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The phenomenon of long-range dependence, or long memory, is a feature

of statistical time series. It entails persistingly strong autocorrelation
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between distant observations in a time series. Over the years, evidence of

long-range dependence has been found in various substantive fields, including

geophysics, agriculture, chemistry, economics, and finance.

The first of these provided the initial impetus for serious theoretical study,

in particyular an empirical investigation of river discharges along the River

Nile. A long historical series of annual flood levels, recorded at the Roda

Gorge at Cairo, suggested the evidence of dependence over long intervals of

time, with stretches when floods are high, and others when they are low;

on the other hand, there was no regularity in their occurrence or duration

so that the series did not exhibit periodicity. For discrete, equally spaced

observations, letting Xt denote the level at time t and X̂ = n−1
n∑
t=1

Xt the

sample mean based on a sample of size n, the adjusted rescaled range statistic

R

S
=

max
1≤s≤n

s∑
t=1

(Xt − X̂)− min
1≤s≤n

s∑
t=1

(Xt − X̂){
1
n

n∑
t=1

(Xt − X̂)2
}1/2 (1)

was found empirically to behave like nH , 1/2 < H < 1; see Ref. [1]. However,

ifXt is a sequence of independent (Gaussian) random variables (See Normal

Distribution), it can be shown theoretically that R/S increases with n at

the rate n1/2.
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The parameter H, known as the Hurst coeffi cient, arises in a time series

model for Xt that can explain this behavior. Let Xt, t = 0,±1, . . . , be a

stationary Gaussian process, so that a complete description of its prob-

abilistic structure is provided by specifying its mean µ and autocovariance

function γs = cov(Xt, Xt+s), neither of which depend on t. Fractional noise

is the earliest form, and one of the simplest forms, of long-range dependent

process. If Xt is fractional noise it has autocovariance

γs =
γ0
2

{
|s+ 1|2H − 2|s|2H + |s− 1|2H

}
,

s = 0,±1, . . .
(2)

then the R/S statistic (1) exhibits the nH power law behavior described, for

large n. Moreover, for H = 1/2, it follows from (2) that γs = 0, for all s 6= 0,

so that Xt is an independent sequence, whereas for 1/2 < H < 1 we have

instead

γs ∼ γ0H (2H − 1)|s|2H−2, as |s| → ∞ (3)

where “∼”means that the ratio of left- and right-hand sides tends to 1. The

asymptotic behavior in (3) indicates that the autocovariance decreases with
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long lags, but that it does so very slowly indeed, so that

∞∑
s=−∞

γs =∞ (4)

As the earlier discussion indicates, one might estimate H by log(R/S)/logn.

The model (2) is connected with the interesting physical property of self-

similarity. An underlying continuous-time process Y (t) is called self-similar

with parameter H if Y (at) and aHY (t) have identical finite-dimensional dis-

tributions for all a > 0; thus, the distributions have the same shape irrespec-

tive of the frequency of sampling. If Y (t) also has stationary increments,

then Xt = Y (t)− Y (t− 1) has autocovariance function (2).

We can think of (4) as a time domain long-range dependence property.

An alternative, closely related, one is formulated in the frequency domain.

Suppose that the stationary series Xt has a spectral density , denoted f(λ),

−π < λ ≤ π, so that we can write

γs =
π

∫
−π
f(λ) cos sλdλ, s = 0,±1, . . .

Then the nonsummability condition (4) is equivalent to an unbounded spec-
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tral density at zero frequency,

f(0) =∞

This is true if, for example, with 1/2 < H < 1,

f(λ) ∼ Cλ1−2H , as λ→ 0+ (5)

for a positive, finite constant C.

A statistic that provides some indication of the magnitude of f(λ) is the

periodogram

I (λ) =
1

2πn

∣∣∣∣∣
n∑
t=1

(Xt − X̂)eitλ
∣∣∣∣∣
2

,

where i here denotes the imaginary unit, so i2 = −1. In time series from

diverse applications, plots of I(λ) (or a smoothed version which can provide a

more reliable estimate of a finite f(λ)) can appear consistent with the power

law behavior near frequency zero indicated in (5). Mathematically, the latter

property often coexists with [cf. (3)]

γs ∼ c|s|2H−2, as s→∞ (6)

5



for some finite, positive c. Both (5) and (6) indicate that the degree of

dependence varies directly with H.

Recent research has focused on models that are more naturally expressed

in terms of the fractional differencing parameter d, which relates very simply

to H,

d = H − 1
2

(7)

Letting L denote the lag operator, so that LX t = Xt−1, formally we have

the binomial expansion

(1− L)d = 1− dL+ d(d− 1)
2!

L2 − · · ·

If the “d-th fractional difference”of Xt is a sequence of uncorrelated random

variables, Vt, with zero mean and common variance, so

(1− L)dXt = Vt (8)

then, for 0 < d < 1/2, Xt has spectral density f(λ) satisfying (5), while

also (6) holds, with the identity (7); see Ref. [2]. Moreover, (5) and (6)

are also satisfied if Vt is, more generally, a correlated, stationary sequence
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that is short-range dependent, asymptotically having spectral density that

is everywhere continuous, and thus bounded. This is the case when Vt is an

autoregressive moving average sequence, so that

a(L)Vt = b(L)Ut (9)

where the Ut are uncorrelated with zero mean and common variance and

a(L) = 1−
p∑
j=1

ajL
j and b(L) = 1−

q∑
j=1

bjL
j are polynomials of finite degrees,

p and q, with all zeros outside the unit circle. The requirement on a(L)

entails stationarity, while that on b(L) entails invertibility and identifiability.

The resulting fractionally integrated autoregressive moving average model for

Xt, obtained by combining (8) and (9),

(1− L)da(L)Xt = b(L)Ut, (10)

constitutes the most popular parameterization of long-range dependence,

though alternatives, besides (2), have been advanced.

In practice d and other parameters in (10) are unknown, but can be

estimated by an approximation to Gaussian maximum likelihood; this is

known as Whittle estimation. The spectral density of Xt given by (10) has
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the form

f(λ;θ) =
σ2

2π
|1− eiλ|−2d| b(e

iλ)

a(eiλ)
|2, −π < λ ≤ π,

where θ denotes the vector of unknown parameters, θ = (d, a1, . . . , ap, b1, . . . , bq, σ2)′,

the prime denoting transposition, and σ2 = V (Ut). A Whittle objective func-

tion is

L(θ) =
n−1∑
j=1

{
log f(λj;θ) +

I(λj)

f(λj;θ)

}
, (11)

where λj = 2πj/n; note that the mean correction in I(λj) is redundant for

j = 1, . . . , n − 1. The periodogram I(λj) can be rapidly computed by the

fast Fourier transform, even when n is quite large. We estimate θ by

the value θ̂ minimizing L(θ); in practice no closed-form solution exists, and

numerical methods are needed.

For the purpose of statistical inference on θ, it has been shown that, for

Gaussian Xt, θ̂ can be treated as approximately normally distributed with

mean θ and covariance matrix

2

[
n−1∑
j=1

{
∂ log f(λj ;θ)

∂θ

}{
∂ log f(λj ;θ)

∂θ

}′]−1
(12)

for large n; see Ref. [3]. The same large-sample properties often hold even
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when Xt is non-Gaussian, though the approximate covariance matrix may

involve an additional term besides (12), depending on fourth cumulants. It

is not required that Xt have a known mean, the omission of the frequency

for j = 0 (and equally, by periodicity, that for j = n) automatically cor-

responding to a mean correction. Alternative methods of estimating θ are

available but they will be less effi cient than Whittle estimation when Xt is

Gaussian, while possibly lacking some of the advantages it continues to enjoy

even when Xt is non-Gaussian.

In practice, the autoregressive order p and moving average order q in (10)

are likely to be unknown. It is possible to adapt methods for choosing p and

q, based on the observed data, that have been derived in the short-range

dependent autoregressive moving average context (9). However, there is still

a danger of under- or overspecifying p and q, which can lead to invalidation

of the statistical properties described above. In studies of long-range depen-

dence, d is the parameter of greatest interest, but misspecification of a(L)

and b(L), which essentially describe the short-range dependent component

of Xt, can seriously bias the estimation of d.

Semiparametric estimation of d is a way around this diffi culty. Recalling

the property (5), which holds over many models besides (10), under the
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identity (7), we consider a local Whittle estimate, which rests only on the

approximation of f(λ) near frequency zero [cf. (11)]

L(d, C) =
m∑
j=1

{
log(Cλ−2dj ) +

I(λj)

Cλ−2dj

}
(13)

where m is an integer which is much smaller than n; see Ref. [4]. We es-

timate C and d by (numerically) minimizing (13). Under mild regularity

conditions, for large m and n we can treat the estimate of d as normal with

mean d and variance 1/4m; see Ref. [5]. This argument requires m to be

of smaller order than n, so that in view of (12) the parametric estimate de-

scribed previously is the more precise. It is inadvisable to choose m too large

as bias can then result, especially if the spectral density also contains peaks

at nonzero frequencies. However, the longer the series length n, the larger

we can choose m because (13) involves frequencies up to 2πm/n, so that in

very long series the extra robustness gained by the semiparametric approach

may be worthwhile. Automatic, data-dependent, methods for choosing m,

which balance the bias and imprecision that would be incurred by respec-

tively choosing too large and too small a value, are available. An alternate

method of estimating d that also uses only low frequencies, log periodogram
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regression, is longer established and more popular, but less effi cient than the

local Whittle estimate.

More recently, there has been interest in nonstationary processes, where

d in (8) satisfies d ≥ 1
2
(and a suitable initial condition on Vt for t ≤ 0 is

imposed). Also, negatively dependent processes have been considered, where

d < 0. The class of such processes, indexed by real-valued d, is vast. Estima-

tion of d, and other parameters, has been considered, using parametric and

semiparametric methods that relate to and extend those described above.

For example, Hualde and Robinson [6] show that estimates of d and other

parameters that make no prior assumptions on the approximate location of

d (such as the interval (0, 1
2
)), have just as good statistical properties as ones

that correctly impose such prior restrictions.

We have so far presumed that only a single time series is of interest, so

that Xt is a scalar. But frequently we wish to consider a number of jointly

dependent series Xt, and it is usually appropriate to model these jointly.

Extensions of the modelling and estimation procedures described above have

been developed, see again for example Hualde and Robinson [6], with a view

also to examine the phenomenon of cointegration, where related series appear

to move together and there exist one or more linear relations which have
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weaker dependence than the original series. An issue with vector valued time

series, as often is the case with multivariate data, is the danger of curse of

dimensionality, involving a proliferation of parameters and correspondingly

loss in precision of estimation. This issue has been further highlighted

in the recent ’big data’ literature, which does not necessarily require the

dimensionality of Xt to remain fixed as n increases, but can even allow it to

exceed n.

Some other areas of development are worthy of mention. One considers

long-range dependence in panel data or longitudinal data, especially in the

area of economics, see for example Robinson and Velasco (2015). Another

applies notions of long-range dependence to spatial data, which arise in many

fields, indeed this was considered very early on by Fairfield Smith (1938) in

an agricultural context. Also there are definitions of long-range dependence

that are not confined to properties of second moments, but refer to other dis-

tributional properties, see for example Robinson (2011), which also concerns

spatial data.
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