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1. Introduction

A considerable literature has developed around the theme of nonstationary panel data with individual and temporal
effects. The nonstationarity can have both stochastic and deterministic origins. Unit roots and local-to-unit roots, in an
autoregressive setting, have been the main representations of stochastic trends, while individual and temporal effects are
often modelled in a separable, additive way, so that temporal effects are common over the cross-section and individual
ones stay constant over time, and explanatory variables, including linear and other deterministic trends, can also feature.
See for example Anderson and Hsiao (1981), Hahn and Kuersteiner (2002) and Alvarez and Arellano (2003) for estimation
of autoregressive panels when both N and T are large, and Arellano and Hahn (2006) and Moon et al. (2015) for surveys
on associated inference issues; see also Hsiao (2014, Chapter 10). Autoregressive models are also commonly adopted in
the nonstationary time series and cointegration literature. However, the latter has also developed fractional time series
modelling, which can nest I(1) behaviour in a continuum of nonstationary possibilities, with the degree of nonstationarity
characterized by a memory parameter, which can be estimated from the data. This approach has the advantages of flexibility
and of yielding standard asymptotics, and possible local efficiency of inference, unlike the nonstandard theory which usually
emerges from an autoregressive setting. Likewise, the fixed-design nonparametric regression literature suggests a modelling
of deterministic trends which is less prone to specification error than parametric functions. Robinson and Velasco (2015)
employed fractional models with individual effects in a panel data setting, but with no provision for other time-trending
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features such as deterministic trends. Another aspect of their work was the assumption of cross-sectional independence
and homoscedasticity, conditional on individual effects, which is increasingly seen as restrictive, and sometimes replaced
by factor modelling, or spatial modelling.

The present paper considers semiparametric modelling of panel data, such that dynamic parametric fractional stochastic
trends are complemented by stochastic or deterministic nonparametrically time trending individual effects and allowance
for cross-sectional correlation and heteroscedasticity of a nonparametric form, entailing greater generality than factor or
spatial models. The number of time series observations, T, is large, and the number of cross-sectional ones, N, can be large
(increasing with T) or small (fixed as T increases). The latter setting is also considered by Robinson and Velasco (2015), but
our introduction of nonparametric temporal variation of individual effects and relaxation of cross-sectional independence
and homoscedasticity strengthens the need for an asymptotic theory based on increasing T. Large-T panel data are
increasingly available, for example very long time series of prices of several stocks, monthly or quarterly macroeconometric
series for several countries, and repeated micro-economic surveys.

We consider an observable array {y;},i = 1,...,N,t = 0,1, ..., T. The vectors of N cross-sectional observations
¥t = W1, - .., Yne) , the prime denoting transposition, are assumed to be generated by the semiparametric model
A (L; 60) (Ve —ar) =&, t=0,1,...,T. (1)

The parametric aspect of (1) is due to the (p + 1) x 1 parameter vector 6y, which is known only to lie in a given compact
subset ® of RP*1.1In (1) L is the lag operator, and for any € ® and eacht > 0, A; (L; 9) is a scalar function given by

t
M Li0) =Y 1O, (2)
j=0

where the A; () are given functions to be defined subsequently. The unobservable vectors &; have elements with zero mean
and are uncorrelated and homoscedastic across t. Thus, (1) is an autoregressive representation for the y, — «; with initial
condition at t = 0, where the number of terms in (2) increases with t. The assumptions on A; (L; ) that we will impose
are aimed at covering fractionally integrated autoregressive moving average (FARIMA) sequences y; — «;, with unknown
memory parameter that can lie in either the stationary or nonstationary regions.

Other aspects of (1) are nonparametric. We do not require uncorrelatedness or homoscedasticity across the elements
of &, allowing it to have covariance matrix that is unrestricted apart from remaining positive definite with increasing
N, thereby to reflect possible cross-sectional correlation and heteroscedasticity of a nonparametric nature, though it
can also be assumed to be diagonal, to reflect a lack of cross-sectional correlation but the possibility of nonparametric
heteroscedasticity. The vectors «; consist of stochastic or deterministic unobservable individual effects that can time-
trend in a nonparametric way, and in a manner that can vary across elements of the vector, where with N increasing the
familiar incidental parameters problem arises. Our allowance for temporally varying individual effects and cross-sectional
correlation and heteroscedasticity of innovations, and our relaxation of temporal independence of innovations to martingale
difference structure, extend the scope of the model of Robinson and Velasco (2015) to a practically significant degree, but as
a consequence reduce the range of memory parameter values covered and limits the degree to which N can increase relative
to T. These limitations arise from the need to control bias due to the trending of «; that our first differencing approach is
unable to eliminate completely. Note that our detailed specification of «; implies that its elements depend also on T, while
to cover some possible specifications of &; (which allow for cross-sectional dependence) we allow its elements to depend
also on N, and thence on T; thus the y; depend also on T, though as is common we suppress reference to this fact in our
notation.

The main goal of the paper is to justify statistical inference on the unknown parameter vector 6,. Detailed regularity
conditions, later employed in establishing the properties of consistency and asymptotic normality, are described in the
following section. In Section 3 an estimate of 6y, based on initial first-differencing of (1), is shown to be consistent and
asymptotically normal, and feasible statistical inference is justified. In Section 4 a more refined estimate, with some
advantages, is similarly analysed. Section 5 employs a spatial model to illustrate relative efficiency. A Monte Carlo study
of finite-sample performance is reported in Section 6. Section 7 contains some final comments. The proofs of theorems are
included in an Appendix.

2. Theoretical setting

The present section presents detailed regularity conditions on the model introduced in the previous section, which will
be assumed to hold in our theoretical results.
The function A; (L; #) defined in (2) is regarded as truncating the expansion

o0
M(L;0) =Y 2O,
j=0
which has the structure

AL 0) =AY (L&),
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where § is a scalar, £ isap x 1 vector, § = (8, E’)/ and the functions A% and vy (L; £) are described as follows. Defining the
difference operator A = 1 — L, A% has the expansion

rG—2s)

= Z]Tj(S)L], T ) = ma

j=0

for non-integer § > 0, while for integer6 = 0,1,...,7;(§) =1G=10,1,..., =1y -1 ---(F—j+1) /j!, taking
0/0 = 1 and 1 (.) to be the indicator function; v (L; &) is a known function of its arguments such that for complex-valued
X, ¥ (x; £)] # 0, |x] < 1and is continuously differentiable in &, and in the expansion

v (L §) = ij &L,

the coefficients ; () satisfy
Yo (&) =1, ¥ ]+ |5 )] = 0(exp (—c &) j)). (3)

where {bj (&) = (0/0&) ¥ (§) and ¢ (§) is a positive-valued function of ;. Note that

J
MO =) T @)Y, j=0. (4)

k=0

It is assumed that (3) holds for all £ € Z with ¢ () satisfying
infc (§) =c* > 0. (5)

We impose the identifiability condition that, for all & # &, |V (x; £)| # |V (x; &)| on a subset of {x : |x| = 1} of positive
Lebesgue measure. Define

P& =y (L€ = Z¢, ©r
and

x (L&) =— logA (L; 6) = (log A, (3/9&") log ¥ (L; &))’ Z x &L,
where the prime denotes transposition and

J
%@ =y, x5 &) xyE == x &) =D e E) &)

k=1
Then define the (p + 1) x (p + 1) matrix
. /6 Y x5 @& /i
BE=Y 5@ xE =] o ! :
=1 D i @ )i D X €) x5 &)
j=1 j=1

and assume B (&) is non-singular. The conditions on v (L; &) are satisfied by the coefficients in stationary and invertible
autoregressive moving average sequences, and the conditions on A (L; 6) are satisfied by the coefficients in FARIMA
sequences. The above setting is identical to that of Robinson and Velasco (2015), but we extend their model in the following
three respects.

First, we relax their assumption of independence and identity of distribution of the unobservable elements &; of the
vectors & = (&1, ..., n)’ across t to martingale difference structure for levels and squares/products: in particular, almost
surely, for constants ojj (not depending on t),

E(eic|ejs, 1<s<t, 1<j<N)=0, 1<i<N0<t<T, (6)

0,
E (siesje — 0yo |ekees, €1e—s, 1 <s <t, 1<k I<N)=0, 1<i,j<N,0<t<T (7)
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where (6) implies E (¢;;) = 0. Recall from Section 1 that the &;; can be regarded as depending also on N, and thence T, and
thus this is true of the ojjo (Which we stress are constant over t.) We impose also the moment condition

supEej; < 00, (8)
it
and the fourth cumulant condition
N
sup Z |Cum (it &t ke 51t)| =0(N), (9)
ij,k,1=1

both of which are automatically satisfied if &;; is Gaussian.

Secondly, we relax the assumption in Robinson and Velasco (2015) of homoscedasticity and lack of correlation across
elements of the vectors ¢;, inallowing E;e; = Yoy, t =0,1,..., T, foran N x N matrix Xoy = (Ujjo) which is assumed to
stay positive definite and have bounded elements with increasing N but is otherwise unknown, to reflect possible cross-
sectional correlation and heteroscedasticity, or else is restricted to be diagonal, to reflect an assumed lack of cross-sectional
correlation, but the possibility of heteroscedasticity. Since N is allowed to increase, Yoy can in either case be regarded as
nonparametric. Specifically, we assume that, if N is regarded as increasing

fim (| Zonll + || Zon ) < o0, (10)

N—oo
(where ||.|| denotes spectral norm), and existence of

1
2 .
= lim —tr (X 11

o5 NLIT;ONr( oN) 5 (n

and of
.1 2
Ko = lim r (Zdv) - (12)

while if N is regarded as fixed:
_ 1 1
I Zonl + || Zon || < 00, 05 = Ntr (Zon) , ko = fo (Z4n) -

Of course N~'tr (Xon) < || Zov|| while also, from the inequality tr (ABB'A’) < ||A||* tr (BB') (see e.g. Horn and Johnson (1988,
p.313)), we have N~"tr (X2,) < || Zon|| N~"tr (Xon) , so the first component of (10) implies 67 +ko < oo, while the second
implies 002 > 0. Condition (10) effectively upper- and lower-bounds variances and mildly limits the extent of cross-sectional
dependence. Under cross-sectional uncorrelatedness, assumption (10) reduces to

- 1
lim sup (O‘,’,’o + 0y ) < 00.
N—oo

i

Our final extension allows the o; = (ay, ..., an) in (1) to vary with t, being vectors of unobserved nonparametric
(possibly stochastic, and cross-sectionally dependent) trending individual effects, such that
ai = a; (t/T),

for functions «; (1) which satisfy the (possibly stochastic) Lipschitz condition

sup sup loi () — j (U +v)| =0, (Jv]) as v — 0. (13)
N>1 1<i<N,(u,u+v)€(0,1]

Here there is no exogeneity requirement on «; (u) , with no restriction on possible dependence with the &;;. However we
find that if a strong exogeneity condition is imposed, and a related condition to (13) is added, we can slightly increase the
range of values of g covered and relax the restrictions on increase of N with T. In particular, almost surely,

E(st|Ay) =0, 1<i<N,0<t<T,N>1,T>1,
E(sigie —ojolAn) =0, 1<i<N,0<t<T,N>1,T>1, (14)
where
Ay ={oi() —ai(u+v), u,u+ve(0,1], 1 <i=<N},
and also

sup sup Eo; (u) — o (u+v))* = 0 (v?) asv — 0. (15)

N>1 1<i<N,(u,u+v)€(0,1]
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Note that (14) is weaker than assuming the ¢; are independent of Ay, and weaker also than the corresponding moment
restriction that conditions on {«; (u), u € (0, 1], 1 <i < N}. Note also that neither (13) nor (15) implies the other, though
they are closely related.

To illustrate these various conditions, suppose «; (1) has the formal separable infinite series representation

o (W) = Bi+ ) _Bigy W), i=1, (16)

j=1

where g; is completely unrestricted (as it can be fully differenced out), the functions g; (1) are nonstochastic, and the g; can
be random variables. Then since

1/2
o0 o0
2

o ) —ei @+ v) < [ Y B (g5 () — gy (u+v))

riien

a sufficient condition for (13) is
o0
2

sup sup Zﬂu =0,(1), sup sup Z(g,j ) —gjw+v)) =0(v?), asv— 0,

N>1 1<1<N N>1 1<i<N,(u,u+v)e(0, 1]

while the latter and the requirements that, for all N, T > 1, supy.{Sup;<j<nE (Zﬁ]ﬂj) < 00, and {ﬂ,-j, 1<i<N,j=> 1}
is independent of {e;;, 1<i<N, 0<t <T},N > 1, T > 1, are collectively sufficient for (14) and (15). An example of
(16) are polynomials in t, with degree and (possibly stochastic) coefficients allowed to vary with i. In any case the trending
individual effects are nonparametric, as in fixed-design nonparametric regression (see e.g. Cai (2007)), though here they can
be stochastic, and also the fact that there are N of them, where N (like T) will be regarded as increasing in our asymptotic
theory, lends a further nonparametric aspect.

We can compare our approach with the familiar one (see e.g. Hsiao (2014)) in which our «; is replaced by the addition of
a separable individual effect and time effect, namely §; 4 y;. Then first differencing, which is employed in the current paper,
eliminates the individual effect 8; completely, but not the time effect y,. With unrestricted y; this structure is not covered by
our assumptions on «;; and would entail significant complications to the methods in the paper, and strengthened conditions
in order to achieve asymptotic distributional results, see also remarks in Section 7. If, however we take y; = y(t/T), for a
Lipschitz continuous function y (u), we obtain y; —y;—1 = O, (T”) , which becomes small as T diverges. We obtain the same
error bound by differencing our «;; given condition (13), but clearly they afford more generality than the additive 8;+y(t/T),
since our time trends can vary over individuals. It is thus possible that differenced estimation of 6, that ignores the «;; is more
or less robust to their presence, and the extent of this will be examined below. The more specialized structure 8; + y(t/T)
was also employed by Robinson (2012), but there the focus was on estimating the nonparametric function y(u). Note that
the dependence on T of «¢, and also of ¢; (as noted above) in (1) implies that the y, form a triangular array but our notation
suppresses reference to this fact.

3. First difference estimates

We consider in the current section one of the estimates of 8y proposed by Robinson and Velasco (2015) in their more
specialized model, with our goal being to achieve the same property of consistency as if &; were absent from (1) or constant
over t and the elements of & were cross-sectionally uncorrelated and homoscedastic, and asymptotic normality with the
same convergence rate as before but with a generally different asymptotic variance matrix, and also to justify feasible large
sample inference.

From (1) and (13) or (15) it follows that

Ay; = Av + Ay (17)
= Ave +0,(T™"), asT — oo, (18)
where the final term on the right of (18) in fact represents a vector with elements that are Op(T‘l) uniformly iniand t, and
v = A1 (L; o) Aoy, t=0,...,T. (19)
For any 6 € ©, we attempt to fully whiten the data by forming the N x T matrix
ZO)=(z1(0).....2zr (9)),
where

z(0) =2 (LOTV) Ay, t=1,...,T, (20)
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with D = (5 — 1, S’)/. From (27) of Robinson and Velasco (2015) and (17)

2 (0) = M (L; ) vy — 7 (0) €0 + A (L 0°V) A (21)

where 7, (0) = A¢ (1; 0) . We have A, (L; 6p) v; = & but our estimates will be based on (20) as if the two error terms in (21)
were absent, though our theoretical justification will take account of them.

Define the set ® = D x &, where & is a compact subset of RP and D = [3, §], where § > max (0,8 — 5), § < 0o, and
we assume that §o € D. The feasible bias-corrected difference estimate of Robinson and Velasco (2015) is

) ) ) -]

O = L-(©)—T 'b L: (6

P =repintt o) -t (ariptt )
where

7)) = thr (z®z0)), (22)

b? (9) = (s) ( rrT( ) SIXT(G)) )

T
Seer(0 Zn(G)n ) Ser(0) =Y 1 (0) xe (€)
t=1

where 71, (8) = (3/96) 7¢ (§) and

3 t . t—k t ko !
#(0) = 5o (0) = [Z O TGEDIEAODIRACTE (23)
k=0 j=0 k=0 j=0

The basic objective function (22) is of conditional sum of squares type, but corrupted by the second and third components
on the right hand side of (21), whose presence will be accounted for in the theoretical development, in particular by the
term T~ 1bD in the definition of 91 , which corrects for the bias induced by the second term of (21) depending on the initial
condition &g.

Finally define

o = Ko/0y -
Theorem 3.1. Under (1) and (2), and the conditions of Section 2 apart from (14) and (15),as T — oo,

0P — 6. (24)

Ifalso 3 < 8o < 1and NT'=*0log?T — 0, orif 8§ > 1and NT~' — 0, orif (14) and (15) are imposed with 3 < o < 3 and
NT1=%0]og*T — 0, as T — oo,

(NT)% (P — 80) —aN' (0. toB™" (&0)) - (25)

The consistency (24) requires no further restriction on 8y, beyond 8y € D, and no restriction on the rate of increase of N
with T. However, comparing with Robinson and Velasco’s (2015) Theorem 5.2 for their much more special model, we restrict
8o and N in order to achieve asymptotic normality (25), in particular requiring N = o (T) and §, to take nonstationary values
when the «; are not exogenous; this is due to bias produced by temporal variation in individual effects. Of course the results
hold 1f N stays fixed as T — oo. Note that without imposing (14) and (15) we can cover only the nonstationary region
So > whlle if we do impose (14) and (15) we can cover also the stationary values <8y < as well as the boundary
point 80

In order to base statistical inference on Theorem 3.1 we estimate B (&) by B (A D), with gT denoting the final p elements
of QT , and estimate pq by

fip = Ner (23 (67)) /o (n (67)) » (26)
where

- 1

>y (0) = ¥z ®)Z@). (27)

An analogous unrestricted estimate of the cross-sectional covariance matrix was considered by Robinson (2012) in the
context of a panel model with no autocorrelation. If instead we maintain cross-sectional uncorrelatedness we take

~ 1
2 (0) = —diag (z©®z06)). (28)
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Theorem 3.2. Under the conditions of Theorem 3.1,as T — o0,

B(EP) — » B (), (29)
A = p 1o, (30)

with 7i2 given by (26) where Ty (8?) is defined either by (27) or, if oyo = O for all i # j, (28), (NT)? (B (8P) /7i) "/ (6P — 6,)
converges in distribution to a vector of independent standard normal random variables.

4. Pseudo maximum likelihood estimate based on first differences

Our next estimate is the difference pseudo maximum likelihood estimate (PMLE) of Robinson and Velasco (2015). Define
the T x T matrix, 27 (6) = (ws (0)) , wse (0) = 1 (s = t)+15 (0) ¢ (0) , so that 21 (6p) is proportional to the exact covariance
matrix of the vector (ei1 — 7 (6o) €io, - - -, &ir — Tr (6p) €i0)’, cf (21). Unlike in the difference estimate of the previous section
we thus allow for the initial value effect in our estimation, though as there we attempt to incorporate cross-sectional
correlation or heteroscedasticity only in studentization, not in the point estimation of 6y, and we have to contend in the
theory with the O, (T~") error of differencing the o in (21).

We estimate 6 by

P _ s TP
0r = arg min Ly (9),

where O is as defined in the previous section and

1

LY 60) = 121 (0)|T5F (), (31)
in which

~ 1 _ p
o (0) = il Zz® 2" ©z06)).

Theorem 4.1. Under (1) and (2), and the conditions of Section 2 apart from (14) and (15), as T — oo,

o —, 6o. (32)
Ifalso 5 < 8o < 1and NT'=?%log*T — 0, orif 8 > 1and NT~! — 0, orif (14) and (15) are imposed with 3 < 8o < 5 and
NT3-8%]0g*T — 0 + NT~'10g?’T — 0, as T — oo,

1
(NT)2 (6% — 65) —aN (0, 110B™" (£0)) - (33)

The cost of allowing temporal variation in individual effects is thus somewhat greater than with the previous estimates,
the higher lower bound of % for 8o (compared to % in Theorem 3.1, which is implicitly required for Theorem 4.4 of Robinson
and Velasco (2015)) under (14) and (15) resulting from the need to handle additional terms, due to (8/80)’0}2 (6) , which
are not involved in (3/90) LLT) (6p) (see the derivations near the end of the proof of Theorem 4.1).

Now define

iy = Ner (35 (07)) /1 (S (67)) (34)
and denote byg}’ the final p elements of @}’

Theorem 4.2. Under the conditions of Theorem 4.1, as T — oo,
B() — » B0,
ﬁ? — p Mo,

with 722 given by (34) where Sy @) is defined either using (27) or, if oy = 0 foralli # j, (28), (NT)? (B (g‘;’) /IZ’;)]/2 (’9\}’ — o)
converges in distribution to a vector of independent standard normal random variables.

5. Inefficiency of estimation

In the limiting covariance matrix poB~! (£y) in Theorems 3.1 and 4.1, the factor ;o = 1 when the ¢;; are homoscedastic
and uncorrelated across i, butin general 1o > 1 so heteroscedasticity and/or cross-sectional correlation inflates the variance
matrix in the limiting distribution by a scalar factor, relative to the outcome of Robinson and Velasco (2015). Note also that
ZZ‘T’ > 1 whether it is based on either of the estimates (27) or (28) of Xgy.
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The potential inefficiency of our estimates, or equivalently the degree of invalidity of the inference rules which assume
homoscedasticity and lack of correlation across i, can be examined by considering a specific model for &;. The spatial moving
average model is defined by

& = (Iy + pW)ne, (35)

where Iy is the N x N identity matrix, W is an N x N user-chosen ‘spatial weight’ matrix with zero diagonal elements,
taken here to be symmetric and normalized such that ||W| = 1, and correspondingly the scalar p satisfies |p| < 1, while
the elements of #; are mutually uncorrelated with common variance ¢2 . In general all elements of W can depend on N, to
allow for possible normalizations, such as on row and/or column sums, motivating our allowance for all elements of &; to
depend on N. Thus

tr (Zon) = ¢*tr (I + pW)?) = ¢* (N + p*tr (W?)),

tr (Zgy) = *tr (I + pW)?*) = ¢* (N + 6p°tr (W?) + 4p°tr (W?) + ptr (W?)),
and so

Ntr (Z2) N (N+6p%r (W?) +4p3tr (W3) + pitr (W?))

(tr (Zon))’ (N + p2er (W2))?
4p2Ner (W2) + 4o°Ner (W3) + p* (Ner (W) — er(W?)°)

1+

(N + p2tr (W2))°
4p>N (tr (W?) + ptr (W?))
(N + p2tr (W2))?

(36)

This lower bound is 1 when there is no spatial correlation, p = 0, but in general (36) exceeds 1, noting that tr (WZ) +
ptr (W?) > 0 evenwhen —1 < p < Osince [W|| < 1implies tr (W3) < tr (W?), and (36) increases in p2. A simple W,
proposed by Case (1991), is

W =1 ®Bs, B = (s — 1)_1 (151; - Is) ) (37)

where rs = N and 1; is the s x 1 vector of 1's, representing r districts each containing s farms, so farms are neighbours if and
only if they lie in the same district and neighbours are equally weighted. Since

Bl=(s—12 (=2 L1, +L),B =(—17((s*—3s+3) 1,1, - L),
we have

tr(W?) =rs—1D2(s(s—2)+s)=Ns—17",

tr(W?) =rs— 1) (s(s*=3s+3)—s) =N(s—2) (s— 172,
and the lower bound (36) becomes

42 (=D HpG=DE=DF) | 46— 14p-2) 38)
(14 p2s— 171’ (s—1+02)°

A lower bound for p is obtained by letting N — oo, and if s — oo this tends to 1, but if s stays fixed the bound exceeds 1,

and again increases with p?.

1+

6. Monte Carlo simulations

In this section we report the results of a simulation study of the properties of our estimates in finite samples in the
presence of cross-sectional dependence and trends. We extend a similar set-up of Robinson and Velasco (2015), where only
constant fixed effects and independent and identically distributed ¢;, across both i and t, were employed.

We generate the ¢; as the spatial moving average (35), where 7, is A/ (0, Iy) and p = 0.5 or 0.9, while W is generated
as in (37), settingr = 4 (when N = 8 Jorr = 5 (N > 8). We consider both a pure fractional model, sop = 1, 6 = § and
¥ (L; €) = 1, and a model with FARIMA(1, 8, 0) dynamics,sop = 2 and § = (8, §)’ withy (L; €) = 1 — £L.

We consider different choices of N, T and 6. In particular we employ three basic values of NT, namely 100, 200, 400 with
two combinations of N and T for each, to account for relatively short (T = 10, 12) and moderate time series (T = 20, 25, 50),
and also NT = 96 for T = 12. The range of values of N thus varies from 8 through 20 from the smallest to the largest sample
size. The values of 8y include a stationary one (§o = 0.3), which our theorems predict will be the most problematic from
the point of view of bias, a moderately non-stationary one (§ = 0.6), a value close to the unit root (§ = 0.9), and a
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Table 1
Empirical bias x 100. I(3p).
p=0.5 p=0.9
2 o 2 5
S%: 03 06 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 12
T NT
10 100 373 —-197 -2.14 -—-1.68 —-0.33 -231 —-1.87 -1.53 176 —-3.12 -275 -2.13 —-0.15 —-286 —-235 —1.93
12 96 198 —-239 -220 -1.77 —-0.51 —-222 —-196 -1.68 —046 -376 -2.92 -2.31 —-0.34 —-273 -250 -2.15
10 200 7.53 0.10 —1.00 —0.82 —-0.52 —-1.02 -0.89 -0.75 6.34 —-058 —140 -1.14 —-0.56 —156 —129 -—-1.06
25 200 111 -—-122 -1.02 -0.90 —-0.75 —-1.05 —-0.93 -0.84 —-055 —-174 —-128 -1.12 —0.83 —-128 -1.15 -1.04
20 400 5.09 0.03 —-042 -0.37 —033 —-040 -037 -0.34 419 -031 —-0.59 -0.52 —049 -0.62 —-0.54 -—-0.49
50 400 057 —0.56 —0.48 —0.45 —-0.39 —-046 —-045 -0.43 —-046 -0.76 —0.59 -0.56 —0.48 —0.57 —-055 —0.53
Table 2
Empirical Root-MSE x 100. I(8p).
p=0.5 p=09
=D =P D =p
o 8y St St
8 : 03 0.6 0.9 12 0.3 0.6 0.9 1.2 0.3 0.6 0.9 12 0.3 0.6 0.9 1.2

10 100 2218 16.38 13.08 11.98 1492 1525 1262 11.67 26.08 19.67 1526 13.73 1599 17.15 1444 13.26
12 96 2297 16.80 13.21 12.10 1442 1486 1277 1184 27.78 2057 1551 1391 1544 16.66 14.68 13.52

10 200 1490 990 819 7.67 1082 967 796 740 17.05 12.19 10.02 9.33 12.76 12.04 988 9.13

25 200 16.01 981 798 7.68 943 878 785 759 1958 1145 9.06 8.69 1030 986 884 854
20 400 1052 623 523 5.06 6.67 586 513 495 1211 769 643 6.22 8.22 727 634 6.13
50 400 1159 6.18 532 524 6.11 566 527 520 1388 698 594 585 6.76 630 587 579

more nonstationary one (§o = 1.2). For FARIMA models we consider two autoregressive parameter values, § = 0.5, 0.8.
Optimizations were carried out using the Matlab function fmincon with D = [0.1, 1.5] and Z = [—0.95, 0.95], and the
results are based on 10,000 independent replications.

For all combinations of sample sizes and parameter values we report (scaled) empirical bias of both the feasibly bias-
corrected difference estimate HD and the PMLE 9}’ , root-mean square error (MSE) and empirical size of the corresponding
t or Wald test based on estlmates of 1 and B for the asymptotic variance as studied in Theorems 3.2 and 4.2 (“corrected”
tests) to account for cross sectional dependence, while we also report the empirical size for tests based on a pooled estimate
of the variance of innovations, which would be only valid in case of uncorrelated homoscedastic innovations (“uncorrected”
tests).

The results in Tables 1-8 concern the pure fractional case, & = §. We first consider the case without trends, where
constant fixed effects are exactly removed by first differencing. Table 1 provides a bias comparison of the estimates of §y. In
general bias is not affected by cross-sectional correlation compared with the results in Robinson and Velasco (2015) who did
not allow for such, and typically reduces with increase of §; and T as expected. Bias of the difference estimate (S forop = 0.3
can be of an order of magnitude larger than in the other cases for the smallest T for a given NT despite blas correction
having a large beneficial effect (results without bias correction are not reported here). The PMLE 8 does much better in this
difficult setup, but the difference for larger 8y is much smaller. MSE results in Table 2 confirm the consistency of estimates,
no clear superiority of any of the two estimates apart from the bias effect, and increase in the variance of estimates with
cross-sectional correlation (that is, with increasing p). The empirical size of the properly studentized t-test is sensitive to the
parameter and sample size values, though they converge with increasing NT to the nominal value. In general, performance
tends to deteriorate with the larger p and smaller &y, and PMLE-based tests do better than difference ones. Tests not using
consistent estimates of j1o under cross-sectional correlation are systematically very oversized in all cases, cf. Table 4.

We repeat the experiment in Tables 5-8 for p = 0.8 but with a linear trend specified as «; (u) = S;ju (cf (16)), where
the B; are generated independently from the & (0, yz) distribution with y = 1,3 (and our estimates are of course invariant
to fixing a temporally constant component of the individual effects at zero). The larger value of y can generate relatively
large trends that can dominate the behaviour of the time series as shown by the bias and MSE results in Tables 5 and 6,
respectively. However, for the smaller y, first differencing seems to account properly for the heterogeneous deterministic
component, though bias is substantially increased, as is MSE, for the small values of NT and T. In this case PMLE-based
t-tests perform in a similar way as in the absence of trend for not too small T and NT and &, > 0.6.

In Tables 9-14 we consider the results for the FARIMA model, again for only one value of p, 0.9. The estimation of §, is
substantially affected by the autoregressive short run dynamic component, and the bias in Table 9 can change sign with the
value of §p and of T, for & = 0.5, the results improving in most cases with increasing 8y, while bias is always positive for
the largest &j, 0.8, so persistence is incorporated in the estimation of §y in finite samples. In general, the PMLE dominates
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Table 3
Empirical Size (%) Corrected 5% t-test. I(o).
p=0.5 p=0.9
2 5 2 5
S: 03 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 12 0.3 0.6 0.9 12
T NT
10 100 2285 11.28 588 3.80 5.81 943 503 362 25.00 1348 7.68 5.38 643 11.14 635 475

12 96 2596 1276 7.13 538 553 10.19 655 4.88 2791 15.01 905 6.62 581 1145 789 6.11

10 200 16.68 440 174 093 2.93 363 155 0.87 18.48 7.02 3.03 2.02 4.35 6.75 3.08 1.65
25 200 3093 1122 588 5.14 9.29 851 536 5.03 3272 1251 6.99 6.06 9.94 929 640 5.86
20 400 25.83 542 246 193 472 404 222 171 26.10 762 375 3.01 7.27 6.05 340 275
50 400 35.70 9.06 5.12 491 8.01 6.89 5.07 491 36.60 972 584 547 8.46 734 549 527
Table 4
Empirical Size (%) Uncorrected 5% t-test. I(5p).
p =05 p=0.9
E 5 3 5
S: 03 0.6 0.9 1.2 0.3 0.6 0.9 12 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 39.50 25.87 19.06 16.33 21.00 2470 17.67 15.01 3565 2360 17.01 1433 12,65 2166 1547 12.65
12 96 38.71 2489 17.96 15.38 18.09 2218 1723 1472 3527 2242 1650 13.83 11.20 19.14 15.05 13.03

10 200 45.81 2350 16.74 15.00 26.62 2297 1577 13.12 46.86 2947 2240 1946 33.19 29.07 2170 18.70
25 200 40.11 19.83 1348 12.00 17.85 1640 1290 11.68 3646 1742 1139 1021 13.83 13.68 10.72 9.61

20 400 46.06 19.75 1268 1175 19.24 17.09 12.22 10.99 48.18 2549 1794 16.73 2590 2297 17.78 16.34
50 400 43.01 1594 1088 10.29 1379 13.06 1052 10.24 39.15 1296 863 8.04 1057 10.17 832 791

Table 5
Empirical bias x 100. I(8), p = 0.9, linear trend g; (t/T), B; ~ IIN (0, y?).
y=1 y=3
S: 03 06 09 1.2 03 06 09 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 1029 170 -106 -1.71 554 105 -0.82 -153 3690 19.83 7.70 1.45 3295 1871 7.58 1.54
12 96 790 045 -156 -—1.90 466 025 -133 -174 3328 1659 549 0.36 2926 1552 541 0.45

10 200 1521 4.58 052 -0.53 7.95 3.33 058 —0.45 4383 25.12 10.98 3.32 40.85 24.26 1091 3.39
25 200 520 0.16 -0.87 -—1.03 271 014 -0.77 -0.98 2375 896 157 -055 1969 817 158 -0.50

20 400 10.67 243 0.10 —-0.34 527 179 0.14 —-0.30 3232 1480 432 0.64 2836 1383 428 0.67
50 400 340 000 -054 -0.60 202 006 -049 -0.56 1764 485 029 -0.50 1412 438 032 -0.46

E;?;riial Root-MSE x100. I(80), p = 0.9, linear trend g; (t/T), B; ~ IIN (0, y?).
y=1 y =3
S%: 03 06 09 12 03 06 09 12 03 06 09 12 03 06 09 1.2
T NT

10 100 2342 16.87 14.11 13.33 17.32 1573 1350 12.90 3940 2342 1422 1228 36.23 2265 1391 11.98
12 96 2377 1729 1445 13.55 16.60 15.74 1392 13.19 36.38 21.08 1351 1257 33.10 2041 1327 12.29

10 200 19.99 1173 940 9.06 1499 1151 937 892 4475 2649 1369 9.05 42.06 2573 1356 8.94
25 200 16.60 1052 895 875 1053 957 871 858 26.01 1247 843 855 2214 1185 831 840

20 400 1422 746 624 6.13 930 708 6.17 6.05 33.00 1591 7.15 5.99 2926 1506 7.10 592
50 400 12.14 683 6.00 593 689 624 592 586 1943 777 581 5.89 1577 735 575 583

bias-corrected difference estimates again. There is an overall increase in variability in Table 10 compared to Table 2, since
both parameter estimates are highly correlated. Estimation results for &, in Tables 11-12 are parallel to the ones for §q: large
bias for small NT and §y, negative bias in all cases for & = 0.8, but no clear pattern for §, = 0.5, and MSE decreasing with
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Table 7
Empirical Size (%) Corrected 5% t-test. I(), p = 0.9, linear trend ; (t/T), B; ~ IIN (0, y?).
y:l y:3
3 & 3P 5

S: 03 0.6 09 12 0.3 0.6 09 12 0.3 0.6 09 12 0.3 0.6 09 12
T NT
10 100 2691 10.15 639 538 1119 877 526 477 80.92 3227 6.06 3.70 7092 2963 543 330
12 96 2841 1221 764 6.16 1070 1045 692 558 76.01 2693 620 470 65.34 2457 560 438
10 200 3234 574 211 181 1431 526 220 158 9861 66.85 980 1.56 9546 63.01 924 146

25 200 3277 1030 6.76 6.14 1143 8.18 6.17 5.69 79.06 2040 5.07 571 6599 1775 485 532

20 400 41.13 6.84 3.10 272 13.69 551 282 248 99.31 60.23 557 255 97.10 5379 540 234

50 400 37.46 952 625 584 9.85 7.10 593 551 8163 1531 527 5.67 68.14 1280 5.15 5.46
Table 8
Empirical Size (%) Uncorrected 5% t-test. I(8y), o = 0.9, linear trend g; (t/T) , B; ~ IIN (0, y?).
y=1 y=3
% 5 ® 5
So: 03 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 37.04 1942 1424 13.21 17.84 1830 1298 11.90 8326 4492 14.67 1055 73.67 4246 1396  9.58
12 96 3493 1947 1448 13.32 1525 18.07 13.77 12.16 76.47 35.04 12.63 10.90 65.64 3293 12.15 1030

10 200 6165 3031 19.79 18.28 39.19 2942 1956 17.63 99.75 9091 43.13 17.74 98.78 89.03 4291 17.19
25 200 36.18 15.08 10.94 10.28 1470 1246 10.17 9.61 7877 26.09 9.08 9.60 6535 2335 851 893

20 400 6128 2491 17.23 16.24 3295 2225 1676 15.90 99.80 8399 2358 15.18 98.96 7955 2352 1495
50 400 3953 1257 892 867 1196 10.08 847 8.32 8153 1922 795 857 67.40 1627 7.72 821

Table 9 R
Empirical bias § x 100. FARIMA(&y, &), o = 0.9.
& =05 & =08
E 5 E 5
S: 03 0.6 0.9 1.2 0.3 0.6 0.9 12 03 06 09 1.2 03 06 09 12

T NT
10 100 500 —324 —4.18 -564 493 —-3.15 -394 546 6.70 4.47 375 091 584 239 223 035
12 96 142 —-5.08 —5.68 —6.93 438 —440 -—-532 —6.75 6.48 439 372 122 6.07 253 245 0.67
10 200 878 —2.63 —399 —458 364 —340 —4.06 —4.78 5.88 4.08 352 150 5.07 3.01 297 152
25 200 -361 -7.81 -754 -763 057 -6.78 -7.09 -7.31 404 332 3.05 1.69 397 227 217 132
20 400 458 —496 —5.80 —5.64 —024 -563 —549 553 391 355 341 228 386 3.06 3.05 233
50 400 —422 —-648 —-6.31 —-6.25 —-162 -6.18 —-6.06 —6.01 293 254 244 1.85 2.88 215 2.08 1.67

NT, T and §y. The feasible asymptotic inference results reported in Tables 13 and 14 confirm previous ideas on the need for
consistent estimation of 1o to account for cross-sectional correlation, though now oversizing is more severe for the larger
values of T across the whole range of values of §y and &;.

7. Final comments

In a semiparametric panel data model with fractional dynamics we have established desirable and useful asymptotic
properties of estimates of time series parameters that are robust to nonparametric, time-varying individual effects and to
cross-sectional correlation and heteroscedasticity, at the cost of restrictions on the range of possible values of the memory
parameter and the rate of increase of N with T. Some related issues studied in the literature and others that might be
considered are as follows.

1. The incidental trend problem has been considered in integrated and nearly integrated (with an autoregressive local-
to-unit root) panel models by Moon and Phillips (1999, 2000, 2004)) and Phillips and Sul (2007), where the availability of an
increasing number of cross-sections may allow consistent estimation of the local to unity parameter after bias correction.
Moon et al. (2007) established optimal tests of an autoregressive panel unit root in this context, where the rate of convergence
to the null hypothesis depends on the particular specification of the incidental parameters.
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Table 10 N
Empirical Root-MSE § x 100. FARIMA(&y, &), p = 0.9.
& =0.5 £ =08
2 5 3 5
S: 03 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT
10 100 35.05 30.66 29.43 26.75 26.61 29.05 2873 26.62 2483 26.69 2622 23.14 2366 25.80 25.64 2254
12 96 37.05 3158 29.86 27.35 2591 29.14 29.09 27.22 2452 26.14 2587 2287 2356 25.60 2551 2254
10 200 27.61 24.82 2456 2327 23.80 2525 2446 2341 2245 2380 2365 21.08 21.78 23.18 23.12 20.62
25 200 3373 2629 2497 2433 20.11 24,53 2450 24.08 19.83 21.13 21.01 19.20 19.62 20.66 20.56 18.96
20 400 2221 2074 2076 2041 18.29 21.18 20.43 20.23 18.31 18.87 18.87 17.29 1820 1853 1851 17.07
50 400 29.78 21.02 20.18 19.97 16.05 20.20 19.79 19.65 16.84 16.92 16.88 15.92 16.,56 16.69 16.65 15.79
Table 11 N
Empirical bias & x 100. FARIMA(&y, &0), o = 0.9.
§ =05 & =08
& & & &
S: 03 0.6 0.9 1.2 0.3 0.6 0.9 12 0.3 0.6 0.9 12 0.3 0.6 0.9 12
T NT
10 100 —890 -—2.76 —1.46 0.31 -730 —-174 -1.12 0.61 —991 —-837 -7.60 -—5.04 —8.26 —5.91 —-5.73 —-3.96
12 96 —-6.00 —127 -0.22 136 —-7.04 —-0.71 —-0.08 1.53 —9.97 —-856 —-7.80 —-5.49 —8.67 —6.36 —6.27 —4.57
10 200 —-9.81 —-0.89 047 1.16 —5.06 0.22 0.84 1.65 —7.67 —651 —-597 —-4.14 —6.56 —5.27 —-521 -—-3.78
25 200 0.85 3.98 4.03 422 —274 348 3382 4.10 —6.27 —6.02 —5.75 —4.42 —5.72 —4.87 —478 —3.92
20 400 —494 290 3.80 3.66 —1.07 364 362 3.69 —5.14 —5.05 —4.93 -3.85 —488 —4.50 —-4.51 -3.76
50 400 285 443 444 440 0.14 428 427 425 —443 —420 —-4.10 -3.51 —4.08 —3.77 —-372 -3.29
Table 12 N
Empirical Root-MSE & x 100. FARIMA(&y, o), p = 0.9.
& =0.5 & =0.8
&P & &p &
S: 03 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT
10 100 3122 29.39 2958 26.96 28.27 29.33 29.31 26.82 2449 2422 2332 1949 2228 2126 2097 1833
12 96 3196 29.52 29.61 27.33 27.95 2921 2931 27.21 2443 2414 2320 19.60 2260 2133 21.08 1848
10 200 26.25 25.00 25.23 24.10 24.07 2534 2521 24.17 2125 2086 20.17 17.12 19.71 1942 19.28 16.80
25 200 29.66 24.83 2470 24.25 2124 242 2442 2401 1842 18.76 18.45 16.14 17.73 1753 1740 15.68
20 400 2123 20.77 2111 20.89 18.38 21.13 20.84 20.70 16.51 16,52 1635 14.37 16.10 1592 15.88 14.28
50 400 27.08 2044 2027 20.15 16.81 20.09 19.95 19.85 15.10 14.87 1472 13.46 1451 1436 1427 13.25
Table 13
Empirical Size (%) Corrected 5% Wald-test. FARIMA(&, 8p), p = 0.9.
§ =05 & =038
o7 o 7 o
So: 03 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT
10 100 1495 1036 790 3.71 1125 9.03 693 325 658 510 447 335 513 361 338 296
12 96 15.26 12.10 9.91 5.88 12.11 1051 8.85 5.20 1132 1268 1235 11.15 944 1141 1094 10.12
10 200 1072 561 430 258 9.03 560 415 237 576 771 753 661 537 719 685 625
25 200 2365 1195 13.12 114 11.72 1214 12.14 1047 1241 1453 1440 12.66 11.34 14.06 1394 1257
20 400 1461 873 1020 9.68 977 954 955 928 1045 11.13 11.08 8.64 970 1074 1065 8.35
50 400 25.70 1493 14.15 13.84 10.27 1436 1341 13.16 1438 13.80 13.75 10.86 1294 1350 1358 10.71

2. To follow up on remarks in the penultimate paragraph of Section 1 and just after (23), bias correction in panel
autoregressions has also been pursued to achieve a centred asymptotic distribution with (NT)'/? convergence rate, mainly for
fixed effects maximum likelihood estimation in the presence of lagged endogenous variables, see e.g. Hahn and Kuersteiner
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Table 14
Empirical Size (%) Uncorrected 5% Wald-test. FARIMA(y, 8o ), o = 0.9.
§50=0.5 §50=0.8
2z o o o
S: 03 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 12 0.3 0.6 0.9 1.2
T NT

10 100 2850 2278 19.24 12.26 2375 2115 17.41 11.14 19.58 2325 2150 18.29 17.35 21.13 1990 17.19
12 96 2583 2198 1925 13.34 2168 20.18 17.67 1233 20.08 2385 2276 20.33 17.83 2266 2138 19.03

10 200 4061 3125 2856 25.70 36.92 3152 27.32 25.17 29.18 32.17 3098 25.44 27.86 3098 2951 2374
25 200 3070 1838 1932 17.78 17.30 18.17 18.19 16.95 18.73 20.14 1953 16.50 17.03 1953 1892 16.35

20 400 4177 3040 29.00 2831 3346 3149 28.10 27.41 31.66 30.84 3046 24.70 31.17 3032 29.68 23.79
50 400 30.06 19.08 17.86 17.44 1436 1830 17.13 16.66 18.47 1797 17.62 13.92 16.70 17.28 17.13 13.72

(2002,2011) and references in the survey of Arellano and Hahn (2006). The source of bias in our first difference based method
differs from theirs. With our fractional stochastic trend, bias is basically driven by the truncated infinite autoregressive
representation of our fractional filter, rather than by their finite autoregression, so it can be described as an initial condition
problem instead of regressor endogeneity induced after fixed effects estimation. Our bias correction, though, is similar in
spirit to that of Hahn and Kuersteiner (2002), since bias depends only on the true value of parameters (and of T), and it can
be (iteratively) estimated, but does not require a specific N/T limit and covers trends beyond linear ones.

3. As an alternative to our nonparametric estimation of the factor u( that inflates the limiting covariance matrix we could
invest in a parametric model for the covariance matrix of &;, such as a factor model (see e.g. Ergemen and Velasco (2017)) or
a spatial model (cf. the discussion in Section 5). With a correct specification improved finite-sample properties are likely to
result, though a misspecified parameterization would lead to inconsistent estimation of 11y and thus invalidate inferences
based on Theorems 3.2 and 4.2.

4, Point estimates of 8 that use either our nonparametric estimates of Xy, or parametric ones such as just described, to
correct for cross-sectional correlation/heteroscedasticity to the extent of being asymptotically efficient in a Gaussian context,
can be constructed. Their investigation would be worthwhile but likely entail a considerable amount of further work and
possibly some further restrictions on §o and T.

5. Our imposition of the same dynamics over the cross-section affords parameter estimation with rate (NT)%, but it is
possible to allow for variation over the cross section. In particular, Hassler et al. (2011) developed tests in a panel with such
fractional structure, units, but without allowing for individual effects and keeping N fixed as T — o¢. In our context where
N canincrease it would be possible to keep the number of time series parameters fixed by assuming they are constant within
finitely-many known cross-sectional subsets, over which the parameters can vary.

6. Though the nonstochastic conditional covariance matrix of innovations assumed in (7) is common in the time series
literature, the implications of allowing for conditional heteroscedasticity could be explored.

7.0bservable explanatory variables might be allowed to enter, in either a parametric or nonparametric way. In the former
case, if they are linearly involved our differencing will leave only their first differences and initial value, but with nonlinear
or nonparametric modelling we will get a difference of the functions, whose structure, in the nonparametric case, needs to
be exploited via additive nonparametric regression methodology in order to minimize a curse of dimensionality.
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Appendix
Proof of Theorem 3.1

To prove (24) we first prove consistency of arg minee(.)LlT) () . The proof of this extends that of Theorem 3.3 of Robinson
and Velasco (2015) (hereafter RV) which uses their Lemma 2, which clearly still holds in our setting, and their Proposition
1, which needs extension because we have relaxed their iid assumption on ¢;;. First consider RV’s A7 (6), and their U (6),
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which is defined as there but with 002 defined in (11). Ar () — At (6p) — U () is

1 N T T—j 2 N T t j-1
NT Z Z vj.2(9) (5 — oio) + NT Z Z ' Vi(0)i(0)ei t—i€ic—k
i=1 j=1 t=0 i=1 t=1 j=1 k=0
1 7
+ (tr (Zon) — ag) T DT =i+ 16)
j=1
02 < ad
—TOZ(]— DY) —og Y vO) (39)
j=1 j=T+1

N T T—j N T T—j
2 2
sup § § vi(6) (Eit - Uiio) = E sup E § - 0110 )
© i=1 j=1 t=0 i=1 @ j=1 t=0

which is uniformly 0,(NT) much as in RV using also the proof of Theorem 1 of Hualde and Robinson (2011) (6) and (8). The
second term in (39) is uniformly op(1) in much the same way, and the remaining terms are uniformly o(1) from (11) and
(52) of RV. Since from (21) L2 (9) = 3/_; | e (L: 0) ve — 7 (8) £0 + A1 (L; 6 ) A, H2 it remains to show that the term
in Aa, contributes negligibly. First,

T
sup Aot (L;0Y) Aey
2|

t=1

| /\

sup || Act | Z supZ (67)
=0, (NT2 St 1)2>

t=1

=0, (N(T""24+T7")) =0, (NT) (40)

as T — oo for § > 0. Next using the Cauchy inequality,

T
D (o1 (L OV) Ac) he (L: 0) v

sup
© t=1
T 1/2 T 1/2
< (sgpz e (L; 0) vtnz) (sgpz [re—t (L:67) Ae ||2>
7 t=1 7 t=1
= 0, ((NT)"/?) 0, ((NT)"/?) = 0, (NT) (41)

since the first term converges uniformly to a bounded function after standardization by (NT) !, while proceeding in a similar
way,

sup

T
D (et (L:0°) Acr) 7 (0) 80
t=1

IA

t=1

= 0p ((NT)"/?) 0, ((NT)"/?) = 0, (NT) . (42)

T 1/2 T 1/2
(sngun (e)sfonZ) (supznxf 1 (L6077 Awe| )
7 =1

Thus consistency of arg minge(.)L? (0) is established, and thence straightforwardly (24), using smoothness properties of b?.
The latter are also used, along with (24), in proving (25), as in RV’s Theorem 5.2, which incidentally required weaker con-

ditions on &g and N than ours, so we do not repeat the details. But we have to extend RV’s Theorem 4.3 on arg min(,E@L? 0)—

b? (6p) to our setting, and this requires first extending the CLT for scores in Proposition 2 of RV. We can write their wr as

N T

2339 Zth j (B) et

Z(NT)le t=1 j=0

1
)2
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Thus

T t—1 T s-1
1 ,
EwTw/T = ﬁ Z Z Z Z Xt—j (6o) 815t8;8k)(s,7k (6o)
t=1 j=0 s=1 k=0
t—1 s—1

= — Z Z Z Xe—j (60) & Zonexx;_y (Bo)

tlek

tr (&)

_ %) Zfo ~j (60) X{_; (6o) .

t=1 j=0
Then given (12) and much as in RV,
wr—> N (0, k0B (§0)) .

15

Apart from the extra terms discussed below the score and Hessian are handled much as in RV, where the latter has probability

limit 20$B (&) , with o asin (11).
We consider first the extra terms in the score when (14) and (15) are not imposed. We have

) 2 ;o
(NT)?2 a—gL[T’ (60) = — Z ((ﬁ —eotl) + Al (D) Aa;) ((ec — tP20) + Aced!_; (D)),

(NT)2
where
A(0)
7} = 76, 1 = u(6o), rt(e):ﬁ,
Mg (D)= Ao (L; 9é_1)> s A (L) =hes (L; 95_1)> ,
; - dhe—1 (L; 01 )
At (L7D) = #, =3 e @)

The additional terms contributing to the asymptotic bias of (NT)% iLD (6p) that are not covered in RV are thus

T

Ay (D) ( —Ttag
(NT)? (NT)

—agrt Aat o 1(L))

T
Z Aail (D) (Aarl (D).
(NT)Z t=1

Denoting A = 4 (05‘”) we have 1{ = ;% (9( l)) =0(|A?|logj) = 0 (0 logt) , and thus

T
12 Aat (L) ( — 1080)

(NT)2 =

1

SUP |A051r| (NT) Z Z ||)»0 ” Hst — 1080 ||
T
=0, (NT—l(NT)—% > (1" + 1) log t)

t=1

IA

-0, (T’%N% (1% 4 7) logT) ~0, (N% (T%’SO + T’%) logT)

which is op (1) as NT'~2%]0g?T + NT~'log?T — 0, with 8y > 1. The second term in (43) can be bounded similarly, given

E |f; — &0t = O (N'/?). The third is

T
0, (NTZ(NT); > (% + 1) log t)

t=1
—o0, (N%T—% (T30 4 7) logT) ~0, (N% (T%—ZBO + T—3/2) log T) ,

which is o, (1) since NT'=#%]og?T 4+ NT~! — 0 with o > 1.

‘Please cite this article in press as: Robinson P.M. Velasco C., Inference on trending panel data. Journal of Econometrics (2018),

https://doi.org/10.1016/j.jeconom.2018.06.003.




16 P.M. Robinson, C. Velasco / Journal of Econometrics I (1111) IRE-11R

Now impose (14) and (15) and allow §p > %. Let K denote a generic finite constant. From (14) the first term in (43) has

zero mean and, using (10), variance bounded by

T

K _ 2
3 | Zonll Z (t'% + logt) log’t
t—1

; 2
|20N|| (Z ' 50+logt —% 10gt)

t=1
= 0(* (1" + TlogT) log?T) + 0 (T~*(T'~% + 1og T)’log?T )
=0 ((T*% + T'"%0) 10g’T) = 0 (1)

since §¢ > %, so is negligible, because

A

[E LG @) Aoe) (-4 @ Aere)]|| < E 32, (1) A
t—1

0 [ Elaw*| Y i~ logj
j=0

-0 (T*Z(t‘*‘so + 1)210g2t> :

The second term in (43) can be bounded similarly, and the last term is

N T
0, (TZ(NT); DO (10 +logt) ?log t) =0, (N 3773 (T2 4 Tlog?T) log T)

i=1 t=1

N—=

=0, (N (T%—Z‘SO + T‘3/210g2T) log T) ,

which is 0, (1) since NT'~#0log?T + NT~! — Owith 8o > ; O

Proof of Theorem 3.2

Given Theorem 3.1 and continuity of B (§) it suffices to prove (30). We give the proof only for (27) because that for (28)
is simpler. From (11), &2 — o differs by o (1) from

Ner (22 (8P)) /tr* (En (7)) — Ntr (22y) /% (Zow)
which is
Ner (22 (67) — Z2y) /tr? (Zow)
—Ntr (22 (87)) (e (2w (BP)) — tr* (Zow)) /(¢ (Zw (BF)) tr* (Zow))

so the result follows on showing that

tr (En (0F) — Zow) = 0, (N), (44)
tr (22 (6P) — 22 = 0, (N), (45)
noting that (44) implies that tr EN (5?)) /N has a positive, finite probability limit. We have

Zy (5?) — Zon = (SN @?) — 3y (60)) + (E‘N (60) — Zon) -
Now
1T
Sy (60) = fz (¢ +5¢) (8 +50)" = Ar + Ry,
=1
where
T

T
1 1
= ? E StSE, RT = ? E (5582 + Sts/t +SIS£) .
t=1

t=1
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with s, = A (L; 05‘”) Ad; — 7, (60) €o. Thus
tr (EN (60) — Zon) = tr (Ar — Zov + Rr) .
Since
E (S,Zt - UOii) (81-2[ - UOjj) = ZGOZU + cum (Sir, &it, Ejt, Ejt) ,

we have

T
Etr® (Ar — Zon)

EGZ (lecl? — or (EON))>

t=1

_ %E 3 (i (% — Uon')) XN: (et — o0j)

t=1 \i=1 j=1

LN
- Z (204 + cum (eic. &it. e, €jt))
1]:1
2 1o
= otr (Zon) + TZcum (it €. &je &5t)
ij=1

0 (g) =0 (N?)

using (12) and (9), since NT — oco. Also

1
tr (Ry) = tr (TZ (see + sy —|—sts£)> ,

t=1

where

1w 2
= lsd® = 23|
t=1

2
rr (L657") Ay

as in (40)-(42). Also

T T 1/2 T 1/2
1 ’ 1 2 1 2 N
tr| = St€ <= S - & =0
T;—1 & ) < T;_1 lIsel T[§—1 lleell p (N)

from the above and the fact that the second factor in brackets is O, (N) . Thus we have shown that tr (E‘N (6p) — EON) =

0p (N) . Next, from Theorem 3.1 and for § such that |6 — 6] < [0 — 6o
17
r(Sh @) — Ev @) = 5 2 (12 @) - 1z @)1
=1
5 T
= T; 700 2 39, (D o)
=0 NT3 80’ (46)

From (21),
2 (B0) = & — 70 (00) €0 + Ao (L; 05‘”) Acy = &+ 0, (1),

and thus

T
D 1z 0017 = 0, (NT).

t=1
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Next
az; (6) I (L;0) , . . N
59 =g U + 7(0)eg + At,l(L; ¢ 1)) Aa;.
As in RV the derivative with respect to § dominates, and we have

12
< 1<Z(log1)15° . 1(2% ]>

:op(Nw(% S 4+1) log?t)

H ar (L; 0)
— U

while

Ao (L 0Y) Ag;

#(6) = 0 ((ogt) ™) , ‘

N1/2 t N2t
Z(logJ)J :Op( - )

Thus from Theorem 3.1 and with T large enough and any € > 0
0z, (9)
20’

=0, (N'2 (¢t +t<7%)) = 0, (N'/?t°),

uniformly in t, and so

T
It follows that (46) is

NT'*¢ 1/2 1/2
— €— —
op(Nl/m/z) =0, (N'?T"?) = 0, (N),

82[
06’

Op (NT1+26) .

sotr E‘N @D — :VJN (90)) = 0, (N) . The proof of (44) is completed. Next, to establish (45) we have
o (52 G7) — 53)| = |or (B BF) — Zon) (B (BF) + Zon)

=< ( ( N (T EON ))1/2”(((5N (@?) + 2—JON)Z))l/z,

where
r ((En @) = Zon)") = tr (B BF) — Zn 60) + En 60) — Zan)”)
< 2tr ( Sy (BP) — Zn (60) ) +2tr ((S‘N (6o) — EON)2> .
Now

tr ((E'N (6o) — EON)2> =tr ((AT — Yon + Rr)z)
< 2tr ((Ar — Zon)?) + tr (RE)

1< ’
Z Et8t EON
[=l
T T
= SE|Y (et —er (Z2) +er | > (eselene; — Z2)
t=1

s,t=1,s#t
1 T
= _Eledl*
s=1
N

1 T
- EZ 3tr (Zoy) + Z cum (ei, eje, e, i)
t=1

i.k,=1
(N>
o=,
T

where

Etr ((AT — ZON)2)

IA
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from (9) and (12). Thus tr ((Ar — Zon)?) = 0,(N). From the proof of (44) it is readily seen that tr (R?) = 0,(N), to complete
the proof of (45). O

Proof of Theorem 4.1

The proof of (32) extends that of RV's Theorem 4.4, inspection of which indicates that it suffices to consider the additional
term in L? (6) — 52 () beyond ones of the type considered in the proof of Theorem 3.1, namely

2
ST @) e (0) A
SrrT(e)

which comes from {zlfT ) 177(0)}2/5”T(0), where i 8) = (z1 (@), ...,z7 0)), % 0) = (11 0), ..., 17 (). We can
bound (47) by

; (47)

2
’ZL] |z (0)] Z}F;Ol |;\j (9(—1))”

sup | Aae|*sup
it D, =

srrT(G)
2
i (0 4 1)‘
=0, |T sD T % 11
, (T2(1—3) + 1)2

=0, (T2 +1)

soits contribution to L? (9)—52 (9) is O, (T2 + T~') = 0, (1) since § > 0. The proof of (32) then follows straightforwardly
from those of RV’s Theorem 3.4 and our Theorem 3.1.

To prove (33) we consider first the case where (14) and (15) are not imposed. We have first to bound the extra terms in
8}2 (6p) depending on Aq;; in the normalized score based on L[T’ , hamely

N
3 {(A‘t{] O Aa)” +2 (i — tei0) A2, (L) Aan]

i=1 t=1
2
SO T Z (Z v (e (O Aait)) +27) (8it - fzoé’io) A (L) Aaye t (48)
T =1
We have
T
ZZ (At-1 @ AOlit) ( T2N Z 1% 4 1 )
i=1 =1
O ( 2N (T3 280 +T O Tl 28¢ +T_1))’
so its contribution to 67 (6p) is Op (T~2% + T~2) . Next
N T .
Z 22 (8” o Ttosio) Ay (D) Ay = 0, (TIN Z (EI*‘SO + 1))
i=1 t=1 p

=0, (T"'N(T>® +T1)),

which is 0, (N (T'% + 1)), so its contribution to 57 (6) is O, (T~ + T~') . Finally

N T 2 T 2
5—01 Z (Z w0 (A2, (L) AOH[)) =0, | S%IT2N (Zt—% (t'% + 1))
=1

T j=1 \t=1

p (SZATN((T2179 + TogT))°)

T

0
0p (SN (T2(1=2%0) 4 T~210g?T))
0

(
) (NTl 280 + NTZ(l—ZSO) 4 NT—ZlogZT) ,
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so its contribution to 57 (6p) is O, (T~%0 + T'~%0 4 T—3]0g?T) , as is that of

N
2
o > 1 (e — Pei0) Ay (L) At
T

i=1
Overall the contribution of the extra terms in o: (90) to (NT)'/? (0/06) LP (o) is
Op ((NT)l/Z (T—SO + T1—450 + T—]))
= 0y (N (120 472 %0 4. 7)) =0, (1),

since NT'=%% 4 NT-! — 0 and §; > % and they do not contribute to the asymptotic bias. With the notation [a[]f meaning

the T x 1 column vector with tth element a;, with respect to the contribution of a% ’a}z (0) to (0/00) L? (6p) we have to

consider the extra terms in z;r (6p) = [zi (Go)ﬂ depending on A?_l (L) A,

[20, (1) Aaie], 27" (60) 2} (B0) 27" (Bo) zir (60)

3|

1

[20, (1) Aaie], 27" (B0) 2} (B0) 27 600) [A0_, (1) Aati],

I
2|~

i=1

N

2 )
7 0 [0 ) Aae ]2 G0) 2 60) 25" @) [ — el (49)
i=1

and those in z;1 (6y) = [Z; (00)]{ depending on i?_l (L) Aaj,

N N
2 Tr . _ . 2 . Tr
T ; [0y (L) Aaic], 27 (B0) 2ir (B0) + NT ; [A_; (L) Aaic], 27 (B0) zir (Bo) - (50)
Since 2, (6p) = It — ‘T’T , 2 (6p) = 1) + 1), where v} = ©(6o), ¥ = (i), ..., 1) and ¢, = (3/36;) T (60) =
0 (k~% logk) as k — oo, “the first extra term is
2 N ; T
o (D) Aaie]] 27 (B0) 24 (00) 277 (B0) [ (D) Ac ]
i=

1
=0, <T3 Do 1) ey (10 + 1) 0 log t)
t

r

2
+0p | T7S2'S2r (Z (7 +1) f““’)

t
=0, (T’3 (T20=%) 1 log T)2 log T)
= 0, (T"*°logT + T°10g’T),

while using

T
0
E E T, Eit
t=1

and similarly

T
-0
E E T; Eit
t=1

=k = [0F (st = 1)]"* =0 (T2 + log?T).

T 2
0
E T, it
t=1

—0 (THO log T + logT> ,

0100 | = 0(S;r) = O (T logT + log?T) ,
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the second one is
N

T _ i _ T
T [0y () Aeic ], 27" (60) 27 (60) 21 (o) [eir — o]
i=1

=0, (T‘Z D (1)t (TP log T + long)>

t

+0, (T 2592180 (Z (7% +1) t50> (T'=%0logT + long)>

t
= 0, (T2(T*"7%) +logT) (T""?* log T + log?T))
= 0, (T""*0logT + T~*log’T).

Their joint contribution to (NT)'/? (3/36) LY (6p) is thus
Op ((NT)'/?(T'"*0 log T 4 T*10g’T))
= 0, (N (T *01og?T +Tlog’T))*)

which is 0, (1) under NT'~?%log?T + NT~! — 0 and §; > % The extra terms due to the new element in Z; (6p) =
fie — 1210 + A2, (L) Aoy , where fy is the ith row of f;, are

2 N T .
T (Z (A1 (L) Acvic) zie (Bo) + Zic (B) (A_; (L) Aait)>
i=1 t=1
T
(L) Aair) T, Zie (Bo) T,
i 2 (B0 am) (L)

T
+<Zl'ir(90)ff0> (Z (1) Acie) , )) (51)
t=1

Using similar methods as before, the first term is

T
Op <72 D ot + 1) log t) =0, (T7*(T*7% + 1) logT).

t=1

Next, since

T
E|Y "z (60) 7
t=1
T
E|D 2 (60) 7
t=1

the other terms are

T
1
0, (TZSO ((Z (tl—50+1) t—% logt> 0+ TTT (Z t1- 80+1 —80)))
T t=1 t=1

=0, <T12 (((T>=%) 4+ 1og T) log T) + (T*'~%) + log T)) logT)

=0, ((T7%° + T ?logT)logT).

=0(S%;) =0(T""? +logT),

= 0(Str) = 0 (SeplogT),

Thus the contribution to the standardized score of these two terms is

0, ((NT)% (T + T2 logT) log T)
=0, <(N (T'*%0 + T~>log?T) long)%) ,

which is o, (1) since NT'=2%log®T + NT~! — 0 for 8, > 1. This completes the proof when (14) and (15) are not imposed.

Please cite this article in press as: Robinson P.M., Velasco C., Inference on trending panel data. Journal of Econometrics (2018),
https://doi.org/10.1016/j.jeconom.2018.06.003.




22 P.M. Robinson, C. Velasco / Journal of Econometrics I (1111) IRE-11R

Now imposing (14) and (15) and allowing § > 3 , we have first to reanalyze two terms in O'T (60) depending on Ac«;; in
the normalized score based on LD, given in (48). Now

T
ZZZ 8lt T; 810) t— ](L) At

i=1 t=1

has zero mean and variance bounded by

T T
KNIlé‘N” Z(t1—50+ <Z £ 4 1) ¢ —80)

t=1 t=1

2

= O(NT*(T*>%0 +7T)),

soitis O, (Nl/2 (T%“SO + T‘%)) , and its contribution to G () is O (N”/2 (T‘%“SO + T‘%)) . Next,

N
2
ST Z Tto (Sft — Ttogio) A’?*'l (L) Aait
T j=1

has zero mean and variance bounded by

T T 2
KN 175 16 78

el =1 t=1
= O (NT*(T*>*0logT + T1+25°1(50<1/2} + T?) log’T)
= O (N (T""*0logT + 1) log’T),

s0 its contribution to &7 () is O, ((T~%% log T 4 T~') log”T) . Overall, the contribution of the extra terms in &7 (fo) to
(NT)'/2(3/30) L% (Bo) is

0, ((NT'#0)"%) 4 0, (T~ +T7)
+ Op ((N (T3—850 + T—zlogZT + T1—48010g4T))1/2>
+0p ((N (Tl‘“olong + T‘l) long)m) ’

which is o, (1), since NT'~#%log*T + NT~'log’T — 0 and 8 > 1, and they do not contribute to the asymptotic bias.
Regarding the contribution of 5 a G2 7 (0) to (0/00) LP (6p) , we need to recon51der the term in (49)

N

T

NTZ [A0 (L) Aaie ]} 27" (B0) 25 (B0) 2771 (B0) [eie — e ]
i=1

which has zero mean and variance

2
o[n1- 4s93T<Z (¢ +1)~°)

t
—0 (N’lT"‘(T]’ZBO +1og T)* (120 4 log T)zlong)
= O (N~ (T?"®0log T 4+ T~*0log*T + T~*10g°T))

so this termis O, (N‘l/2 (T>~%%0 log T 4 T~*%log*T + T“‘logGT)l/z) . Then the joint contribution of all terms depending on
the differenced trend to (NT)"/? (8/36) L? (6p) is thus

0, (N1/2 (T3’85°log4T + T’SlogsT)m)
+0, ((T3 80 log T + T'~*10g*T + T~ 3log® T)]/Z)
which is 0, (1) since NT3~8%0]og*T + NT~'log?T — 0 and 8, > 2. Now consider the term in (51) under (14) and (15):

2 N T
NT (Z (fie — t0ei0) (A1 (D) Aair)>

i=1 t=1
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has zero mean and variance

T T 2

OfNTTH D (c' % +1) logT + D (0 +1)t ™ logT
t=1 t=1

= O(N'T# (T2 4 T) logT + ((T>** + logT) logT)") )
=0 (N‘1 ((T‘1‘250 +T73)logT + (T2 + T2 logT) log T)2>> ,

and a similar result holds for the term depending on (e — 70ei0) (A2_; (L) Aeyit) , so the contribution to the standardized
score of this first term is

0y (N (1'% + 772 log?T) ")

+0p (1720 +772)10g7) ") 4+ 0 (1'% + T%10g?T) logT) )
which is o, (1) since NT1=%0]og*T + NT~'log?T — 0 for §, > g while the second term is shown o, (1) as before. O
Proof of Theorem 4.2

This straightforwardly extends the proofs of Theorems 3.2 and 4.1, and is thus omitted. O
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