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Summary

Long memory models are statistical models that describe strong correlation or de-

pendence across time series data. This kind of phenomenon is often referred to

as "long memory" or "long-range dependence". It refers to persisting correlation

between distant observations in a time series. For scalar time series observed at

equal intervals of time that are covariance stationary, so that the mean, variance, and

autocovariances (between observations separated by a lag j) do not vary over time,

it typically implies that the autocovariances decay so slowly, as j increases, as not

to be absolutely summable. However, it can also refer to certain nonstationary time

series, including ones with an autoregressive unit root, which exhibit even stronger
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correlation at long lags. Evidence of long memory has often been been found in eco-

nomic and financial time series, where the noted extension to possible nonstationarity

can cover many macroeconomic time series, as well as in such fields as astronomy,

agriculture, geophysics and chemistry.

As long memory is now a technically well developed topic formal definitions are

needed, and we defer these to the paper itself. But by way of partial motivation,

long memory models can be thought of as complementary to the very well known and

widely applied stationary and invertible autoregressive and moving average (ARMA)

models, whose autocovariances are not only summable but decay exponentially fast

as a function of lag j. Such models are often referred to as "short memory" models,

becuse there is negligible correlation across distant time intervals. However these

models are often combined with the most basic long memory ones since together they

offer the ability to describe both short and long memory feartures in many time series.

Keywords: long memory; parametric models; semiparametric models; volatility

models; nonstationary models

Introductory Definitions and Discussion

We begin by introducing some basic notation. Let xt, t = 0,±1, ..., be an equally

spaced, real valued time series. We suppose initially that xt is covariance stationary,

so that the mean

µ = E(xt)

and lag-j autocovariances (or variance when j = 0)

γ(j) = Cov(xt, xt+j)

do not depend on t. We further suppose that xt has a spectral density, denoted

f(λ) =
1

2π

∞∑
j=−∞

γ(j)e−ijλ, −π ≤ λ ≤ π,
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where λ denotes "frequency". Note that f(λ) is a non-negative, even function. We

might then say that xt has "long memory" if

f(0) =
1

2π

∞∑
j=−∞

γ(j) =∞,

so that f(λ) diverges at frequency zero. The extreme alternative that

f(0) =
1

2π

∞∑
j=−∞

γ(j) = 0

is on the other hand possible; this phenomenon is sometimes referred to as “negative

dependence”or “anti-persistence”. The intermediate situation is

0 < f(0) <∞,

when we say that xt has "short memory". It is also possible that f(λ) might diverge

or be zero at one or more frequencies λ in (0, π], possibly indicating seasonal or

cyclic behaviour. We shall discuss the modelling of such phenomena, but mainly

focus on behaviour at zero frequency, which empirically seems the most interesting.

An excellent textbook reference to theory and methods for long memory is Giraitis,

Koul and Surgailis (2012).

Nonparametric estimates of f(λ) have been found to be heavily peaked around

zero frequency in case of many economic time series, going back to Adelman (1965),

lending support for the presence of long memory. Moreover empirical evidence of long

memory in various fields, such as astronomy, chemistry, agriculture and geophysics,

dates from much earlier times, see for example Fairfield Smith (1938), Hurst (1951) .

One feature of interest in early work was behaviour of the sample mean,

x̄ = n−1
∑n

t=1 xt.

If f(λ) is continuous and positive at λ = 0,

V ar(x̄) =
1

n

n−1∑
j=1−n

(
1− |j|

n

)
γ(j) ∼ 2πf(0)

n
, as n→∞,
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But, for example, Fairfield Smith (1938) fitted a law n−α, 0 < α < 1 to spatial

agricultural data, disputing the above n−1 law. At this point it is convenient to switch

notation, to d = (1 − α)/2, because d, referred to as the “differencing”parameter,

features more commonly in econometric modelling. Fairfield Smith’s (1938) law for

the variance of the sample mean is thus n2d−1, which from (1.5) arises if

γ(j) ∼ c1j
2d−1, as j →∞, (1.1)

for c1 > 0. Under additional conditions (see Yong, 1974), (1.1) is equivalent to a

corresponding power law for f(λ) near zero frequency,

f(λ) ∼ c2 |λ|−2d , as λ→ 0, (1.2)

for c2 > 0. The behaviour of the sample mean under such circumstances, and the

form and behaviour of the best linear unbiased estimate of the population mean, was

discussed by Adenstedt (1974). He anticipated the practical usefulness of (1.2) in the

long memory range 0 < d < 1
2
, but also treated the anti-persistent case −1

2
< d < 0.

The sample mean tends to be highly statistically ineffi cient under anti-persistence,

but for long memory Samarov and Taqqu (1988) found it to have remarkably good

effi ciency.

A number of explanations of how long memory behaviour might arise have been

proposed. Macroeconomic time series, in particular, can be thought of as aggregating

across micro-units. Consider the random-parameter autoregressive model of order 1

(AR(1)),

Xt(α) = A(α)Xt−1(α) + εt(α),

where α indexes micro-units, the εt(α) are independent and homoscedastic with zero

mean across α, t, and A(α) is a random variable with support (−1, 1) or [0, 1). Then,

conditional on α, Xt(α) is a stationary AR(1) sequence. Robinson (1978a) showed
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that the “unconditional autovariance”which we again denote by γ(j), is given by

γ(j) = Cov {Xt(α), Xt+j(α)} =
∞∑
u=0

E
{
A(α)j+2u

}
, (1.3)

and that the “unconditional spectrum”f(λ) at λ = 0 is proportional toE {(1− A(α))−2},

and thus infinite, if A(α) has a probability density with a zero at 1 of order less than

or equal to 1. One class with this property considered by Robinson (1978a) was

the (possibly translated) Beta distribution, for which Granger (1980) explicitly de-

rived the corresponding power law behaviour of the spectral density of cross-sectional

aggregates xt = N−
1
2

∑N
i=1Xt(αi), where the αi are independent drawings: clearly

Cov(xt, xt+j) is γ(j) due to the independence properties. Indeed, if A(α) has a Beta

(c, 2 − 2d) distribution on (0, 1), for c > 0, 0 < d < 1
2
, E
{
A(α)k

}
decays like k2d−2,

so (1.3) decays like j2d−1, as in (1.1). Intuitively, a suffi cient density of individuals

with close-to-unit-root behaviour produces the aggregate long memory. For further

developments, in relation to more general models see e.g. Lippi and Zaffaroni (1997).

Parametric Models

The differencing parameter, d, introduced in the previous section, concisely de-

scribes long memory properties, and so much interest in the possibility of long mem-

ory or anti-persistence focusses on the question of its value. In practice d is typically

regarded as unknown, and so its estimation has been the focus of much research.

Indeed, as discussion of the previous section indicates an estimate of d is useful even

in estimating the variance of the sample mean.

In order to estimate d we need to consider the modelling of dependence in more

detail. The simplest possible realistic model for a covariance stationary series is

a parametric one that expresses γ(j) for all j, or f(λ) for all λ, as a parametric

function of just two parameters, d and an unknown scale factor. The earliest such

model is “fractional noise”, which arises from considerations of self-similarity. A
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stochastic process {y(t);−∞ < t <∞} is self-similar with “self-similarity parameter”

H ∈ (0, 1) if, for any a > 0, {y(at);−∞ < t < ∞} has the same distribution as

{aHy(t);−∞ < t < ∞}. If the differences x = y(t) − y(t − 1), for integer t, are

covariance stationary, we obtain

γ(j) =
γ(0)

2

{
|j + 1|2H − 2 |j|2H + |j − 1|2H

}
.

This decays like j2H−2 as j →∞, so on takingH = d+ 1
2
we have again the asymptotic

law (1.1); γ(0) is the unknown scale parameter in this model.

This model was studied by Mandelbrot and Van Ness (1968) and others, but, it

extends less naturally to richer stationary series, and nonstationary series, and has

an unpleasant spectral form (see the later discussion of Whittle estimates), so it

has received less attention in recent years than another two-parameter model, the

“fractional differencing”model proposed by Adenstedt (1974):

f(λ) =
σ2

2π

∣∣1− eiλ∣∣−2d , −π ≤ λ ≤ π. (2.1)

When d = 0, this is just the spectral density of a white noise series (with variance

σ2), while for 0 < |d| < 1
2
both properties (1.1) and (1.2) hold, Adenstedt (1974)

giving a formula for γ(j) as well as other properties. Note that d < 1
2
is necessary for

integrability of f(λ), that is for xt to have finite variance; this restriction is sometimes

called the stationarity condition on d. Another mathematically important restriction

is that of invertibility, d > −1
2
. We shall discuss estimation of models such as (2.1).

The “typical spectral shape of an economic variable” was identified by Granger

(1966) as not only entailing spectral divergence at zero frequency, but monotonic

decay with frequency. Both “fractional differencing”and “fractional noise”models

have this simple property. But even if monotonicity holds, as it may, at least approx-

imately, in case of deseasonalized series, the notion that the entire autocorrelation

structure can be explained by a single parameter, d, is highly questionable. Though
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d determines the long-run or low-frequency behaviour of f(λ), greater flexibility in

modelling short-run, high-frequency, behaviour may be desired. The model (2.1)

was referred to as “fractional differencing” because it is the spectral density of xt

generated by

(1− L)dxt = et, (2.2)

where {et} is a sequence of uncorrelated variables with zero mean and variance σ2, L

is the lag operator, Lxt = xt−1 and

(1− L)d =
∞∑
j=0

Γ(j − d)

Γ(−d)Γ(j + 1)
Lj,

where Γ(.) denotes the gamma function. With d = 1 (and a suitable initial condition),

(2.2) would describe a random walk model. The model

(1− L)da(L)xt = b(L)et. (2.3)

was stressed by Box and Jenkins (1971), d here being a positive integer, a(L) and

b(L) being the polynomials

a(L) = 1−
p∑
j=1

ajL
j, b(L) = 1 +

q∑
j=1

bjL
j,

all of whose zeros are outside the unit circle, with a(L) and b(L) having no zero in

common to ensure identifiability of the autoregressive (AR) order p and the moving

average (MA) order q. Granger and Joyeux (1980) considered instead fractional

d ∈ (−1
2
, 1
2
) in (2.3), giving a fractional autoregressive integrated moving average

model of orders p, d, q (often abbreviated as FARIMA(p, d, q) or ARFIMA(p, d, q)).

It has spectral density

f(λ) =
σ2

2π

∣∣1− eiλ∣∣−2d ∣∣∣∣ b(eiλ)a(eiλ)

∣∣∣∣2 , −π ≤ λ ≤ π. (2.4)

Granger and Joyeux (1980) principally discussed the simple FARIMA(0, d, 0) case

(2.1) of Adenstedt (1974), but they also considered estimation of d, prediction, and
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simulation of long memory series. Further discussion of FARIMA(p, d, q) models

was provided by Hosking (1981), much of it based on Adenstedt’s (1974) model (2.1),

but he also gave results for the general case (2.4), especially the FARIMA(1, d, 0).

An enduringly popular proposal for estimating d, or H, used the adjusted rescaled

range (R/S) statistic

R/S =

max1≤j≤n
j∑
t=1

(xt − x̄)−min1≤j≤n
j∑
t=1

(xt − x̄){
1
n

n∑
t=1

(xt − x̄)2
} 1

2

of Hurst (1951), Mandelbrot and Wallis (1969). Large sample statistical properties

of the R/S statistic were studied by Mandelbrot and Taqqu (1979), Taqqu (1979),

and it was considered in an economic context by Mandelbrot (1972). But its limit

distribution is nonstandard and diffi cult to use in statistical inference, while it has no

known optimal effi ciency properties with respect to any known family of distributions.

Despite the distinctive features of long memory series, there is no over-riding rea-

son why traditional approaches to parametric estimation in time series should be

abandoned in favour of rather special approaches like R/S. In fact, if xt is assumed

Gaussian, the Gaussian maximum likelihood estimate (MLE) might be expected to

have optimal asymptotic statistical properties, and unlile R/S, can be tailored to the

particular parametric model assumed.

The literature on the Gaussian MLE developed first with short memory processes

in mind (see e.g. Whittle, 1951, Hannan, 1973). One important finding was that the

Gaussian likelihood can be replaced by various approximations without affecting first

order limit distributional behaviour. Under suitable conditions, estimates maximizing

such approximations, called “Whittle estimates”are all
√
n-consistent and have the

same limit normal distribution as the Gaussian MLE.

One particular Whittle estimate which seems particularly computationally advan-

tageous is the discrete-frequency form. Suppose the parametric spectral density has
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form f(λ; θ, σ2) = (σ2/2π)h(λ; θ), where θ is an r-dimensional unknown parameter

vector and σ2 is a scalar as in (2.1). If σ2 is regarded as varying freely from θ, and∫ π
−π log h(λ; θ)dλ = 0 for all admissible values of θ, then we have what might be called

a “standard parameterization”. For example, we have a standard parameterization in

(2.1) with θ = d, and in (2.4) with θ determining the aj, 1 ≤ j ≤ p and bj, 1 ≤ j ≤ q.

Define also the periodogram

I(λ) =
1

2πn

∣∣∣∣ n∑
t=1

xte
itλ

∣∣∣∣2
and the Fourier frequencies λj = 2πjn. Denoting by θ0 the true value of θ, then the

discrete frequency Whittle estimate of θ0 minimizes the following approximation to

a constant minus the Gaussian log likelihood,

n−1∑
j=1

I(λj)

h(λj; θ)
. (2.5)

Hannan (1973) stressed this estimate. It has the advantages of using directly the

form of h, which is readily written down in case of autoregressive moving average

(ARMA) models, Bloomfeld’s (1972) spectral model, and others; on the other hand,

autocovariances, partial autocovariances, AR coeffi cients and MA coeffi cients, which

variously occur in other types of Whittle estimate, tend to be more complicated except

in special cases, indeed for (2.4) the form of autocovariances, for example, can depend

on the question of multiplicity of zeros of a(L). Another advantage of (2.5) is that

it makes direct use of the fast Fourier transform, which enables the periodograms

I(λj) to be rapidly computed even when n is very large. A third advantage is that

mean-correction of xt is dealt with simply by omission of the frequency λ0 = 0.

A notable feature of Whittle estimates of θ0, first established in case of short mem-

ory series, is that while they are only asymptotically effi cient when xt is Gaussian,

their limit distribution (in case of “standard parameterizations”) is unchanged by

many departures from Gaussianity. Thus the same, relatively convenient, statisti-

cal methods (hypothesis testing, interval estimation) can be used without worrying
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too much about the question of Gaussianity. Hannan established asymptotic statis-

tical properties for several Whittle forms in case xt has a linear representation in

homoscedastic stationary martingale differences having finite variance.

It is worth noting that Hannan (1973) established first consistency under only er-

godicity of xt, so that long memory was actually included here. However, for his

asymptotic normality result, with
√
n-convergence, which is crucial for developing

statistical inference, his conditions excluded long memory, and clearly (2.5) appears

easier to handle technically in the presence of a smooth h than of one with a sin-

gularity. Robinson (1978b) developed extensions to cover “nonstandard parameter-

izations” his treatment hinting at how a modest degree of long memory might be

covered. He reduced the problem to a central limit theorem for finitely many sample

autocovariances, whose asymptotic normality had been shown by Hannan (1976) to

rest crucially on square integrability of the spectral density; note that (2.1) and (2.4)

are square integrable only for d < 1
4
. In fact for some forms of Whittle estimate,

Yajima (1985) established the central limit theorem, again with
√
n-rate, in case of

model (2.1) with 0 < d < 1
4
.

Fox and Taqqu (1986) provided the major breakthrough in justifying Whittle es-

timation in long memory models. Their objective function was not (2.5) but the

continuous frequency form ∫ π

−π

I(λ)

h(λ; θ)
dλ, (2.6)

but their basic insight applies to (2.5) also. Because the periodogram I(λ) is an

asymptotically unbiased estimate of the spectral density only at continuity points it

can be expected to "blow up" as λ → 0. However, since h(λ; θ) also "blows up"

as λ → 0 and appears in the denominator, some “compensation”can be expected.

Actually, limiting distributional behaviour depends on the “score”(the derivative in

θ of (2.6) or (2.5)) at θ0 being asymptotically normal; Fox and Taqqu (1987) gave

general conditions for such quadratic forms to be asymptotically normal, which then
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apply to Whittle estimates with long memory such that 0 < d < 1
2
.

Gaussianity of xt was assumed by Fox and Taqqu (1986), and by Dahlhaus (1989),

who considered the actual Gaussian MLE and discrete-frequency Whittle estimate,

and established asymptotic effi ciency. For (2.6) Giraitis and Surgailis (1990) relaxed

Gaussianity to a linear process in independent and identically distributed (iid) inno-

vations, thus providing a partial extension of Hannan’s (1973) work to long memory.

The bulk of this asymptotic theory has not directly concerned the discrete frequency

form (2.5), and has focussed mainly on the continuous frequency form (2.6), though

the former benefits from the neat form of the spectral density in case of the popular

FARIMA(p, d, q) class (2.4); on evaluating the integral in (2.6), we have a quadratic

form involving the Fourier coeffi cients of h(λ; θ)−1, which are generally rather compli-

cated for long memory models. Also, in (2.6) and the Gaussian MLE, correction for

an unknown mean must be explicitly carried out, not dealt with merely by dropping

zero frequency.

Other estimates have been considered. While Whittle estimation of the models

(2.2) and (2.3) requires numerical optimization, Kashyap and Eom (1988) proposed

a closed-form estimate of d in (2.2) by a log periodogram regression (across λj, j =

1, ..., n− 1). This idea does not extend nicely to FARIMA(p, d, q) models (2.3) with

p > 0 or q > 0, but it does to

f(λ) =
1

2π

∣∣1− eiλ∣∣−2d exp

{
p−1∑
k=1

βk cos((k − 1)λ)

}
, −π ≤ λ ≤ π (2.7)

(see Robinson (1994a)) which combines (2.2) with Bloomfeld’s (1972) short memory

exponential model; Moulines and Soulier (1999) provided asymptotic theory for log

peridogram regression estimation of (2.7). They assumed Gaussianity, which for tech-

nical reasons is harder to avoid when a nonlinear function of the periodogram, such

as the log, is involved, than in Whittle estimation, despite this being originally moti-

vated by Gaussianity. Whittle estimation is also feasible with (2.7), indeed Robinson
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(1994a) noted that it can be reparameterized as

f(λ) =
exp

2π

{
p−1∑
k=1

θk cos{(k − 1)λ} − 2d
∞∑

k=p−1

cos(kλ)

k

}
,

taking θ1 = β1, θk = βk − 2/(k − 1), 2 ≤ k ≤ p − 1, from which it can be deduced

that the limiting covariance matrix of Whittle estimates is desirably diagonal.

In econometrics generalized method of moments (GMM) has beeen proposed for

estimating many models, including long memory models. But GMM objective func-

tions seem in general to be less computationally attractive than (2.5), require stronger

regularity conditions in asymptotic theory, and do not deal so nicely with an unknown

mean. Also, unless a suitable weighting is employed they will be less effi cient than

Whittle estimates in the Gaussian case, have a relatively cumbersome limiting co-

variance matrix, and are not even asymptotically normal under d > 1
4
. But note

that
√
n-consistency and asymptotic normality of Whittle estimates cannot even be

taken for granted, having been shown not to hold over some or all of the range

d ∈ (0, 1
2
) for certain nonlinear functions xt of a underlying Gaussian long memory

process (see e.g Giraitis and Taqqu (1999)).

Even assuming Gaussianity of xt , nonstandard limit distributional behaviour for

Whittle estimates can arise in certain models. As observed in the previous section, a

spectral pole (or zero) could arise at a non-zero frequency, to explain a form of cyclic

behaviour. Gray, Zhang and Woodward (1989) proposed the “Gegenbauer”model

f(λ) =
σ2

2π

∣∣1− 2eiλ cosω + e2iλ
∣∣−2d ∣∣∣∣ b(eiλ)a(eiλ)

∣∣∣∣2 , −π ≤ λ ≤ π, (2.8)

for ω ∈ (0, π]. To compare with (2.1), f(λ) diverges at frequency ω if d > 0. When ω

is known our previous discussion of estimation and asymptotic theory applies. If ω is

unknown, then Whittle procedures can be adapted, but it seems that such estimates

of ω (but not of the other parameters) will be n-consistent with a nonstandard limit

distribution. Giraitis, Hidalgo and Robinson (2001) established n-consistency for an

estimate of ω that, after being suitably standardized, cannot converge in distribution.
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Semiparametric Models

"Semiparametric" models for long memory retain the differencing parameter d but

treat the short memory component nonparametrically. Correct specification of p and

q is very important in parametric FARIMA(p, d, q) models. In particular, under-

specification of p or q leads to inconsistent estimation of AR and MA coeffi cients, but

also of d, as does over-specification of both, due to a loss of identifiability. Procedures

of order-determination developed for short memory models, such as AIC, have been

adapted to FARIMA models but there is no guarantee that the underlying model

belongs to the finite-parameter class proposed. That an attempt to seriously model

short-run features can lead to inconsistent estimation of long-run properties seems

very unfortunate, especially if the latter happen to be the aspect of most interest.

Short-run modelling is seen from (1.1) and (1.2) to be almost irrelevant at very

low frequencies and very long lags, where d dominates. This suggests that estimates

of d can be based on information arising from only one or other of these domains,

and that such estimates should have validity across a wide range of short memory

behaviour. Because this robustness requires estimates to essentially be based on only

a vanishingly small fraction of the data as sample size increases, one expects slower

rates of convergence than for estimates based on a correct finite-parameter model.

But in very long series, such as arise in finance, the degrees of freedom available may

be suffi cient to provide adequate precision. These estimates are usually referred to

as “semiparametric”, though their slow convergence rates make them more akin to

“nonparametric”estimates in other areas of statistics, indeed some are closely related

to the smoothed nonparametric spectrum estimates familiar from short memory time

series analysis.

It is worth stressing that not just point estimation of d is of interest, but also interval

estimation and hypothesis testing. Probably the test of most interest to practitioners

is a test of long memory, or rather, a test of short memory d = 0 against long memory
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alternatives d > 0, or anti-persistent alternatives d < 0, or both, d 6= 0. For this

we need a statistic with a distribution that can be satisfactorily approximated, and

computed, under d = 0, and that has good power. In a parametric setting, tests

of d = 0 - perhaps of Wald, Lagrange multiplier or likelihood-ratio type - can be

based on Whittle functions such as (2.5) and the FARIMA(p, d, q) family. Actually,

much of the limit distribution theory for Whittle estimation primarily concerned with

stationary long memory, 0 < d < 1
2
, does not cover d = 0, or d < 0, but other earlier

short memory theory, such as Hannan’s (1973), can provide null limit theory for

testing d = 0. Because the test statistic is based on assumed p and q, the null limit

distribution developed on this basis is generally invalid if p and q are misspecified,

as discussed earlier; this can lead, for example, to mistaking unnaccounted-for short

memory behaviour for long memory, and rejecting the null too often. The invalidity

of tests for d = 0 for the R/S statistic introduced in the previous section in the

presence of unanticipated short memory autocorrelation was observed by Lo (1991),

who proposed a corrected statistic (using smoothed nonparametric spectral estimation

at frequency zero) and developed its limit distribution under d = 0 in the presence

of a wide range of short memory dependence (described by mixing conditions), and

tested stock returns for long memory.

The null limit theory of Lo’s (1991) modified R/S statistic is nonstandard. Any

number of possible statistics has sensitivity to long memory. Of these, some have the

character of “method-of-moments”estimates, minimizing a “distance”between popu-

lation and sample properties. Robinson (1994b) proposed an “averaged periodogram”

estimate of d, employing what would be a consistent estimate of f(0) under d = 0,

establishing consistency under finiteness of only second moments and allowing for the

presence of an unknown slowly varying factor L(λ) in f(λ), so that (1.2) is relaxed to

f(λ) ∼ L(λ) |λ|−2d , as λ→ 0. (3.1)
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In this setting, Delgado and Robinson (1996) proposed data-dependent choices of

the bandwidth number (analogous to the one discussed later in relation to log pe-

riodogram estimation, for example) that is required in the estimation, and Lobato

and Robinson (1996) established limit distribution theory, which is complicated: the

estimate is asymptotically normal for 0 ≤ d < 1
4
, but non-normal for d ≥ 1

4
. Various

other semiparametric estimates of d share this latter property, which is due to f(λ)

not being square-integrable for d ≥ 1
4
.

The traditional statistical practice of regression turns out to be fruitful. The asymp-

totic law (1.1) suggests two approaches, nonlinearly regressing sample autocovariances

on cj2d−1, and ordinary linear regression (OLS) of logged sample autocovariances on

log j and an intercept, as proposed by Robinson (1994a). But the limit distribu-

tional properties of these estimates are as complicated as those for the averaged peri-

odogram estimate, intuitively because OLS is a very ad hoc procedure in this setting,

the implied “disturbances”in the “regression model”being far from uncorrelated or

homoscedastic.

We can only expect OLS to yield nice results if the disturbances are suitably

“whitened”. In case at least of short memory series the (Toeplitz) covariance ma-

trix of x1, ..., xn is approximately diagonalized by a unitary transformation, such that

normalized periodograms uj = log {I(λj)/f(λj)} (cf (2.4)), suffi ciently resemble a

zero-mean, uncorrelated, homoscedastic sequence. In case of long memory series,

(1.2) suggests consideration of

log I(λj) ' log c− 2d log λj + uj, (3.1)

for a positive constant c and λj close to zero, as pursued by Geweke and Porter-

Hudak (1983), though they instead employed a narrow band version of the “fractional

differencing”model (2.1), specifically replacing log λj by log
∣∣1− eiλj ∣∣. They carried

out OLS regression over j = 1, ...,m, where m, a bandwidth or smoothing number,
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is much less than n but is regarded as increasing slowly with n in asymptotic theory.

(Geweke and Porter-Hudak’s (1983) approach was anticipated by a remark of Granger

and Joyeux (1980)). Geweke and Porter-Hudak argued, in effect, that as n → ∞

their estimate d̃ satisfies

m
1
2 (d̃− d)→d N

(
0,
π2

24

)
, (3.2)

giving rise to extremely simple inferential procedures. But the heuristics underlying

their argument are defective, and they, and some subsequent authors, did not come

close to providing a rigorous proof of (3.2). One problem with their heuristics is that

for long memory (and anti-persistent) series the uj are not actually asymptotically

uncorrelated or homoscedastic for fixed j with n→∞, as shown by Kűnsch (1986),

and elaborated upon by Hurvich and Beltrao (1993), Robinson (1995a). Robinson

(1995a) showed that this in itself invalidates Geweke and Porter-Hudak’s (1983) argu-

ment. Even for j increasing with n, the approximation of the uj by an uncorrelated,

homoscedastic sequence is not very good, and this, and the nonlinearly-involved pe-

riodogram, makes a proof of (3.2) non-trivial.

In Robinson (1995a), (3.2) was established, explicitly in case of the approximation

(3.1) rather than Geweke and Porter-Hudak’s version, though indicating that the same

result holds there. His result applies to the range |d| < 1
2
, providing simple interval

estimates as well as a simple test of short memory, d = 0. Robinson (1995a) assumed

Gaussianity, but Velasco (2000) gave an extension to linear processes xt, both authors

employing Künsch’s (1986) suggestion of trimming out the lowest λj to avoid the

anomalous behaviour of periodograms there, but Hurvich, Deo and Brodsky (1998)

showed that this was unnecessary for (3.2) to hold, under suitable conditions. These

authors also addressed the issue of choice of the bandwidth, m, providing optimal

asymptotic minimum mean-squared error theory. If f(λ)λ2d is twice differentiable

at λ = 0, the optimal bandwidth is of order n4/5, but the multiplying constant

depends on unknown population quantities. A consistent estimate of this constant
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was proposed by Hurvich and Deo (1999), and hence a feasible, data-dependent choice

of m. Hurvich and Beltrao (1994) had related mean squared error to integrated mean

squared error in spectral density estimation, and thence proposed cross-validation

procedures for choosing both m and the trimming constant. The “log-periodogram

estimates”just discussed have been greatly used empirically, deservedly so in view of

their nice asymptotic properties and strong intuitive appeal. But in view of the limited

information it employs there is a concern about precision, and it is worth asking at

least whether the information can be used more effi ciently. In fact Robinson (1995a)

showed that indeed the asymptotic variance in (3.2) can be reduced by “pooling”

adjacent periodograms, prior to logging.

A proposal of Künsch (1987), however, leads to an alternative frequency-domain

estimate that does even better. He suggested a narrow-band discrete-frequency Whit-

tle estimate (cf (2.5)). This essentially involves Whittle estimation of the “model”

f(λ) = Cλ−2d over frequencies λ = λj, j = 1, ...,m, where m plays a similar role as

in log periodogram estimation. After that, C can be eliminated by a side calculation

(much as the innovation variance is eliminated in getting (2.5)), and d is estimated

by d̂ which minimizes

log

{
1

m

m∑
j=1

λ2dj I(λj)

}
− 2d

m

m∑
j=1

log λj. (3.3)

There is no closed-form solution to (3.3) but it is easy to handle numerically. Robinson

(1995b) established that

m
1
2 (d̂− d)→d N(0,

1

4
). (3.4)

For the same m sequence, d̂ is then more effi cient than the log periodogram estimate

d̃ (cf (3.2)), while the pooled log periodogram estimate of Robinson (1995a) has

asymptotic variance that converges to 1
4
from above as the degree of pooling increases.

While d̂ is only implicitly defined,it is nevertheless easy to locate, and the linear

involvement of the periodogram in (3.3) makes it possible to establish (3.4) under
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simpler and milder conditions than needed for (3.2), Robinson employing a linear

process for xt in martingale difference innovations. This, and the coverage of all d ∈

(−1
2
, 1
2
), may have implications also for further development of the asymptotic theory

of parametric Whittle estimates discussed in the previous section. An additional

feature of the asymptotic theory of Robinson (1995a), and that of Robinson (1995b),

is the purely local nature of the assumptions on f(λ); and the way in which the

theory fits in with earlier work on smoothed nonparametric spectral estimation for

short memory series; (1.2) is refined to

f(λ) = C |λ|−2d
(

1 +O |λ|β)
)
, as λ→ 0,

where β ∈ (0, 2] is analogous to the local smoothness parameter involved in the

spectral estimation work, and no smoothness, or even boundedness, is imposed on

f away from zero frequency. Note that the parameter β also enters into rules for

optimal choice of m; see Henry and Robinson (1996). Lobato and Robinson (1998)

provided a Lagrange multiplier test of the short memory hypothesis d = 0 based on

(3.3) that avoids estimation of d.

Various refinements to the semiparametric estimates d̃ and d̂, and their asymptotic

theory, have been developed. Hurvich and Beltrao (1994), Hurvich and Deo (1999)

have proposed bias-reduced estimates, while Andrews and Guggenberger (2003), Robin-

son and Henry (2000) have developed estimates that can further reduce the bias, and

have smaller asymptotic minimummean squared error, using respectively an extended

regression and higher-order kernels, Robinson and Henry (2000) at the same time in-

troducing a unified M -estimate class that includes d̃ and d̂ as special cases. Giraitis

and Robinson’s (2003) development of an Edgeworth expansion for a modified version

of d̂ also leads to bias reduction, and a rule for bandwidth choice. An alternative

refinement of d̂ was developed by Andrews and Sun (2004). Additionally, Moulines

and Soulier (1999, 2000) and Hurvich and Brodsky (2001) considered a broad-band
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version of d̃ originally proposed by Janacek (1982), effectively extending the regression

in (3.1) over all Fourier frequencies after including cosinusoidal terms, corresponding

to the model (2.7) with p, now a bandwidth number, increasing slowly with n. These

authors showed that if f(λ)λ2d is analytic over all frequencies, an asymptotic mean

squared error of order log n/n can thereby be obtained, which is not achievable by the

refinements to d̃ and d̂ we have discussed, though the latter require only local-to-zero

assumptions on f(λ).

Volatility Models

For financial time series, “long memory”has been found not so much in raw time

series xt as in nonlinear instantaneous functions such as their squares, x2t . Thus,

whereas we have so far presented long memory as purely a second-order property of a

time series, referring to autocovariances or spectral structure, these do not completely

describe non-Gaussian processes, where “memory”might usefully take on a rather

different meaning. Passing a process through a nonlinear filter can change asymptotic

autocovariance structure, and as Rosenblatt (1961) showed, if xt is a stationary long

memory Gaussian process satisfying (1.1), then x2t has autocovariance decaying like

j4d−2, so has “long memory”only when 1
4
≤ d < 1

2
, and even here, since 4d−2 < 2d−1,

x2t has “less memory”than xt.

Financial time series frequently suggest a reverse kind of behaviour. In particular,

asset returns, or logged asset returns,may exhibit little autocorrelation, as is consistent

with the effi cient markets hypothesis, whereas their squares are noticeably correlated.

Whereas our previous focus on second order moments led to linear time series models,

we must now consider nonlinear ones. There is any number of possibilities, but

Engle (1982) proposed to model this phenomenon by the autoregressive conditionally

heteroscedastic model of order p (ARCH(p)), such that

xt = εtσt,
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where

σ2t = E
(
x2t |xt−1, xt−2, ...

)
= α0 +

p∑
j=1

αjx
2
t−j, (4.1)

with α0 > 0, αj ≥ 0, 1 ≤ j ≤ p, and εt is a sequence of iid random variables (possibly

Gaussian). Under suitable conditions on the αj, it follows that the xt are martingale

differences (and thus uncorrelated), whereas the x2t have an AR(p) representation,

in terms of martingale difference (but not conditionally homoscedastic) innovations.

The model was extended by Bollerslev (1986) to the generalized autoregressive con-

ditionally heteroscedastic model of index p, q (GARCH(p, q)) which implies that the

x2t have an ARMA(max(p, q), q) representation in a similar sense.

The ARCH and GARCH models have found considerable use in finance. But they

imply that the autocorrelations of the squares x2t either eventually cut off completely

or decay exponentially, whereas empirical evidence of slower decay perhaps consistent

with long memory, has accumulated, see e.g. Whistler (1990), Ding, Granger and

Engle (1993). Robinson (1991) had already suggested ARCH-type models capable of

explaining greater autocorrelation in squares, so that (4.1) is extended to

σ2t = α0 +
∞∑
j=1

αjx
2
t−j, (4.2)

or replaced by

σ2t =

(
α0 +

∞∑
j=1

αjxt−j

)2
. (4.3)

In case of both models, and related situations, Robinson (1991) developed Lagrange

multiplier or score tests of “no-ARCH” (which is consistent with αj = 0, j ≥ 1)

against general parameterizations in (4.2) and (4.3); such tests should be better at

detecting autocorrelation in x2t that falls off more slowly than ones based on the

ARCH(p), (4.2), say.

We can formally rewrite (4.2) as

x2t −
∞∑
j=1

αjx
2
t−j = α0 + νt, (4.4)
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where the νt = x2t − σ2t are martingale differences. Robinson (1991) suggested the

possibility of using for αj in (4.4) the AR weights from the FARIMA(0, d, 0) model

(see (2.1)), taking α0 = 0, and Whistler (1990) applied this version of his test to test

d = 0 in exchange rate series. This FARIMA(0, d, 0) case was further considered by

Ding and Granger (1996), along with other possibilities, but suffi cient conditions of

Giraitis, Kokoszka and Leipus (2000) for existence of a covariance stationary solution

of (4.4) rule out long memory, though they do permit strong autocorrelation in x2t

that very closely approaches it, and Giraitis and Robinson (2001) have established

asymptotic properties of Whittle estimates based on squares for this model. For

FARIMA(p, d, q) AR weights αj in (4.2), x2t is not covariance stationary when d > 0,

α0 > 0, and Baillie, Bollerslev and Mikkelsen (1996) called this FIGARCH, a model

that has since been widely applied in finance.

For model (4.3), Giraitis, Robinson and Surgailis (2000) have shown that if the

weights αj decay like jd−1, 0 < d < 1
2
, then any integral power xkt , such as the square,

has long memory autocorrelation, satisfying (1.1) irrespective of k. This model also

has the advantage over (4.2) of avoiding the non-negativity constraints on the αj, and

an ability to explain leverage.

An alternative approach to modelling autocorrelation in squares, and other nonlin-

ear functions, alongside possible lack of autocorrelation in xt, expresses σ2t directly in

terms of past εt, rather than past xt, leading to a nonlinear MA form. Nelson (1991)

proposed the exponential GARCH (EGARCH) model, where we take

lnσ2t = α0 +
∞∑
j=1

αjg(εt−j),

g being a user-chosen nonlinear function, for example Nelson stressed g(z) = θz +

γ(|z| −E |z|), which is useful in describing a leverage effect. Nelson (1991) noted the

potential for choosing the αj to imply long memory in σ2t , but stressed short memory,

ARMA, weights αj. On the other hand, Robinson and Zaffaroni (1997) proposed
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nonlinear MA models, such as

xt = εt

(
α0 +

∞∑
j=1

αjεt−j

)
, (4.5)

where the εt are an iid sequence. They showed the ability to choose the αj such that

x2t has long memory autocorrelation, and proposed use of Whittle estimation based

on the x2t .

Another model, closely related to (4.5), proposed by Robinson and Zaffaroni (1998),

replaces the first factor εt by ηt, where the ηt are iid and independent of the εt, again

long memory potential was shown. This model is a special case of

xt = ηth(εt−1, εt−2, ...), (4.6)

of which the short memory stochastic volatility model of Taylor (1986) is also a special

case. Long memory versions of Taylor’s model were studied by Breidt, Crato and de

Lima (1998), choosing

h(εt−1, εt−2, ...) = exp

(
α0 +

∞∑
j=1

αjεt−j

)
, (4.7)

the αj being MA weights in the FARIMA(p, d, q). They considered Whittle esti-

mation based on squares, discussing its consistency, and applying the model to stock

price data.

Asymptotic theory for ML estimates of models such as (4.5), (4.6) and (4.7) is con-

siderably more diffi cult to derive, indeed it is hard to write down the likelihood, given,

say, Gaussian assumptions on εt and ηt. In order to ease mathematical tractability

in view of the nonlinearity in (4.7), Gaussianity of εt was stressed by Breidt et al. In

that case, we can write the exponent of h in (4.7) as α0 + zt, where zt is a station-

ary Gaussian, possibly long memory, process, and likewise the second factor in (4.5).

Such models are all covered by modelling xt as a general nonlinear function of a vector
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unobservable Gaussian process ξt. Starting from an asymptotic expansion for the co-

variance of functions of multivariate normal vectors, Robinson (2001) indicated how

long memory in nonlinear functions of xt depends on the long memory in ξt and the

nature of the nonlinearity involved, with application also to cyclic behaviour, cross-

sectional and temporal aggregation, and multivariate models. Allowance for quite

general nonlinearity means that relatively little generality is lost by the Gaussianity

assumption on ξt, while the scope for studying autocorrelation structure of functions

such as |xt| can avoid the assumption of a finite fourth moment in xt, which has been

controversial.

Semiparametric models and methods for long memory in volatility have also been

considered. In particular, Hurvich, Moulines and Soulier (2005) investigated proper-

ties of the narrow-band discrete-frequency Whittle estimate (discussed in the previous

section) based on the log x2t series.

Nonstationary Models

In time series econometrics, unit root models have been a major focus over the

past 30 years. Previously to this, modelling of economic time series typically involved

a combination of short memory, I(0), series and ones that are nonstochastic, either

in the sense of sequences such as dummy variables or polynomial time trends, or

of conditioning on predetermined economic variables. On the other hand, unit root

modelling starts from the random walk model, i.e. (2.2) for t ≥ 1 with d = 1, et white

noise and x0 = 0, and then generalizes et to be a more general I(0) process, modelled

either parametrically or nonparametrically; xt is then said to be an I(1) process.

Such models, often with the involvement also of nonstationary time trends, have been

successfully used in macroeconometrics, frequently in connection with cointegration

analysis.

23



One essential preliminary step is the testing of the unit root hypothesis. Numerous

such tests have been proposed, often directed against I(0) alternatives, and using

classical Wald, Lagrange multiple and likelihood-ratio procedures, see e.g. Dickey

and Fuller (1979). In classical situations, these lead to a null χ2 limit distribution, a

non-central local χ2 limit distribution, Pitman effi ciency, and a considerable degree of

scope for robustness to the precise implementation of the test statistics, for example to

the estimate of the asymptotic variance matrix that is employed. The unit root tests

against I(0) alternatives lose such properties, for example the null limit distribution

is nonstandard. This nonstandard behaviour arises essentially because the unit root

is nested unsmoothly in an AR system: in the AR(1) case, the process is stationary

with exponentially decaying autocovariance structure when the AR coeffi cient α lies

between -1 and 1, has unit root nonstationarity at α = 1, and is “explosive” for

|α| > 1. The tests directed against AR alternatives seem not to have very good

powers against fractional alternatives, as Monte Carlo investigation of Diebold and

Rudebusch (1991) suggests.

Any number of models can potentially nest a unit root, and the fractional class turns

out to have the “smooth”properties that lead classically to the standard, optimal

asymptotic behaviour referred to earlier. Robinson (1994c) considered the model

ϕ(L)xt = ut, t ≥ 1; xt = 0, t ≤ 0, (5.1)

where ut is an I(0) process with parametric autocorrelation and

ϕ(L) = (1− L)d1(1 + L)d2
h∏
j=3

(1− 2 cosωjL+ L2)dj , (5.2)

where the ωj are given distinct real numbers in (0, π), and the dj, 1 ≤ j ≤ h, are arbi-

trary real numbers. The initial condition in (5.1) avoids an unbounded variance, the

main interest being in nonstationary xt. Robinson (1994c) proposed tests for specified

values of the dj against, fractional, alternatives in the class (5.2). For example, in
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the simplest case the unit root hypothesis d = 1 can be tested, but against fractional

alternatives (1−L)d for d > 1, d < 1 or d 6= 1. Some other null d may be of interest,

e.g. d = 1
2
, this being the boundary between stationarity and nonstationarity in the

fractional domain. The region d ∈ [1
2
, 1) has been referred to as mean-reverting, MA

coeffi cients of xt decaying, albeit more slowly than under stationary, d < 1
2
. Note

that the models (5.1) and (5.2) also cover seasonal and cyclical components (cf the

Gegenbauer model (2.8)) as well as stationary and overdifferenced ones. Robinson

(1994c) showed that his Lagrange multiplier tests enjoy the classical large-sample

properties of such tests, described above.

To intuitively explain this outcome, note that unlike in unit root tests against AR

alternatives, the test statistics are based on the null differenced xt, which are I(0)

under the null hypothesis. This would suggest that estimates of memory parameters

dj in (5.1) and (5.2) and of parameters describing ut, such as Whittle estimates, will

also continue to possess the kind of standard asymptotic properties -
√
n-consistency

and asymptotic normality - under nonstationarity as we have encountered in sta-

tionary circumstances. Beran (1995), in case ϕ(L) = (1 − L)d and ut white noise,

indicated this, though the initial consistency proof he provides, an essential prelimi-

nary to asymptotic distribution theory for his implicitly-defined estimate, appears to

assume that the estimate lies in a neighbourhood of the true d, itself a consequence

of consistency; over a suitably wide range of d-values, the objective function does not

converge uniformly.

Velasco and Robinson (2000) adopted a somewhat different approach, employing

instead the model

(1− L)sxt = vt, t ≥ 1; xt = 0, t ≤ 0, (5.3)

(1− L)d−svt = ut, t = 0,±1, ..., (5.4)

where s denotes the integer part of d + 1
2
and ut is a parametric I(0) process such
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as white noise;vt is a stationary I(d− s) process, invertible also unless d = −1
2
. The

distinction between the two definitions of nonstationary I(d) processes, in (5.1) on the

one hand and (5.3) and (5.4) on the other, was discussed by Marinucci and Robinson

(1999); this entails, for example, convergence to different forms of fractional Brown-

ian motion. Velasco and Robinson (2000) considered a version of discrete-frequency

Whittle estimation (cf. (2.5)) but nonstationarity tends to bias periodogram ordi-

nates, and to suffi ciently reduce this they in general (for d ≥ 3
4
and with (5.4) modified

so that vt has an unknown mean) found it necessary to suitably “taper”the data, and

then, in order to overcome the undesirable dependence this produces between neigh-

bouring periodograms, to use only Fourier frequencies λj, such that j is a multiple of

p: p is the “order”of the taper, such that p ≥ [d + 1
2
] + 1 is required for asymptotic

normality of the estimates, with
√
n rate of convergence; since d is unknown a large

p can be chosen for safety’s sake, but the asymptotic variance is inflated by a factor

varying directly with p. The theory is invariant to an additive polynomial trend of

degree up to p.

For parametric versions of the form (5.1), such as the FARIMA(p, d, q), Hualde

and Robinson (2011), considered the conditional sum of squares type of estimate used

by Box and Jenkins (1971) in an ARMA context. This particular form, rather than

other versions of Whittle estimate, turns out to be crucial in establishing asymptotic

statistical properties without resorting to trimming, indeed as a result asymptotic

effciency is achieved. A notable feature of Hualde and Robinson (2011) is that it

is not necessary to know in advance whether d lies in the stationary, nonstationary,

anti-persistent or non-invertible regions.

In case of semiparametric models, tapering has played a larger role in covering

nonstationarity. In a similar model to (5.3) and (5.4), originated in Hurvich and

Ray (1995), who required s = 1 in (5.3), while in (5.4) they allowed −∞ < d < 1
2
,

so that (unlike Beran (1995) and Velasco and Robinson (2000)) they covered non-
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stationarity only up to d < 3/2 (though this probably fits many applications) and

on the other hand covered any degree of noninvertibility. Hurvich and Ray’s (1995)

concern, however, was not with asymptotic theory for parameter estimates, rather

they found that asymptotic bias in I(λj), for fixed j as n → ∞, could be notably

reduced by use of a cosine bell taper, leading them to recommend use of tapering (and

omission of frequency λ1) in the log periodogram estimation of d discussed earlier in

the paper, in case nonstationarity is feared. Limit distribution theory was established

by Velasco (1999a), analogous to that described above for log periodogram estimates

in case d ≥ 1
2
, in a semiparametric version of (5.3) and (5.4) (so ut has nonparametric

autocorrelation), using a general class of tapers. Further, Velasco (1999b) established

analogous results for local Whittle estimates, cf (3.4). Once again, there is invariance

to polynomial trends, but tapering, imposed for asymptotic normality when d ≥ 3
4

and for consistency when d > 1, entails skipping frequencies and/or an effi ciency

loss. However, Hurvich and Chen (2000) proposed a taper, applied to first differences

when d < 3/2, that, with no skipping, loses less effi ciency. Shimotsu and Phillips

(2005) considered an "exact" form of local Whittle function, without tapering, based

on (5.1), establishing asymptotic properties when the optimization covers an interval

of width less than 9/2. However, tapering can be a wise precaution when nonsta-

tionarity is believed possible, and can be useful in theoretical refinements even under

stationarity, see e.g. Giraitis and Robinson (2003).

Final Comments

We have introduced various ways of modelling long memory in economic and finan-

cial time series, along with methods for estimating them, theoretical results that are

useful in justifying the estimates, and methods for drawing statistical inferences on

them, such as testing hypotheses and setting confidence intervals. The literature on
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long memory is now quite mature, and so we have chosen to focus on some basic liter-

ature for scalar time series. Space does not permit a full treatment of developments

even in this scalar case, let alone in other settings where long memory can arise and

has been studied, which are beyond the scope of the paper and would oveburden it

with notation. These include models for multivariate data, including regression and

cointegration models, spatial models, panel data models, and functional time series

models.
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