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1. INTRODUCTION

Long memory has usually been described in terms of autocovariance or spectral

density structure, in case of covariance stationary time series. Let xt, t = 0,±1, ..., be

a time series indexed by time, t. It is covariance stationary, meaning that E(xt) = µ

and Cov(xt, xt+j) = γ(j) do not depend on t. If xt has absolutely continuous spectral

distribution function, then it has a spectral density, given formally by

f(λ) =
1

2π

∞∑
j=−∞

γ(j)e−ijλ, −π ≤ λ ≤ π; (1.1)

f(λ) is a non-negative, even function, periodic of period 2π when extended beyond

the “Nyqvist”range [−π, π]. It is then common to say that xt has long memory if

f(0) =
1

2π

∞∑
j=−∞

γ(j) =∞, (1.2)

so that f(λ) has a “pole”at frequency zero. The opposite situation of a zero at λ = 0,

f(0) =
1

2π

∞∑
j=−∞

γ(j) = 0, (1.3)

is sometimes referred to as “negative dependence”or “anti-persistence”. The former

term is natural because the second equality in (1.3) can only hold if the, positive,

variance γ(0) is balanced by predominantly negative autocovariances γ(j), j 6= 0. We

then say that xt has “short memory”if

0 < f(0) <∞. (1.4)

These descriptions face the criticism that, consistent with (1.4), there is the possi-

bility that f(λ) has one or more poles or zeros at frequencies λ ∈ (0, π], indicative

of notable cyclic behaviour. We shall later refer to the modelling of such phenomena,

but the bulk of interest has focussed on zero frequency. Going back to the 1960’s,

experience of nonparametric spectral estimation for many economic time series has
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suggested very marked peakedness around zero frequency, see Adelman (1965), to

lend support to (1.2). However empirical evidence of long memory in various fields,

such as astronomy, chemistry, agriculture and geophysics, dates from much earlier

times, see for example Newcomb (1886), Student (1927), Fairfield Smith (1938), Jef-

freys (1939), Hurst (1951). One aspect of interest was variation in the sample mean,

x̄ = n−1
∑n

t=1 xt. If f(λ) is continuous and positive at λ = 0, Féjèr’s theorem indicates

that

V ar(x̄) =
1

n

n−1∑
j=1−n

(
1− |j|

n

)
γ(j) (1.5)

∼ 2πf(0)

n
, as n→∞, (1.6)

where “∼”indicates that the ratio of left and right sides tends to 1. But the empirical

basis for this n−1 rate has been questioned, even by early experimenters, for example

Fairfield Smith (1938) fitted a law n−α, 0 < α < 1 to spatial agricultural data. For

future convenience, we change notation to d = (1 − α)/2, later explaining why d is

referred to as the “differencing”parameter. Fairfield Smith’s law for the variance of

the sample mean is thus n2d−1, which from (1.5) is easily seen to arise if

γ(j) ∼ c1j
2d−1, as j →∞, (1.7)

for c1 > 0. Under additional conditions (see Yong, 1974), (1.7) is equivalent to a

corresponding power law for f(λ) near zero frequency,

f(λ) ∼ c2 |λ|−2d , as λ→ 0, (1.8)

for c2 > 0.

The behaviour of the sample mean under such circumstances, and the form and

behaviour of the best linear unbiased estimate of the population mean, was discussed

by Adenstedt (1974) (included as Chapter 2 of this volume). Adenstedt anticipated

the practical usefulness of (1.8) in the long memory range 0 < d < 1
2
, but also treated
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the anti-persistent case −1
2
< d < 0, where (1.3) holds, as it does also for d = −1,

which arises if a short memory process (see (1.4)) is first-differenced; Vitale (1973)

had earlier discussed similar issues in this case. The sample mean tends to be highly

ineffi cient under anti-persistence, but for long memory Samarov and Taqqu (1988)

found it to have remarkably good effi ciency.

Macroeconomic series can be regarded as aggregates across many micro-units, and

explanations of how long memory behaviour might arise in macroeconomics has fo-

cussed on random-parameter short-memory modelling of micro-series. Consider the

random-parameter autoregressive model of order 1 (AR(1)),

Xt(ω) = A(ω)Xt−1(ω) + εt(ω), (1.9)

where ω indexes micro-units, the εt(ω) are independent and homoscedastic with zero

mean across ω and t, and A(ω) is a random variable with support (−1, 1) or [0, 1).

Then, conditional on ω, Xt(ω) is a stationary AR(1) sequence. Robinson (1978a)

showed that the “unconditional autovariance” which we again denote by γ(j), is

given by

γ(j) = Cov {Xt(ω), Xt+j(ω)} =
∞∑
u=0

E
{
A(ω)j+2u

}
, (1.10)

and that the “unconditional spectrum”f(λ) (1.1) at λ = 0 is proportional toE {(1− A(ω))−2},

and thus infinite, as in (1.2), if A(ω) has a density with a zero at 1 of order less than

or equal to 1. One class with this property considered by Robinson (1978a) was

the (possibly translated) Beta distribution, for which Granger (1980) explicitly de-

rived the corresponding power law behaviour of the spectral density of cross-sectional

aggregates xt = N−
1
2

∑N
i=1Xt(ωi), where the ωi are independent drawings: clearly

Cov(xt, xt+u) is γ(j), (1.10), due to the independence properties. Indeed, if A(ω)

has a Beta (c, 2− 2d) distribution on (0, 1), for c > 0, 0 < d < 1
2
, E
{
A(ω)k

}
decays

like k2d−2, so (1.10) decays like j2d−1, as in (1.7). Intuitively, a suffi cient density of

individuals with close-to-unit-root behaviour produces the aggregate long memory.
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A similar idea was earlier employed by Mandelbrot (1971) in computer generation of

long memory time series, and for further developments, in relation to more general

models than (1.9) see e.g. Goncalves and Gourieroux (1988), Lippi and Zaffaroni

(1997).

The rest of the paper deals with various approaches to modelling long memory, for

various kinds of data, and with relevant statistical inference. The following section

provides background to estimation of parametric models. Semiparametric inference

is discussed in Section 3. Section 4 describes some long memory stochastic volatility

models. Section 5 concerns the extension of parametric and semiparametric inference

to nonstationary series. In Section 6 we review regression models and cointegration.

2. PARAMETRIC MODELLING AND INFERENCE

Much interest in the possibility of long memory or anti-persistence focusses on the

parameter d, which concisely describes long-run memory properties. In practice d

is typically regarded as unknown, and so its estimation is of interest. Indeed, the

discussion of the previous section indicates that an estimate of d is needed even to

estimate the variance of the sample mean; this was pursued by Beran (1989), for

example. In order to estimate d we need to consider the modelling of dependence in

more detail.

The simplest possible realistic model for a covariance stationary series is a para-

metric one that expresses γ(j) for all j, or f(λ) for all λ, as a parametric function of

just two parameters, d and an unknown scale factor. Perhaps the earliest such model

is “fractional noise”, which arises from considerations of self-similarity. A continuous

time stochastic process {y(t);−∞ < t <∞} is self-similar with “self-similarity para-

meter”H ∈ (0, 1) if, for any a > 0, {y(at);−∞ < t <∞} has the same distribution

as {aHy(t);−∞ < t < ∞}. If the differences x = y(t) − y(t − 1), for integer t, are
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covariance stationary, we have

γ(j) =
γ(0)

2

{
|j + 1|2H − 2 |j|2H + |j − 1|2H

}
. (2.1)

As j → ∞, (2.1) decays like j2H−2, so on taking H = d + 1
2
we have again the

asymptotic law (1.7); γ(0) is the unknown scale parameter in this model. The formula

for the spectral density was derived by Sinai (1976); it is complicated, but satisfies

(1.8).

“Fractional noise”was extensively studied by Mandelbrot and Van Ness (1968),

Hipel and McLeod (1978) and others, but, perhaps because it extends less naturally

to richer stationary series, and nonstationary series, and due to its unpleasant spectral

form (see the later discussion of Whittle estimates) it has received less attention in

recent years than another two-parameter model, the “fractional differencing”model

proposed by Adenstedt (1974), in Chapter 2 of this volume,

f(λ) =
σ2

2π

∣∣1− eiλ∣∣−2d , −π ≤ λ ≤ π. (2.2)

For d = 0, (2.2) is just the spectral density of a white noise series (with variance σ2),

while for 0 < |d| < 1
2
both properties (1.7) and (1.8) hold, Adenstedt (1974) giving a

formula for γ(j) under (2.2), as well as other properties. Note that d < 1
2
is necessary

for integrability of f(λ), that is for xt to have finite variance, and this restriction is

sometimes called the stationarity condition on d. Another mathematically important

restriction is that of invertibility, d > −1
2
. We shall discuss statistical inference on

models such as (2.2).

Granger (1966) identified the “typical spectral shape of an economic variable”as not

only having a pole or singularity at zero frequency, but then decaying monotonically.

Both the “fractional differencing” and “fractional noise” models have this simple

property. However, even if monotonicity holds, as it may, at least approximately,

in case of deseasonalized economic series, the notion that the entire autocorrelation

6



structure can be explained by a single parameter, d, is highly restrictive. While

the value of d determines the long-run or low-frequency behaviour of f(λ), greater

flexibility in modelling short-run, high-frequency, behaviour may be desired. We

referred to (2.2) as a “fractional differencing”model because it is the spectral density

of xt generated by

(1− L)dxt = et, (2.3)

where {et} is a sequence of uncorrelated variables with zero mean and variance σ2, L

represents the lag operator, Lxt = xt−1 and formally,

(1− L)d =
∞∑
j=0

Γ(j − d)

Γ(−d)Γ(j + 1)
Lj. (2.4)

With d = 1 (and an initial condition such as x0 = 0), (2.3) would describe a random

walk model. Box and Jenkins (1971) stressed the vector model

(1− L)da(L)xt = b(L)et. (2.5)

Here d is an integer, a(L) and b(L) are the polynomials

a(L) = 1−
p∑
j=1

ajL
j, b(L) = 1 +

q∑
j=1

bjL
j, (2.6)

all of whose zeros are outside the unit circle, to ensure stationarity and invertibility,

and a(L) and b(L) have no zero in common, to ensure unambiguity of the autoregres-

sive (AR) order p and the moving average (MA) order q. Granger and Joyeux (1980)

(Chapter 3 of this volume) considered instead fractional d ∈ (−1
2
, 1
2
) in (2.5), giving

a fractional autoregressive integrated moving average model of orders p, d, q (often

abbreviated as FARIMA(p, d, q) or ARFIMA(p, d, q)). It has spectral density

f(λ) =
σ2

2π

∣∣1− eiλ∣∣−2d ∣∣∣∣ b(eiλ)a(eiλ)

∣∣∣∣2 , −π ≤ λ ≤ π. (2.7)

Much of the discussion of Granger and Joyeux (1980) concerned the simple FARIMA(0, d, 0)

case (2.2) of Adenstedt (1974), but they also considered estimation of d, prediction,

7



and computer generation of long memory series. Methods in the latter category in-

clude the aggregation approach of Mandelbrot (1971) and the Cholesky decomposition

approach of Hipel and McLeod (1978); an elegant, more recent, one is due to Davies

and Harte (1987), involving use of the fast Fourier transform.

Hosking (1981) provided further discussion of FARIMA(p, d, q) processes, again

much of it based on Adenstedt’s (1974) model (2.2), but he also gave results for

the general case (2.5), especially the FARIMA(1, d, 0). Further information on

FARIMA(p, d, q) models was given by Sowell (1992), Chung (1994), and others.

An early proposal for estimating d, or H, used the adjusted rescaled range (R/S)

statistic

R/S =

max1≤j≤n
j∑
t=1

(xt − x̄)−min1≤j≤n
j∑
t=1

(xt − x̄){
1
n

n∑
t=1

(xt − x̄)2
} 1

2

(2.8)

of Hurst (1951), Mandelbrot and Wallis (1969). Asymptotic statistical behaviour of

the R/S statistic was studied early on by Mandelbrot (1975), Mandelbrot and Taqqu

(1979), and it was considered in an economic context by Mandelbrot (1972). However,

while it behaves well with respect to long-tailed distributions, its limit distribution

is nonstandard and diffi cult to use in statistical inference, while it has no known

optimal effi ciency properties with respect to any known family of distributions. The

continued popularity of R/S, for example in the finance literature, may rest in part

on an inadequate appreciation of rival procedures.

While long memory series do have distinctive features, there is no over-riding rea-

son why traditional approaches to parametric estimation in time series should be

abandoned in favour of rather special approaches like R/S. Indeed, if xt is assumed

Gaussian, the Gaussian maximum likelihood estimate (MLE) might be expected to

have optimal asymptotic statistical properties, and unlile R/S, can be tailored to the

particular parametric model assumed, be it (2.1), (2.2), (2.7), or whatever. The liter-
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ature on the Gaussian MLE developed first with short memory processes in mind (see

e.g. Whittle, 1951, Hannan, 1973), and it may be helpful to provide some background

to this.

One important finding was that the Gaussian likelihood can be replaced by various

approximations without affecting first order limit distributional behaviour. In partic-

ular, under suitable conditions, estimates maximizing such approximations, and called

“Whittle estimates” are all
√
n-consistent and have the same limit normal distrib-

ution as the Gaussian MLE. Such approximations arise naturally in that treatment

of pre-sample values is always an issue with time series models, but computational

considerations are also an important factor. One particular Whittle estimate which

seems usually particularly advantageous in the latter respect is the discrete-frequency

form. Suppose the parametric spectral density has form f(λ; θ, σ2) = (σ2/2π)h(λ; θ),

where θ is an r-dimensional unknown parameter vector and σ2 is a scalar as in (2.2).

If σ2 is regarded as varying freely from θ, and
∫ π
−π log h(λ; θ)dλ = 0 for all admissible

values of θ, then we have what might be called a “standard parameterization”. For

example, we have a standard parameterization in (2.2) with θ = d, and is (2.7) with

θ determining the aj, 1 ≤ j ≤ p and bj, 1 ≤ j ≤ q. Define also the periodogram

I(λ) =
1

2πn

∣∣∣∣ n∑
t=1

xte
itλ

∣∣∣∣2 (2.9)

and the Fourier frequencies λj = 2πjn. Denoting by θ0 the true value of θ, then the

discrete frequency Whittle estimate of θ0 minimizes the following approximation to

a constant minus the Gaussian log likelihood,
n−1∑
j=1

I(λj)

h(λj; θ)
. (2.10)

This estimate was stressed by Hannan (1973). From the viewpoint of the short

memory models under discussion at that time, it had the advantages of using directly

the form of h, which is readily written down in case of autoregressive moving av-

erage (ARMA) models, Bloomfeld’s (1972) spectral model, and others; by contrast,

9



autocovariances, partial autocovariances, AR coeffi cients and MA coeffi cients, which

variously occur in other types of Whittle estimate, tend to be more complicated ex-

cept in special cases, indeed for (2.7) the form of autocovariances, for example, can

depend on the question of multiplicity of zeros of a(L). Another advantage of (2.10) is

that it makes direct use of the fast Fourier transform, which enables the periodograms

I(λj) to be rapidly computed even when n is very large. A third advantage is that

mean-correction of xt is dealt with simply by omission of the frequency λ0 = 0.

Another important characteristic of Whittle estimates of θ0, first established in case

of short memory series, is that while they are only asymptotically effi cient when xt

is Gaussian, their limit distribution (in case of “standard parameterizations”) is un-

changed by many departures from Gaussianity. Thus the same, relatively convenient,

rules of statistical inference can be used without worrying too much about the ques-

tion of Gaussianity. In particular, Hannan (1973) established this, for several Whittle

forms in case xt has a linear representation in homoscedastic stationary martingale

differences having finite variance.

Hannan established first consistency under only ergodicity of xt, so that long

memory was actually included here. However, for his central limit result, with
√
n-

convergence, which is crucial for developing statistical inference, his conditions ex-

cluded long memory, and clearly (2.10) appears easier to handle technically in the

presence of a smooth h than of one with a singularity. Hannan’s work was further

developed in the short memory direction, to cover “nonstandard parameterizations”

and multiple time series. One such treatment, of Robinson (1978b), has a central

limit theorem that hints at how a modest degree of long memory might be covered.

He reduced the problem to a central limit theorem for finitely many sample auto-

covariances, whose asymptotic normality had been shown by Hannan (1976) to rest

crucially on square integrability of the spectral density; note that (2.2) and (2.3) are

square integrable only for d < 1
4
. In fact for some forms of Whittle estimate, Yajima
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(1985) established the central limit theorem, again with
√
n-rate, in case of model

(2.2) with 0 < d < 1
4
.

The major breakthrough in justifying Whittle estimation in long memory models

was provided by Fox and Taqqu (1986) (Chapter 4 of this volume). Their objective

function was not (2.10) but the continuous frequency form∫ π

−π

I(λ)

h(λ; θ)
dλ, (2.11)

but Fox and Taqqu’s insight applies to (2.10) also. The periodogram I(λ) is an

asymptotically unbiased estimate of the spectral density at continuity points and so

I(λ) can be expected to blow up as λ → 0. However, since h(λ; θ) also blows up as

λ→ 0 and appears in the denominator, some “compensation”can be expected. More

precisely, limiting distributional behaviour depends on the “score”(the derivative in

θ of (2.11)) at θ0 being asymptotically normal; this, like (2.10), is a quadratic form

in xt, and Fox and Taqqu (1987) gave general conditions for such quadratic forms to

be asymptotically normal, which then apply to Whittle estimates with long memory

such that 0 < d < 1
2
.

Fox and Taqqu (1986) assumed Gaussianity of xt, as did Dahlhaus (1989), who also

considered the actual Gaussian MLE and discrete-frequency Whittle (2.10), and es-

tablished asymptotic effi ciency. With reference to (2.11) Giraitis and Surgailis (1990)

relaxed Gaussianity to a linear process in independent and identically distributed

(iid) innovations, thus providing a partial extension of Hannan’s (1973) work to long

memory. Heyde and Gay (1993), Hosoya (1996) considered multivariate extensions.

Overall, the bulk of this asymptotic theory has not directly concerned the discrete

frequency form (2.10), and has focussed mainly on the continuous frequency form

(2.11), though the former benefits from the neat form of the spectral density in case

of the popular FARIMA(p, d, q) class (2.7); on evaluating the integral in (2.11), we

have a quadratic form involving the Fourier coeffi cients of h(λ; θ)−1, which are gen-
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erally rather complicated for long memory models. Also, in (2.11) and the Gaussian

MLE, correction for an unknown mean must be explicitly carried out, not dealt with

merely by dropping zero frequency; Monte Carlo results of Cheung and Diebold (1994)

compare this approach with sample mean-correction in Gaussian MLE.

We briefly refer to other estimates that have been considered. Whittle estimation

of the models (2.1), (2.2) and (2.7) requires numerical optimization, but Kashyap and

Eom (1988) proposed a closed-form estimate of d in (2.2) by a log periodogram regres-

sion (across λj, j = 1, ..., n−1). This idea does not extend nicely to FARIMA(p, d, q)

models with p > 0 or q > 0, but it does to

f(λ) =
1

2π

∣∣1− eiλ∣∣−2d exp

{
p−1∑
k=1

βk cos((k − 1)λ)

}
, −π ≤ λ ≤ π (2.12)

(see Robinson (1994a)) which combines (2.2) with Bloomfeld’s (1972) short memory

exponential model; Moulines and Soulier (1998) have recently provided asymptotic

theory for log peridogram regression estimation of (2.12). They assumed Gaussianity,

and ironically, for technical reasons, this is harder to avoid when a nonlinear function

of the periodogram, such as the log, is involved, than in Whittle estimation, which was

originally motivated by Gaussianity. Whittle estimation is also feasible with (2.12),

indeed Robinson (1994a) noted that it can be reparameterized as

f(λ) =
exp

2π

{
p−1∑
k=1

θk cos{(k − 1)λ} − 2d
∞∑

k=p−1

cos(kλ)

k

}
, (2.13)

taking θ1 = β1, θk = βk − 2/(k − 1), 2 ≤ k ≤ p − 1, from which it can be deduced

that the limiting covariance matrix of Whittle estimates is desirably diagonal.

Generalized method of moments (GMM) has become extremely popular in econo-

metrics, and its use has been proposed in estimating long memory models, either in

the time domain or the frequency domain. However, GMM objective functions seem

in general to be less computationally attractive than (2.10), require stronger regular-

ity conditions in asymptotic theory, and do not deal so nicely with an unknown mean.
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Also, unless a suitable weighting is employed they will be less effi cient than Whittle

estimates in the Gaussian case, have a relatively cumbersome limiting covariance ma-

trix, and are not even asymptotically normal under d > 1
4
. It must be acknowledged,

however, that finite sample properties are very important in practice, and while there

seems no intuitive reason why GMM estimates, for example, should be superior in

this respect, it also cannot be asserted that any particular form of Whittle, such as

(2.10), is always better in finite samples, or that some other, non-Whittle, estimate

might not be preferable in some cases. Indeed,
√
n-consistency and asymptotic nor-

mality of Whittle estimates cannot even be taken for granted, having been shown not

to hold over some or all of the range d ∈ (0, 1
2
) for certain nonlinear functions xt of

a underlying Gaussian long memory process (see Fox and Taqqu (1985), Giraitis and

Taqqu (1999)).

Nonstandard limit distributional behaviour for Whittle estimates can also arise

even under Gaussianity, in certain models. As observed in Section 1, a spectral pole

(or zero) could arise at a non-zero frequency, to explain a form of cyclic behaviour.

In particular Gray, Zhang and Woodward (1989) proposed the “Gegenbauer”model

f(λ) =
σ2

2π

∣∣1− 2eiλ cosω + e2iλ
∣∣−2d ∣∣∣∣ b(eiλ)a(eiλ)

∣∣∣∣2 , −π ≤ λ ≤ π, (2.14)

for ω ∈ (0, π]. To compare with (2.2), f(λ) has a pole at frequency ω if d > 0. If ω

is known then our previous discussion of estimation and asymptotic theory continues

to apply, see Hosoya (1996, 1997). If ω is unknown, then Whittle procedures can be

adapted, but it seems that such estimates of ω (but not of the other parameters) will

be n-consistent with a nonstandard limit distribution. This was claimed by Chung

(1996a,b) albeit with inadequate proof, while Giraitis, Hidalgo and Robinson (2001)

established n-consistency for an estimate of ω that even lacks a limit distribution.
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3. SEMIPARAMETRIC MODELLING AND INFERENCE

In the use of parametric FARIMA(p, d, q) models, correct specification of p and

q is important. Under-specification of p or q leads to inconsistent estimation of AR

and MA coeffi cients, but also of d, as does over-specification of both, due to a loss

of identifiability. Order-determination procedures developed for short memory mod-

els, such as AIC, can be adapted to FARIMA models (indeed see Beran, Bhansali

and Ocker (1998) for the FARIMA(p, d, 0) case) but there is no guarantee that the

underlying model belongs to the finite-parameter class proposed. It seems especially

unfortunate that an attempt to seriously model short-run features can lead to incon-

sistent estimation of long-run properties, if the latter happen to be the aspect of most

interest.

The asymptotic behaviour (1.7) and (1.8) indicates that short-run modelling is

almost irrelevant at very low frequencies and very long lags, where d dominates. It

thus appears that estimates of d can be based on information arising from only one

or other of these domains, and that such estimates should have validity across a wide

range of short memory behaviour. As this robustness requires estimates to essentially

be based on only a vanishingly small fraction of the data as sample size increases,

one expects slower rates of convergence than for estimates based on a correct finite-

parameter model. However, in very long series, such as arise in finance, the degrees

of freedom available may be suffi cient to provide adequate precision. These estimates

are usually referred to as “semiparametric”, though their slow convergence rates make

them more akin to “nonparametric”estimates in other areas of statistics, indeed some

are closely related to the smoothed nonparametric spectrum estimates familiar from

short memory time series analysis.

Before presenting some individual semiparametric estimates, it is worth stressing

that not just point estimation is of interest, but also interval estimation and hypothesis
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testing. Perhaps the test of most interest to practitioners is a test of long memory,

or rather, a test of short memory d = 0 against long memory alternatives d > 0, or

anti-persistent alternatives d < 0, or both, d 6= 0. What is then needed is a statistic

with a distribution that can be satisfactorily approximated, and computed, under

d = 0, and that has good power. In a parametric context, tests of d = 0 - perhaps of

Wald, Lagrange multiplier or likelihood-ratio type - can be based onWhittle functions

such as (2.10) and the FARIMA(p, d, q) family. (Strictly speaking, much of the limit

distribution theory for Whittle estimation primarily concerned with stationary long

memory, 0 < d < 1
2
, does not cover d = 0, or d < 0, but other earlier short memory

theory, such as Hannan’s (1973), can provide null limit theory for testing d = 0.) The

test statistic is based on assumed p and q, but the null limit distribution considered

on this basis is generally invalid if p and q are misspecified, as discussed earlier; this

can lead, for example, to mistaking unnaccounted-for short memory behaviour for

long memory, and rejecting the null too often. Lo (1991) (Chapter 5 of this volume)

observed the invalidity of tests for d = 0 based on asymptotic theory of Mandelbrot

(1975) for the R/S statistic (2.8) in the presence of unanticipated short memory

autocorrelation. He proposed a corrected statistic (using smoothed nonparametric

spectral estimation at frequency zero) and developed its limit distribution under d = 0

in the presence of a wide range of short memory dependence (described by mixing

conditions), and tested stock returns for long memory.

Lo’s paper is perhaps especially notable as an early, rigorous treatment of asymp-

totic theory in a semiparametric context. However, the null limit theory for his

modified R/S statistic is nonstandard. In principle, any number of statistics has

sensitivity to long memory. Some have the character of “method-of-moments”esti-

mates, minimizing a “distance”between population and sample properties. In the

frequency domain, Robinson (1994b) proposed an “averaged periodogram”estimate

of d, employing what would be a consistent estimate of f(0) under d = 0. He estab-
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lished consistency, requiring finiteness of only second moments and allowing for the

presence of an unknown slowly varying factor L(λ) in f(λ), so that (1.8) is relaxed to

f(λ) ∼ L(λ) |λ|−2d , as λ→ 0. (3.1)

Delgado and Robinson (1996) proposed data-dependent choices of the bandwidth

number (analogous to the one discussed later in relation to log periodogram esti-

mation, for example) that is required in the estimation, and Lobato and Robinson

(1996) established limit distribution theory, which is complicated: the estimate is

asymptotically normal for 0 ≤ d < 1
4
, but non-normal for d ≥ 1

4
. Lobato (1997)

extended Robinson’s (1994b) consistency result to the averaged cross-periodogram of

bivariate series. A number of other semiparametric estimates of d share this latter

property, which is due to f(λ) not being square-integrable for d ≥ 1
4
, for example the

time-domain “variance-type”estimate of Teverovsky and Taqqu (1997).

We might then turn to the traditional statistical practice of regression. In the time

domain, the asymptotic rule (1.7) suggests two approaches, nonlinearly regressing

sample autocovariances on cj2d−1, and ordinary linear regression (OLS) of logged

sample autocovariances on log j and an intercept. These were proposed by Robinson

(1994a), the second proposal then being studied by Hall, Koul and Turlach (1997).

However, the limit distributional properties of these estimates are as complicated as

those for the averaged periodogram estimate, intuitively because OLS is a very ad

hoc procedure in this setting, the implied “disturbances” in the “regression model”

being far from uncorrelated or homoscedastic.

Nice results can only be expected fromOLS if the disturbances are suitably “whitened”.

At least for short memory series, the (Toeplitz) covariance matrix of x1, ..., xn is

approximately diagonalized by a unitary transformation, such that normalized peri-

odograms uj = log {I(λj)/f(λj)} (cf (2.10)), suffi ciently resemble a zero-mean, uncor-

related, homoscedastic sequence. For long memory series, (1.8) suggests consideration
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of

log I(λj) ' log c− 2d log λj + uj, (3.2)

for a positive constant c and λj close to zero. This idea was pursued by Geweke

and Porter-Hudak (1983) (Chapter 6 of this volume) though they instead employed a

narrow band version of the “fractional differencing”model (2.2), specifically replacing

log λj by log
∣∣1− eiλj ∣∣. They performed OLS regression over j = 1, ...,m, where m,

a bandwidth or smoothing number, is much less than n but is regarded as increas-

ing slowly with n in asymptotic theory. Geweke and Porter-Hudak’s approach was

anticipated by a remark of Granger and Joyeux (1980).

Geweke and Porter-Hudak argued, in effect, that as n→∞ their estimate d̃ satisfies

m
1
2 (d̃− d)→d N

(
0,
π2

24

)
, (3.3)

giving rise to extremely simple inferential procedures. However the heuristics under-

lying their argument are slightly defective, and they, and some subsequent authors,

did not come close to providing a rigorous proof of (3.3). A diffi culty with their

heuristics is that for long memory (and anti-persistent) series the uj are not actu-

ally asymptotically uncorrelated or homoscedastic for fixed j with n→∞, as shown

by Kűnsch (1986), and elaborated upon by Hurvich and Beltrao (1993), Robinson

(1995a). As Robinson (1995a) showed, this in itself invalidates Geweke and Porter-

Hudak’s (1983) argument. Even for increasing j, the approximation of the uj by an

uncorrelated, homoscedastic sequence is not very good, and this, and the nonlinearly-

involved periodogram, makes a proof of (3.3) non-trivial.

Robinson (1995a) established (3.3), explicitly in case of the approximation (3.2)

rather than Geweke and Porter-Hudak’s version, though indicating that the same

result holds there. Robinson’s result applies to the range |d| < 1
2
, providing simple

interval estimates as well as a simple test of short memory, d = 0. His treatment

actually covered multiple time series, possibly involving differing memory parameters,
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and tests for equality of these, and more effi cient estimates using the equality were

also given. Robinson’s treatment assumed Gaussianity, but Velasco (2000) gave an

extension to linear processes xt. Both authors employed Künsch’s (1986) suggestion

of trimming out the lowest λj to avoid the anomalous behaviour of periodograms

there, but Hurvich, Deo and Brodsky (1998) showed that this was unnecessary for

(3.3) to hold, under suitable conditions. They also addressed the important issue of

choice of the bandwidth, m, providing optimal asymptotic minimum mean-squared

error theory. When f(λ)λ2d is twice differentiable at λ = 0, the optimal bandwidth

is of order n4/5, but the multiplying constant depends on unknown population quan-

tities. Hurvich and Deo (1999) proposed a consistent estimate of this constant, and

hence a feasible, data-dependent choice of m. Previously, Hurvich and Beltrao (1994)

had related mean squared error to integrated mean squared error in spectral density

estimation, and thence proposed cross-validation procedures for choosing both m and

the trimming constant.

“Log-periodogram estimation” has been greatly used empirically, deservedly so

in view of its nice asymptotic properties and strong intuitive appeal. However, in

view of the limited information it employs there is a concern about precision, and

it is worth asking at least whether the information can be used more effi ciently.

Robinson (1995a) showed that indeed the asymptotic variance in (3.3) can be reduced

by “pooling”adjacent periodograms, prior to logging. A proposal of Künsch (1987),

however, leads to an alternative frequency-domain estimate that does even better. He

suggested a narrow-band discrete-frequency Whittle estimate (cf (2.10)). Essentially

this involves Whittle estimation of the “model”f(λ) = Cλ−2d over frequencies λ = λj,

j = 1, ...,m, where m plays a similar role as in log periodogram estimation. Then C

can be eliminated by a side calculation (much as the innovation variance is eliminated
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in getting (2.10)), and d is estimated by d̂ which minimizes

log

{
1

m

m∑
j=1

λ2dj I(λj)

}
− 2d

m

m∑
j=1

log λj. (3.4)

There is no closed-form solution but (3.4) is easy to handle numerically. Robinson

(1995b) (Chapter 7 of this volume) established that

m
1
2 (d̂− d)→d N(0,

1

4
). (3.5)

Using the samem sequence, d̂ is then more effi cient than the log periodogram estimate

d̃ (cf (3.3)), while the pooled log periodogram estimate of Robinson (1995a) has

asymptotic variance that converges to 1
4
from above as the degree of pooling increases.

The estimate d̂ is only implicitly defined, but it is nevertheless easy to locate, and

the linear involvement of the periodogram in (3.4) makes it possible to establish (3.5)

under simpler and milder conditions than needed for (3.3), Robinson employing a

linear process for xt in martingale difference innovations. This, and the coverage of

all d ∈ (−1
2
, 1
2
), may have implications also for further development of the asymptotic

theory of parametric Whittle estimates discussed in the previous section. Another

feature of the asymptotic theory of Robinson (1995a), and that of Robinson (1995b),

is the purely local nature of the assumptions on f(λ); and the way in which the

theory fits in with earlier work on smoothed nonparametric spectral estimation for

short memory series; (1.8) is relaxed to

f(λ) = C |λ|−2d
(

1 +O |λ|β)
)
, as λ→ 0, (3.6)

where β ∈ (0, 2] is analogous to the local smoothness parameter involved in the

spectral estimation work, and no smoothness, or even boundedness, is imposed on f

away from zero frequency. The parameter β also enters into rules for optimal choice of

m; see Henry and Robinson (1996). A nice feature of the “Gaussian semiparametric”

or “local Whittle”estimate d̂ is that it extends naturally to multivariate series; see
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Lobato (1999). If only a test for short memory is desired, Lobato and Robinson (1998)

provided a Lagrange multiplier one based on (3.4) that avoids estimation of d.

Work has proceeded on refinements to the semiparametric estimates d̃ and d̂, and

their asymptotic theory. Monte Carlo simulations have indicated bias in d̃, and

Hurvich and Beltrao (1994), Hurvich and Deo (1999) have proposed bias-reduced

estimates. Andrews and Guggenberger (2000), Robinson and Henry (2000) have

developed estimates that can further reduce the bias, and have smaller asymptotic

minimum mean squared error, using respectively an extended regression and higher-

order kernels, Robinson and Henry (2000) at the same time introducing a unified

M -estimate class that includes d̃ and d̂ as special cases. Bias reduction, and a rule

for bandwidth choice, also results from Giraitis and Robinson’s (2000) development

of an Edgeworth expansion for a modified version of d̂. Moulines and Soulier (1999,

2000) and Hurvich and Brodsky (2001) considered a broad-band version of d̃ originally

proposed by Janacek (1982), effectively extending the regression in (3.2) over all

Fourier frequencies after including cosinusoidal terms, corresponding to the model

(2.12) with p, now a bandwidth number, increasing slowly with n. They showed that

if f(λ)λ2d is analytic over all frequencies, an asymptotic mean squared error of order

log n/n can thereby be obtained, which is not achievable by the refinements to d̃ and

d̂ we have discussed, though the latter require only local-to-zero assumptions on f(λ).

An alternative semiparametric estimate with nice properties was proposed by Parzen

(1986) and studied by Hidalgo (2001).

4. STOCHASTIC VOLATILITY MODELS

We have so far presented “long memory”as purely a second-order property of a time

series, referring to autocovariances or spectral structure. These do not completely

describe non-Gaussian processes, where “memory”might usefully take on a rather
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different meaning. In particular, passing a process through a nonlinear filter can

change asymptotic autocovariance structure. As Rosenblatt (1961) indicated, if xt is a

stationary long memory Gaussian process satisfying (1.7), then x2t has autocovariance

decaying like j4d−2, so has “long memory”only when 1
4
≤ d < 1

2
, and even here, since

4d− 2 < 2d− 1, x2t has “less memory”than xt.

Many financial time series suggest a reverse kind of behaviour. Asset returns, or

logged asset returns, frequently exhibit little autocorrelation, as is consistent with

the effi cient markets hypothesis, whereas their squares are noticeably correlated. En-

gle (1982) proposed to model this phenomenon by the autoregressive conditionally

heteroscedastic model of order p (ARCH(p)), such that

xt = εtσt, (4.1)

where σt is the square root of

σ2t
def
= E

(
x2t |xt−1, xt−2, ...

)
= α0 +

p∑
j=1

αjx
2
t−j, (4.2)

where α0 > 0, αj ≥ 0, 1 ≤ j ≤ p, and εt is a sequence of iid random variables (possi-

bly Gaussian). Then, under suitable conditions on the αj, it follows that the xt are

martingale differences (and thus uncorrelated), whereas the x2t have an AR(p) rep-

resentation, in terms of martingale difference (but not conditionally heteroscedastic)

innovations. Engle’s model was extended by Bollerslev (1986) to the generalized au-

toregressive conditionally heteroscedastic model of index p, q (GARCH(p, q)) which

implies that the x2t have an ARMA(max(p, q), q) representation in a similar sense.

Both ARCH and GARCH models have found considerable use in finance. How-

ever, they imply that the autocorrelations of the squares x2t either eventually cut off

completely or decay exponentially, whereas empirical evidence of slower decay per-

haps consistent with long memory, has accumulated, see e.g. Whistler (1990), Ding,

Granger and Engle (1993). In fact Robinson (1991) (Chapter 8 of this volume) had
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already suggested ARCH-type models capable of explaining greater autocorrelation

in squares, so that (4.2) is extended to

σ2t = α0 +
∞∑
j=1

αjx
2
t−j, (4.3)

or replaced by

σ2t =

(
α0 +

∞∑
j=1

αjxt−j

)2
. (4.4)

For both models, and related situations, Robinson (1991) developed Lagrange multi-

plier or score tests of “no-ARCH”(which is consistent with αj = 0, j ≥ 1) against

general parameterizations in (4.3) and (4.4); such tests should be better at detecting

autocorrelation in x2t that falls off more slowly than ones based on the ARCH(p),

(4.2), say.

So far as (4.3) is concerned, we can formally rewrite it as

x2t −
∞∑
j=1

αjx
2
t−j = α0 + νt, (4.5)

where the νt = x2t−σ2t are martingale differences. In Section 5 of Robinson (1991) the

possibility of using for αj in (4.5) the AR weights from the FARIMA(0, d, 0) model

(see (2.2)) was considered, taking α0 = 0, and Whistler (1990) applied this version

of his test to test d = 0 in exchange rate series. The FARIMA(0, d, 0) case of (4.1)

was further considered by Ding and Granger (1996), along with other possibilities,

but suffi cient conditions of Giraitis, Kokoszka and Leipus (2000) for existence of a

covariance stationary solution of (4.5) rule out long memory, though they do permit

strong autocorrelation in x2t that very closely approaches it, and Giraitis and Robinson

(2001) have established asymptotic properties of Whittle estimates based on squares

for this model. For FARIMA(p, d, q) AR weights αj in (4.5), x2t is not covariance

stationary when d > 0, α0 > 0, and Baillie, Bollerslev and Mikkelsen (1996) called

this FIGARCH, a model that has since been widely applied in finance. Gaussian ML

has been used to estimate it, but there seems at the time of writing to be no rigorous
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asymptotic theory available for this, though work is proceeding in this direction. In-

deed, until recently rigorous asymptotic theory had only been given for this approach

to estimating GARCH(1, 1) and ARCH(p) models within the GARCH(p, q) class.

So far as model (4.4) is concerned, Giraitis, Robinson and Surgailis (2000) have

shown that if the weights αj decay like jd−1, 0 < d < 1
2
, then any integral power

xkt , such as the square, has long memory autocorrelation, satisfying (1.7) irrespective

of k. This model also has the advantage over (4.3) of avoiding the non-negativity

constraints on the αj, and an ability to explain leverage, but at present lacks an

asymptotic theory for parametric estimation.

Another approach to modelling autocorrelation in squares, and other nonlinear

functions, alongside possible lack of autocorrelation in xt, expresses σ2t in (4.2) directly

in terms of past εt, rather than past xt, leading to a nonlinear MA form. Nelson (1991)

proposed the exponential GARCH (EGARCH) model, where in (4.2) we take

lnσ2t = α0 +
∞∑
j=1

αjg(εt−j), (4.6)

where g is a user-chosen nonlinear function, for example Nelson stressed g(z) =

θz + γ(|z| − E |z|), which is useful in describing a leverage effect. Nelson pointed

out the potential for choosing the αj to imply long memory in σ2t , but stressed short

memory, ARMA, weights αj. Robinson and Zaffaroni (1997) proposed nonlinear MA

models, such as

xt = εt

(
α0 +

∞∑
j=1

αjεt−j

)
, (4.7)

where the εt are an iid sequence. They showed the ability to choose the αj such that

x2t has long memory autocorrelation, and proposed use of Whittle estimation based

on the x2t .

A closely related model to (4.7), proposed by Robinson and Zaffaroni (1998), re-

places the first factor εt by ηt, where the ηt are iid and independent of the εt, again
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long memory potential was shown. This model is a special case of

xt = ηth(εt−1, εt−2, ...), (4.8)

of which the short memory stochastic volatility model of Taylor (1986) is also a special

case. Long memory versions of Taylor’s model were studied by Breidt, Crato and de

Lima (1998) (Chapter 9 of this volume), Harvey (1998), choosing

h(εt−1, εt−2, ...) = exp

(
α0 +

∞∑
j=1

αjεt−j

)
, (4.9)

where the αj are MA weights in the FARIMA(p, d, q). They considered Whittle

estimation based on squares, Breidt et al. discussing its consistency, and applying the

model to stock price data. Note that asymptotic theory for ML estimates of models

such as (4.7), (4.8) and (4.9) is considerably more diffi cult to derive, indeed it is hard

to write down the likelihood, given, say, Gaussian assumptions on εt and ηt. To ease

mathematical tractability in view of the nonlinearity in (4.9), Gaussianity of εt was

indeed stressed by Breidt et al. and Harvey. In that case, we can write the exponent

of h in (4.9) as α0 + zt, where zt is a stationary Gaussian, possibly long memory,

process, and likewise the second factor in (4.7). These models are all covered by

modelling xt as a general nonlinear function of a vector unobservable Gaussian process

ξt. From an asymptotic expansion for the covariance of functions of multivariate

normal vectors, Robinson (2001) indicated how long memory in nonlinear functions

of xt depends on the long memory in ξt and the nature of the nonlinearity involved,

with application also to cyclic behaviour, cross-sectional and temporal aggregation,

and multivariate models; see also Andersen and Bollerslev (1997). The allowance

for quite general nonlinearity means that relatively little generality is lost by the

Gaussianity assumption on ξt, while the scope for studying autocorrelation structure

of functions such as |xt| can avoid the assumption of a finite fourth moment in xt,

which has been controversial.
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5. NONSTATIONARY LONG MEMORY

Unit root models have been a major focus of econometrics during the past 15 years

or so. Prior to this, modelling of economic time series typically involved a combination

of short memory, I(0), series satisfying (1.4), and ones that are nonstochastic, either

in the sense of sequences such as dummy variables or polynomial time trends, or of

conditioning on predetermined economic variables. Unit root modelling starts from

the random walk model, i.e. (2.3) for t ≥ 1 with d = 1, et white noise and x0 = 0, and

then generalizes et to be a more general I(0) process, modelled either parametrically

or nonparametrically; xt is then said to be an I(1) process. Unit root models, often

with the involvement also of nonstationary time trends, have been successfully used

in macroeconometrics, frequently in connection with cointegration analysis.

A key preliminary step is the testing of the unit root hypothesis. Many such

tests have been proposed, often directed against I(0) alternatives, and using classical

Wald, Lagrange multiple and likelihood-ratio procedures, see e.g. Dickey and Fuller

(1979, 1981), Phillips (1987). In many other situations, these lead to a null χ2

limit distribution, a non-central local χ2 limit distribution, Pitman effi ciency, and

a considerable degree of scope for robustness to the precise implementation of the

test statistics, for example to the estimate of the asymptotic variance matrix that

is employed. The unit root tests against I(0) alternatives lose such properties, for

example the null limit distribution is nonstandard.

The nonstandard behaviour arises essentially because the unit root is nested un-

smoothly in an AR system: in the AR(1) case, the process is stationary with expo-

nentially decaying autocovariance structure when the AR coeffi cient α lies between

-1 and 1, has unit root nonstationarity at α = 1, and is “explosive” for |α| > 1.

Moreover, the tests directed against AR alternatives seem not to have very good

powers against fractional alternatives, as Monte Carlo investigation of Diebold and
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Rudebusch (1991) suggests.

There is any number of models that can nest a unit root, and the fractional class

turns out to have the “smooth”properties that lead classically to the standard, op-

timal asymptotic behaviour referred to earlier. Robinson (1994c) (Chapter 10 of this

volume) considered the model

ϕ(L)xt = ut, t ≥ 1, (5.1)

xt = 0, t ≤ 0, (5.2)

where ut is an I(0) process with parametric autocorrelation and

ϕ(L) = (1− L)d1(1 + L)d2
h∏
j=3

(1− 2 cosωjL+ L2)dj , (5.3)

in which the ωj are given distinct real numbers in (0, π), and the dj, 1 ≤ j ≤ h, are

arbitrary real numbers. The initial condition (5.2) avoids an unbounded variance, the

main interest being in nonstationary xt. Robinson proposed tests for specified values

of the dj against, fractional, alternatives in the class (5.3). Thus, for example, in the

simplest case the unit root hypothesis d = 1 can be tested, but against fractional

alternatives (1 − L)d for d > 1, d < 1 or d 6= 1. Other null d may be of interest,

e.g. d = 1
2
, this being the boundary between stationarity and nonstationarity in

the fractional domain. The region d ∈ [1
2
, 1) is referred to as mean-reverting, MA

coeffi cients of xt decaying, albeit more slowly than under stationary, d < 1
2
. The

models (5.1)-(5.3) also cover seasonal and cyclical components (cf the Gegenbauer

model (2.14)) as well as stationary and overdifferenced ones. Robinson showed that

his Lagrange multiplier tests enjoy the classical large-sample properties of such tests,

described above.

An intuitive explanation of this outcome is that, unlike in unit root tests against

AR alternatives, the test statistics are based on the null differenced xt, which are

I(0) under the null hypothesis. This suggests that estimates of memory parameters
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dj in (5.1)-(5.3) and of parameters describing ut, such as Whittle estimates, will also

continue to possess the kind of standard asymptotic properties -
√
n-consistency and

asymptotic normality - under nonstationarity as we encountered in the stationary

circumstances of Section 2. Indeed, Beran (1995), in case ϕ(L) = (1 − L)d and ut

white noise, indicated this, though the initial consistency proof he provides, an essen-

tial preliminary to asymptotic distribution theory for his implicitly-defined estimate,

appears to assume that the estimate lies in a neighbourhood of the true d, itself a

consequence of consistency; over a suitably wide range of d-values, the objective func-

tion does not converge uniformly. Velasco and Robinson (2000) adopted a somewhat

different approach, employing instead the model

(1− L)sxt = vt, t ≥ 1, (5.4)

xt = 0, t ≤ 0, (5.5)

(1− L)d−svt = ut, t = 0,±1, ..., (5.6)

where s is the integer part of d+ 1
2
and ut is a parametric I(0) process such as white

noise; note that vt is a stationary I(d− s) process, invertible also unless d = −1
2
. The

difference between the two definitions of nonstationary I(d) processes, in (5.1) and

(5.2) on the one hand and (5.4)-(5.6) on the other, was discussed by Marinucci and

Robinson (1999); this entails, for example, convergence to different forms of fractional

Brownian motion. Velasco and Robinson considered a version of discrete-frequency

Whittle estimation (cf. (2.10)) but nonstationarity tends to bias periodogram or-

dinates, and to suffi ciently reduce this they in general (for d ≥ 3
4
and with (5.6)

modified so that vt has an unknown mean) found it necessary to suitably “taper”the

data (see e.g. Brillinger, 1975, Chapter 3) and then, in order to overcome the un-

desirable dependence this produces between neighbouring periodograms, to use only

Fourier frequencies λj, such that j is a multiple of p: p is the “order”of the taper,

such that p ≥ [d+ 1
2
] + 1 is required for asymptotic normality of the estimates, with
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√
n rate of convergence; since d is unknown a large p can be chosen for safety’s sake,

but the asymptotic variance is inflated by a factor varying directly with p. The theory

is invariant to an additive polynomial trend of degree up to p.

The use of tapering in a nonstationary fractional setting, and a similar model to

(5.4)-(5.6), originated in Hurvich and Ray (1995) (Chapter 11 of this volume). In

(5.4), they required d = 1, while in (5.6) they allowed −∞ < d < 1
2
, so that (unlike

Beran (1995) and Velasco and Robinson (2000)) they covered nonstationarity only

up to d < 3/2 (though this probably fits many applications) and on the other hand

covered any degree of noninvertibility. Their concern, however, was not with asymp-

totic theory for parameter estimates. Hurvich and Ray found that asymptotic bias

in I(λj), for fixed j as n → ∞, could be notably reduced by use of a cosine bell

taper, leading them to recommend use of tapering (and omission of frequency λ1) in

the log periodogram estimation of d discussed in Section 3, in case nonstationarity

is feared. Velasco (1999a) then established limit distribution theory, analogous to

that described in Section 3, for log periodogram estimates in case d ≥ 1
2
, in a semi-

parametric version of (5.4)-(5.6) (so ut has nonparametric autocorrelation), using a

general class of tapers; Velasco (1999b) established analogous results for local Whittle

estimates, cf (3.4). Again, there is invariance to polynomial trends, but tapering, im-

posed for asymptotic normality when d ≥ 3
4
and for consistency when d > 1, entails

skipping frequencies and/or an effi ciency loss. However, Hurvich and Chen (2000)

proposed a taper, applied to first differences when d < 3/2, that, with no skipping,

loses less effi ciency. On the other hand, Phillips (e.g. 1999, and various papers with

co-workers) in the context of the model (5.1), (5.2) with φ(L) = (1−L)d, found that

untapered log periodogram and local Whittle estimates are inconsistent when d > 1,

and not asymptotically normal when d ≥ 3
4
. The position at present is thus that,

despite its drawbacks, tapering is a wise precaution when nonstationarity is believed

possible, while recent work has found it also useful in theoretical refinements even
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under stationarity, see e.g. Giraitis and Robinson (2000).

6. INFERENCE ON REGRESSION AND COINTEGRATION

MODELS

Section 1 provided some preparatory discussion of regression, insofar as we consid-

ered estimation of the mean of a stationary long memory series. Rates of convergence

and effi ciency were discussed, but not limit distribution theory, and here some warn-

ing is in order. For short memory series xt, the sample mean x̄ = n−1
∑n

t=1 xt is

asymptotically normal over a wide range of dependence conditions, including not

only linear processes but also various kinds of “mixing”processes, the latter covering

some forms of nonlinearity. However, Rosenblatt (1961) pointed out that if xt = u2t ,

where ut is a Gaussian long memory process with differencing parameter d (e.g. the

FARMA(0, d, 0) (2.21)), then x̄ is not asymptotically normal when d > 1
4
. Taqqu

(1975) described the limit distribution here as the “Rosenblatt distribution”, and

considerably developed Rosenblatt’s work, modelling xt as a quite general function of

ut. The limit distribution of x̄ is then governed not only by d but by the lowest-degree

non-vanishing term in the Hermite expansion of xt (unlike for short memory ut, when

all terms effectively contribute). In particular, when a linear term is present, there is

asymptotic normality.

Taqqu’s approach has been employed and extended in connection with many sta-

tistics, but while the possible consequences of non-normality must thus be borne in

mind it is not clear how to cope with this in designing useful rules of inference, and we

instead focus on linear, but not necessarily Gaussian, processes, where central limit

theory can be anticipated (and under conditions which are in some respects milder).

Early contributions here are due to Eicker (1967) (Chapter 12 of this volume) and

Ibragimov and Linnik (1971, pp.358-60).
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Consider the model

xt = µ+
∞∑

j=−∞
αjεt−j,

∞∑
j=−∞

α2j <∞, (6.1)

where the εt are iid with zero mean and finite variance. The square summability of

the αj is consistent with the long memory properties (1.7) and (1.8), for d < 1
2
. Then

if also
∞∑

j=−∞
(αj−1 + ...+ αj−n)2 →∞, as n→∞, (6.2)

we have

{V (x̄)}−
1
2 (x̄− µ)→d N(0, 1). (6.3)

Condition (6.2) is merely equivalent to the essential divergence of the norming factor

V (x̄) in (6.3), and does not apply to “noninvertible”processes; under (1.7) V (x̄) in-

creases like n2d−1 for |d| < 1
2
. Both Eicker and Ibragimov and Linnik (1971) covered

(6.1) but Eicker also treated multiple linear regression with quite general nonstochas-

tic errors. Thus, for the model

yt = β′zt + xt, (6.4)

with yt, and the r × 1 nonstochastic vector zt observed, the unobserved xt again

satisfies (6.1), (6.2) with µ = 0. Eicker extended (6.3) to the ordinary least squares

estimate (OLS) β̃ of the r×1 vector β. Under stronger conditions, Eicker established

“autocorrelation-consistent” variance estimates of slope elements of β, of a differ-

ent, convolution, form from the kernel spectral density type that has later become

popular in econometrics. As a historical note, Section 3 of Eicker’s paper discussed

independent, heteroscedastic xt in (6.4) and the “heteroskedasticity-consistent”vari-

ance estimates also later popularized in econometrics (though those earlier appeared

in Eicker (1963)).

Eicker’s conditions were later relaxed by Hannan (1979), but neither of them, nor

Ibragimov and Linnik, explicitly discussed the impact of the asymptotic behaviour

30



(1.7) or (1.8) for xt, let alone parametric models like (2.2). Under a model for xt like

(1.8), with 0 < d < 1
2
, Yajima (1988, 1991) discussed both limit distribution theory

and (extending work of Grenander 1954, Grenander and Rosenblatt, 1957, for short

memory xt) effi ciency of OLS in (6.4), stressing particular regressors such as polyno-

mial time trends and indicating how the asymptotic variance simplifies as a function

of d. These can be implemented given a better-than-log n-consistent (see Robinson,

1994b) estimate of d, so that semiparametric modelling of xt (cf (1.7) or (1.8)) suffi ces.

With a rather different treatment of nonstationary regressors, Dahlhaus (1995) pre-

sented estimates that achieve the same asymptotic effi ciency as the generalized least

squares (GLS) estimate; they involve d, and Dahlhaus then showed that the same

effi ciency can be achieved when d is estimated; d can take “noninvertible”values, but

xt is assumed Gaussian. Deo (1997) provided further developments along these lines,

while Deo and Hurvich (1998) discussed the case of a linear time trend and I(d) xt,

with d < 3/2, so that the errors can be nonstationary.

Time series regression in econometrics can involve stochastic regressors, and this can

significantly affect the theory. Much of the nonstochastic regression theory stresses

circumstances in which the limiting “spectral distribution function”of regressors zt

in “Grenander’s conditions”has discrete jumps, or at least a jump at zero frequency

where the spectral pole of xt is located (as is true of polynomial time trends). For

stationary stochastic zt, the existence of a spectral density may on the other hand

be plausible, and in the event of suffi ciently strong long memory in both zt and xt,

specifically if zt is I(c) with c+d ≥ 1
2
, OLS can have a nonstandard limit distribution

with convergence rate slower than the usual
√
n. However, Robinson and Hidalgo

(1997) (Chapter 13 of this volume) proposed weighted (in both the time and fre-

quency domains) estimates that are consistent and asymptotically normal, at rate
√
n. A special case of these are infeasible GLS estimates, allowing arbitrarily strong

stationary long memory in both zt and xt, so that GLS has the advantage over OLS
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not only of effi ciency but also, interestingly, of faster convergence rate and asymp-

totic normality; intuitively, the explanation is that in the frequency domain f(λ)−1

is involved in GLS, and this has a zero, not a pole, under long memory, avoiding

integrability problems. Robinson and Hidalgo also showed that the same asymptotic

theory can hold when a parametric model for f(λ) is estimated, and gave an extension

to nonlinear regression. For the same setup, Hidalgo and Robinson (2001) extended

Hannan’s (1963) idea of adapting to nonparametric autocorrelation in xt. In a single-

regressor version of this model Choy and Taniguchi (2001) discussed various estimates

under different combinations of long memory in xt and zt.

This stationary stochastic regressor theory assumed zt and xt are uncorrelated, for

otherwise estimates will be asymptotically biased (indeed for technical reasons inde-

pendence was actually assumed). If (6.4) represents a cointegrating relation between

yt and zt, xt has lower integration order than zt, but there is no reason in general to

suppose it is uncorrelated with zt. The cointegration literature has usually assumed

yt and zt are I(1) while xt is I(0) (see e.g. Engle and Granger, 1987), and here OLS

is still consistent due to the asymptotic dominance of xt by zt. This outcome extends

to more general, fractional, nonstationary zt, and xt that are stationary or even less-

nonstationary-than-zt. However, it does not apply to stationary zt, even when it has

more long memory than xt, due to simultaneous equations bias. The stationary case

may be of interest in financial applications, and here Robinson (1994b) showed con-

sistency of a narrow-band least squares (NBLS) estimate, in the frequency domain,

where the number of (low) Fourier frequencies used increases more slowly than n.

Robinson and Marinucci (1997) (Chapter 14 of this volume) extended this result,

making Robinson’s zt a vector and giving a rate of convergence, but mainly focussed

on comparisons between OLS and NBLS in nonstationary circumstances. Fractional

nonstationarity of form (5.1), (5.2) in zt was considered, while xt can be either non-

stationary or stationary, possibly with long memory. They found that for some com-
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binations of memory parameters NBLS is asymptotically equivalent to OLS (despite

losing high-frequency information), but for other combinations NBLS is superior,

simultaneous equations bias not preventing consistency of OLS but possibly slow-

ing convergence. Limit distributions are nonstandard but for the most part can be

characterized by applying functional limit theory of Akonom and Gourieroux (1987),

Marinucci and Robinson (2000); see also Sowell (1990), Chan and Terrin (1995).

Improved versions of Robinson and Marinucci’s (1997) results are in Robinson and

Marinucci (2001) for scalar zt, while Robinson and Marinucci (2000) studied interac-

tion between stochastic and nonstochastic components in zt. The approach in these

papers indicates the dominating role of low frequencies in cointegration, no parametric

modelling of dependence structure being required. It thus has the usual advantages

of “semiparametric”modelling, while both OLS and NBLS are computationally sim-

ple to implement. On the other hand, in cointegration involving I(1) yt and I(0)

xt, OLS has been improved upon, e.g. by Phillips (1991a,b) by estimates that have

a mixed normal limit distribution, with the effect that Wald statistics for testing β

have classical χ2 asymptotics. Jeganathan (1999), Robinson and Hualde (2000) have

provided extensions of these results to parametric fractional models, gaining conver-

gence rates than for some parameter combinations are faster than those of OLS and

NBLS; some early empirical study of fractional cointegration is in Cheung and Lai

(1993), for example.
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