.982 0.054 0.980 0.057
3/4 0.934 0125 0.950 0.107 0.952 0.101 0.956 0.091 0.954 0.082 0.960 0.084
23 0788 0226 0788 0209 0.788 0.199 0.804 0.195 0.814 0171 0.806 0179

Example 5. We consider the 8 monthly US Industrial Produc-
tion indices for January 1947-December 1993 published by
the US Federal Reserve, namely the total index, manufactur-
ing index, durable manufacturing, nondurable manufacturing,
mining, utilities, products, and materials. The original 8 time
series are plotted in Figure 3. Applying the proposed method
to these data, the transformed series X; = A'y; are plotted in

Figure 4 together with their sample ACF. The proposed method
(5) leads to 7 = 4 with m = 40, ¢ = 0.3, and j, = 50 or 100.

We also apply Johansen’s (1991) likelihood method to this
dataset. Both the trace and the maximum tests indicate r = 4.
The corresponding transformed series together with their sam-
ple ACF are plotted in Figure 5.

Table 6. Relative frequencies (RF) of the occurrence of event {r = r} for p = 2 with different €, and 500 replications.

r n 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 095
200 100 100 100 099 0988 0976 0946 0926 0872 0814 0722 0616 0480 0350 0218 0112 0036 0002 0
300 100 100 100 100 100 100 0998 0.99% 0984 0958 0932 0880 079 0672 0522 0364 0180 0034 0
0 500 100 100 100 100 100 100 100 1.00 1.00 0.998 0994 0990 0.980 0946 0.868 0754 0546 0232 0.016
1000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0998 0988 0922 0.696 0.226
200 0.648 0.878 0966 0.992 0.992 0.994 0988 0976 0.968 0.952 0.936 0.902 0.838 0766 0.642 0538 0416 0264 0.074
300 0514 0.864 00984 0998 100 100 100 100 0.998 00992 0984 0974 0952 0930 0.858 0752 0.620 0398 0152
1 500 0442 0882 0990 0.998 0.998 100 0.998 0.998 0.998 0.996 0.994 0.994 00988 00982 0952 00910 0.844 0.636 0.336
1000 0210 0900 0.992 0998 0998 0998 0998 0998 0998 0998 0998 0996 0996 0996 0994 0990 0980 0910 0.634
200 0230 0616 0866 0970 0994 0998 100 100 100 100 100 100 100 100 100 100 100 100 100
300 0.150 0568 0.884 0980 099 100 100 100 100 100 100 100 100 100 100 100 100 100 100
2 500 0.088 0502 0910 0992 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1000 0.018 0558 0978 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Figure 4. Time series plots of the estimated ?I by the proposed method and their sample ACF for the 8 monthly U.S. Industrial Production indices.
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Table 7. Relative frequencies (RF) of the occurrence of event {F = r} for p = 3 with different €, and 500 replications.

r n 005 010 01 02 02 030 03 040 045 050 055 060 065 070 075 080 08 090 0.95

200 0986 0.982 0962 00938 0.89 0826 0744 0608 0490 0370 0276 0.178 0.096 0.036 0.008 0.002 0 0
300 100 100 0998 0998 0994 0982 0962 0926 0866 0806 0702 0562 0390 0238 018 0.040 0.006 0
0 500 100 100 100 100 100 1.00 1.00 0.998 0.994 0986 0.972 0940 0.864 0738 0526 0316 0.112 0.008
1000 100 100 100 100 100 100 100 100 100 100 100 100 0998 0.994 0978 0.876 0.692 0.282
200 0732 0932 0958 0968 0954 0932 0908 0860 0788 0718 0.632 0530 0430 0308 0.188 0.096 0.032 0
300 0584 0900 098 100 100 0996 0988 0974 0956 00924 0.880 0816 0724 0.600 0418 0268 0.114 0.022
1 500 0456 0.89 0.984 0994 0998 100 100 0994 0.990 0.988 0.988 0.972 00944 0908 0.824 0676 0446 0.198 0.032
1000 0258 0.900 0.996 0.996 0.998 0.998 100 0.998 0.998 0.996 0.996 0.996 0.994 0.990 0.990 0.962 0.884 0.626 0.194
200 0288 0780 0964 0998 100 100 100 100 100 100 0998 00990 00962 00942 0.886 0.828 0724 0522 0.252
300 0448 0814 0944 0990 0998 0998 0998 0994 0992 0982 0962 0934 0878 0.820 0.756 0.666 0.500 0322 0.126
2 500 0210 0786 0982 100 100 100 100 100 100 100 100 100 1.00 0.998 0.978 0.950 0.892 0726 0.420
1000 0.096 0848 099 100 100 100 100 100 100 100 100 100 100 100 1.00 100 099 0960 0714

coooo

o

Let A, denote the last 4 columns of A and B, consist of To illustrate the impact of the choice of ¢y on the estimation,
the loadings for the last four component series displayed in ~we consider model (1) with p = 2 and the following three spec-
Figure 5, that is, the columns of A, are the loadings of the ifications for x;:

four cointegrated variables identified by the proposed method (i) r =0, both components of x; are ARIMA(L, 1, 1) pro-

in this article, and the columns of B, are the loadings of the cesses with coefficient (0.6, 0.4) and (0.8, 0),
four cointegrated variables identified by Johansen’s likelihood (i) r=1, x;1 is ARIMA(L, 1, 1) with (0.6, 0.4) and x;, is

method. Then, AR(1) with coefficient 0.6,
(iii) r =2, x is AR(1) with coefficient 0.6 and x;, is
Dy (MR, M(B,))’ = 1 — ~tr [A,A,8,(B,B,) B} ) ARMA(1, 1) with coefficient (0.6, 0.4).

4 The elements of A are generated independently from
=1-0.9816 = 0.0184. U(—3,3) and ¢ is taken from 0.05 to 0.95. In each setting,

we replicate the simulation 500 times with sample size n =

This indicates that the two sets of cointegrated variables identi- 200, 300, 500, and 1000. The RF for the occurrence of the event

fied by the two methods are effectively equivalent.
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Figure 5. Time series plots of the estimated X, by Johansen’s method and their sample ACF for the 8 monthly U.S. Industrial Production indices.
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{r = r} are reported in Table 6. When r = 0, smaller ¢, would
lead to better performance, however when r = 2, larger ¢, may
result in better performance. It is because that as r = 0, both the
components are I(1), smaller ¢, tends to estimate r as 0, while as
r = 2, both the components are I(0), larger ¢, tends to estimate
r as 2, see Remark 1. Further, it is shown that when ¢, is taken
away from the endpoints, say ¢y € (0.2, 0.5), then the proposed
procedure works well for all cases, especially when # is large.

Table 7 reports the simulation results with p = 3, A generated
in the same manner as the above, and three settings for x;:

(i) r = 0, the components of x; are all ARIMA(1, 1, 1) with

coefficients (0.6, 0), (0.3,0.7), and (0.8, 0.4),

(ii) r =1, x;; and x;, are both ARIMA(1, 1, 1) with coeffi-
cients (0.5, 0), (0.8,0.4), and x;3 is AR(1) with coeffi-
cient 0.6,
r=2, xq is ARIMA(1, 1, 1) with coeflicient
(0.8,0.4), x;» is AR(1) with coefficient 0.6 and x;3
is ARMAC(1, 1) with coeflicient (0.5, 0.5).

The pattern of Table 7 is very similar to that of Table 6, that
is, the estimation is stable for ¢, € (0.2, 0.5).

(iii)

6. Conclusions

We propose in this article, a simple, direct and model-free
method for identifying cointegration relationships among mul-
tiple time series of which different components series may have
different integration orders. The method boils down to an eigen-
analysis for a nonnegative definite matrix. One may view that the
components of the transformed series X, = K/yt are arranged
in ascending order according to the “degree” of stationarity;
reflected by the magnitude of the eigenvalues of w.

Supplementary Materials

The online supplementary materials contain additional proofs and
Lemmas.
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