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1 Introduction

We focus on parametric estimation (and associated inference) in the sense
that the joint distribution of the (scalar or multiple) time series need not
necessarily be a parametric function, but that an aspect of interest is a para-
metric function which is estimated with ‘parametric’ rates of convergence.
The overall setting can therefore be either purely parametric, or semipara-
metric. However, we do not concern ourselves with parameter estimates that
depend on smoothed estimation of nonparametric nuisance functions (such
as probability densities or spectral densities) which might be introduced, in
particular, for the purpose of efficiency gain; indeed while semiparametric
estimation of this kind has been greatly developed in case of independent
and short range dependent processes, there is little work so far in the long
range dependent case.
Loosely, one can think of parameters as describing either dynamic or

stochastic properties of time series. Examples of ‘dynamic’ parameters are
memory/self similarity parameters, as well as ARMA coefficients in FARIMA
models. Examples of ‘static’ parameters are location and scale parameters
and regression coefficients (including fractional cointegrating vectors). We
discuss estimation of ‘dynamic’ parameters in Sections 2 and 3, and ‘static’
parameters in Section 4. While we do discuss theoretical properties, and give
some idea of the circumstances which assure them, our treatment is biased
towards ‘useful’ theory and avoids detailed regularity conditions, while we
also give attention to modelling, and the merits of alternative methods of
estimation, including computational considerations.
Section 2 is mainly motivated by the possibility of Gaussianity, insofar

as we discuss, for stationary series, estimation of parametric autocovariance
functions and spectral densities, which suffice to describe Gaussian dynamics,
with some extension to nonstationary series. The term ‘long range depen-
dence’ is often taken to imply stationarity, but of course many nonstationary
series, such as unit root ones, exhibit even longer range dependence. Rival
definitions of stationary long range dependent series X(n), n = 0,±1, · · · ,
entail the existence of d ∈ (0, 1

2
), 0 < c <∞, 0 < C <∞, such that

r(n)
def
= Cov (X(0),X(n)) ∼ cn2d−1, as n→∞ (1.1)

or else
g(λ) ∼ Cλ−2d, as λ→ 0+, (1.2)
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where the spectral density function g(λ) satisfies

r(n) =

πZ
−π

g(λ) cosnλdλ, n = 0,±1, · · · . (1.3)

The most popular parametric models, such as FARIMAS, satisfy both (1.1)
and (1.3). As is well known, however, these definitions are not identical. A
flaw with (1.1), which is heavily used at the probabilistic end of the literature,
is that it does not cover short range dependent series, which can however
be described by taking d = 0 in (1.2). Invertible negative dependent or
antipersistent models, with −1

2
< d < 0, are also covered by (1.2), and by

(1.1) on taking c < 0 and
P∞

n=−∞ r(n) = 0. Nonstationary series can be
defined such that either a suitable degree of integer differencing produces
a stationary series with −1

2
< d < 1

2
, or such that fractional differencing

produces a short range dependent series.
Much of Section 2 is relevant to many non-Gaussian series also, but Sec-

tion 3 concerns series that are explicitly non-Gaussian in that the raw time
series exhibits no autocorrelation, yet certain instantaneous nonlinear func-
tions (such as squares) are long range dependent. This kind of property has
been observed in asset returns and exchange rate data. The extent of rigorous
justification of large sample inferences in this setting is presently extremely
limited but on grounds of empirical importance we devote a separate section
to it.
Section 4, concerning ‘static’ parameters, begins with discussion of es-

timating the mean and variance of a stationary series by first and second
sample moments. The treatment is again biased towards Gaussianity in that
we do not consider other types of estimates of these moments, or estimation
of quantities such as the mode. Next we consider regression models, first
with nonstochastic regressors and then with stochastic ones, developing the
topic here to cointegrated nonstationary series.
The assumption (1.2), with d > 0, indicates the characteristic feature of a

spectral pole at zero frequency, while the eventual monotonic decay in (1.1)
has a similar meaning, and nonstationary extensions intensify these types of
long run effect. The bulk of research views long range dependence in this way,
as we shall, but one can also study spectral poles at nonzero frequencies and
related phenomena, a recent review of this topic being Arteche and Robinson
(1999).
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2 Estimation of ‘dynamic’ parameters, moti-
vated by Gaussianity

Consider a stationary scalar series X(n), n = 0,±1, .... We suppose X(n)
is observed at n = 1, · · · , N , though the estimates we give are also relevant
when X(n) is an unobservable sequence which can be proxied in terms of
observables, such as regression errors. Bearing in mind that location esti-
mation will be discussed subsequently (Section 4), we make the practically
unrealistic assumption that the mean of X(n) is known, and take its value to
be zero; we shall however indicate implications of relaxing this assumption.
We suppose there exists a known function r(n; θ) of n and a p×1 vector θ,

and an unknown θ0 ∈ Rp, such that r(n) ≡ r(n; θ0). We assume the spectral
density g(λ) ofX(n) exists, and so we correspondingly have a known function,
g(λ; θ), of λ and θ, such that g(λ) ≡ g(λ; θ0). Since we are referring to long
range dependence, one element of θ will typically be the parameter d arising
in (1.1) and (1.2), which is generally unknown in practice.
Using θi to denote the ith element of θ, a simple model is the ‘fractional

noise’, given by

r(n; θ) =
1

2
θ1
³
|n+ 1|2θ2+1 − 2 |n|2θ2+1 + |n− 1|2θ2+1

´
, n = 0,±1, · · · ,

(2.1)
so p = 2. A process with increments having autocovariance (2.1), for θ1 >
0, 0 ≤ θ2 < 1

2
, is self-similar, with self-similarity parameter θ2 +

1
2
, see

Mandelbrot and Van Ness (1968).
Another class of model, the FARIMA, is given by

g(λ; θ) =
θ1
2π

¯̄
1− eiλ

¯̄−2θ2 ¯̄a(eiλ; θ)¯̄2
|b(eiλ; θ)|2

, π < λ ≤ π, (2.2)

where, again, 0 < θ2 < 1
2
for long range dependence and θ1 > 0, while

a(z; θ), b(z; θ) are finite-degree polynomials having no zero in common and
all zeroes outside the unit circle. The model (1.2) originated in work of
Adenstedt (1974), following earlier work on short-range dependent ARMAS
(with θ2 = 0), see e.g. Box and Jenkins (1971), and was explicitly discussed in
this generality by Granger and Joyeux (1980). Typically, a(0; θ) = b(0; θ) = 1
and the coefficients in a and b are distinct, freely varying elements of θ. This
is what we term a “standard parameterization”, which more generally we
characterize by the property

πZ
−π

log g(λ; θ)dλ = 2π log θ1, (2.3)
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where (as in (2.2) but not in (2.1)) θ1 denotes the variance of the best linear
predictor of X(n) (the “innovations variance”). A related class of models
combines the short range dependent exponential model of Bloomfield (1973)
with Adenstedt’s model,

g(λ; θ) =
θ1
2π

¯̄
1− eiλ

¯̄−2θ2
exp

Ã
1 +

pP
j=3

θj cos jλ

!
, (2.4)

also satisfying (2.3), see Robinson (1994a).
Each of the models (2.1), (2.2) and (2.4) satisfies both (1.2) and (1.3),

with θ2 = d. However the fact that an autocovariance representation has been
stressed for (2.1) but a spectral one for (2.2) and (2.4) warrants comment. Of
course there is a spectral representation for (2.1) and there are autocovariance
ones for (2.3) and (2.4) but these are cumbersome (except for very low order
a and b in (2.2)) and their form can vary in a complicated way across the
range of parameter values providing stationarity, for example the multiplicity
of zeros of a and b in (2.2) varies. Mostly we are led to consider models for
which the spectral density is the simpler formula, as this falls out immediately
from a lag-operator representation of the process itself, for example if X(n)
has spectral density (2.2), we can write

(1− L)θ2b(L; θ)X(n) = a(L; θ)ε(n), n = 0,±1, · · · , (2.5)

where L is the lag operator and ε(n) is a sequence of uncorrelated zero-mean
variates with variance θ2.
As a further point, the models (2.1), (2.2) and (2.4) all contain a scale pa-

rameter θ2. Unlike with the mean, we have chosen to include it in the current
discussion for convenience of exposition, even though it is not a ‘dynamic’
parameter. However, assuming it varies freely from the other parameters
we can, in the methods of estimation we consider, eliminate it at the start,
writing its estimate as an explicit function of the estimates of the other pa-
rameters. If only large sample inference rules are to be established for the
latter, this might have implications for the degree of regularity conditions
(such as in relation to moment conditions and compactness). Nearly always,
θ1 is simply a nuisance parameter, of little or no interest in itself and present
only to lend reality.
Perhaps the earliest method of estimation in long range dependent mod-

els, proposed in relation to (2.1), uses the adjusted rescaled range (R/S)
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statistic

R/S =

1 ≤ j ≤ Nmax
jP

n=1

(X(n)−X)− 1 ≤ j ≤ Nmin
jP

n=1

(X(n)−X)½
1
N

NP
n=1

(X(n)−X)2
¾ 1

2

,

(2.6)
where X = N−1PN

n=1X(n) (see Hurst, 1951, Mandelbrot and Wallis, 1969).
Then log(R/S)/ logN− 1

2
can be a consistent estimate of θ2 = d in (2.1). This

statistic has been much used over the years, and it and modifications are still
popular, for example in empirical finance. However, despite its interesting
structure, this estimate of d has a limit distribution that is difficult to use in
statistical inference and is not based on the traditional statistical principle of
whitening, unlike some of its rivals introduced below, while it is not obviously
optimal in an asymptotic sense for any class of distributions (and obviously
not for Gaussian X(n)). This continued popularity, then, may be due in part
to insufficient appreciation of the relative merits of alternative approaches.
For Gaussian X(n) it is natural to consider first estimates maximising

the criteria
− 1

2N
log |

P
(θ)|− 1

2N
X 0P(θ)−1X, (2.7)

over a subset of the “stationary” domain ofRp, whereX = (X(1), · · · ,X(N))0
and

P
(θ) has (i, j)th element r(i− j; θ), because (2.7) is proportional to the

log likelihood after omitting a constant. Such an objective function also,
of course, arose in earlier work on estimating short range dependent series,
where a variety of approximations to (2.7), that typically lead to estimates
with the same first order limiting distribution but may have some advantages,
have arisen.
To derive the first of these, note first that under regularity conditions

1

N
log |

P
(θ)|→ 1

2π

πZ
−π

log g(λ; θ)dλ, as N →∞. (2.8)

Now if we can write

X(n) = ε(n) +
∞P
j=1

φj(θ
∗)ε(n− j),

∞P
j=1

φ2j(θ
∗) <∞, (2.9)

such that the ε(n) are uncorrelated with variance θ1, and we have θ =
(θ1, θ

∗0)0, so that the autocorrelations of X(n) are free of θ1, then the “stan-
dard parameterization” condition (2.3) is met, and we can write

P
(θ) =
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P∗(θ∗)/θ2, for some matrix function
P∗. Thus (2.7) can be approximated

by

−1
2
log θ1 −

1

2Nθ1
X 0P∗(θ∗)−1X. (2.10)

It is easily seen that θ∗ is thence estimated by minimizing

1

N
X 0P∗(θ∗)−1X, (2.11)

while θ∗ is estimated by (2.11) at its minimum, illustrating the elimination
procedure mentioned earlier. Of course we have (2.9) in case of “standard
parameterizations” of (2.2) and (2.4), for example.
An alternative proxy to (2.10), again under (2.3), first replaces the MA

representation (2.9) by an AR representation

X(n)−
∞P
j=1

ψj(θ
∗)X(n− j) = ε(n) (2.12)

and then approximates this, for n = 1, · · · , N , by

X(n)−
n−1P
j=1

ψj(θ
∗)X(n− j) = eε(n; θ∗), n = 1, · · ·N, (2.13)

it being understood that the summation on the left vanishes for n = 1. Then
in place of (2.10) consider

− 1

2N
log θ1 −

1

2N

NP
n=1

eε(n; θ∗)2
θ1

. (2.14)

This type of procedure was stressed by Box and Jenkins (1971) for estimates
of short range dependent models, where it is especially convenient for AR
models, indeed there is a closed form solution for the estimates of θ∗. For long
range dependent models, however, the heavy truncation entailed in (2.14), for
small n, might seem a disadvantage; the ψj(θ

∗), though summable, typically
converge relatively slowly.
A further approximation to (2.7) is

− 1
2π

πZ
−π

log g(λ; θ)dλ− 1

4π

πZ
−π

I(λ)

g(λ; θ)
dλ, (2.15)

where I(λ) is the periodogram

I(λ) =
1

2πn

¯̄̄̄
NP
n=1

X(n)einλ
¯̄̄̄2

(2.16)

7



and g(λ; θ∗) > 0 is assumed for all λ. For the purpose of computation, denote
by S(θ) the N ×N matrix with (m,n)th element S(m− n; θ), where

S(j; θ) =
1

2π

πZ
−π

g(λ; θ)−1eijλdλ, (2.17)

whence we have
1

2π

πZ
−π

I(λ)dλ

g(λ; θ)
=

X 0S(θ)X

N
(2.18)

and S(θ) can be viewed as approximating
P
(θ)−1 in (2.7).

In case of (2.9), (2.12), we can write g(λ; θ) = θ1g
∗(λ; θ∗), for

g∗(λ; θ∗) =
1

2π

¯̄̄̄
¯1 + ∞P

j=1

φj(θ
∗)eijλ

¯̄̄̄
¯
2

=
1

2π

¯̄̄̄
¯1− ∞P

j=1

ψj(θ
∗)eijλ

¯̄̄̄
¯
−2

(2.19)

and then, by (2.7), (2.15) is identical to

−1
2
log θ1 −

1

4πθ1

πZ
−π

I(λ)

g∗(λ; θ∗)
dλ, (2.20)

whence θ1 can be eliminated as before, and we have

1

2π

πZ
−π

I(λ)

g∗(λ; θ∗)
dλ =

1

N
X 0S∗(θ∗)X (2.21)

for an N ×N matrix S∗.
The final approximations we consider start from (2.16) and replace the

integral by a discrete sum. Thus consider

− 1
2π

N−1P
j=1

½
log g(λj; θ) +

I(λj)

g(λj ; θ)

¾
, (2.22)

where λj = 2πj/N . For “standard parameterizations” we can alternatively
consider

−1
2
log θ1 −

1

2Nθ1

N−1P
j=1

I(λj)

g∗(λj; θ
∗)
. (2.23)

These forms correspond to an orthonormal transform of the N × 1 vector X
except that the sums contain only N − 1 terms. Under our stated setting
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of a known (zero) mean for X(n) this is optional and a summand for j = 0
(or equivalently, by periodicity, j = N) can be included in (2.22) and (2.23).
However, the omission of j = 0 allows us to immediately drop the known-
mean assumption. To see this, first consider the previous objective functions
(2.7), (2.10), (2.14), and (2.15)/(2.20). If EX(n) = µ 6= 0 then as presented
these are liable to produce inconsistent estimates of θ, indeed they will be
dominated as N → ∞ by a term depending on µ. Of course this can be
avoided. One can replace X(n) by X(n)− µ in the formulae, and then treat
µ as a parameter to be estimated simultaneously with the remainder. Or,
more simply, one can replace X(n) by X(n) −X, and then adopt precisely
one of the procedures decribed above. With either approach, the asymptotic
properties of estimates, as described subsequently, will be the same relative
to the zero mean case. However, as seen in Section 4 below, X is only
N1−2d-consistent for µ under, for example, (1.1), which entails a slower rate
of convergence than that of the estimates of θ we have been discussing when
d > 0 (as is true also of various other estimates of µ). It might then be
anticipated that the dependence of estimates of θ on X, might impair their
own precision in finite samples. On the other hand, at the frequencies λj,
j = 1, ..., N − 1, the periodogram of X(n)−X is

1

2πN

¯̄̄̄
NP
n=1

¡
X(n)−X

¢
eitλj

¯̄̄̄2
= I(λj), (2.24)

so that mean-correction is automatically incorporated in (2.22) and (2.23)
without explicit dependence onX; note that the missing periodogram I(0) =

(N/2π)X
2
. Monte Carlo evidence of Cheung and Diebold (1994) has demon-

strated that indeed estimates minimizing (2.23) can have superior finite sam-
ple properties to some other of the Whittle estimates we have discussed. In
short range dependent models,X isN

1
2 -consistent and so this apparent finite-

sample advantage of (2.22) and (2.23) over the others disappears, and it is
thus ironic that whereas they have been quite often considered in the short
range dependent literature, the theoretical literature on Whittle estimation
under long range dependence has tended to ignore (2.22), (2.23) and instead
stressed some of the other forms, especially (2.20).
Moreover, (2.22) and (2.23) might also be preferred on grounds of sim-

plicity, and perhaps computational speed. The computation of (2.7), (2.10),
(2.14), (2.16) and (2.21) requires formulae for such quanties as X 0P(θ)−1X,PN

t=1eε(n; θ∗)2, andX 0S(θ)X (see (2.19)) which are available (see e.g. Sowell,
1992) but of rather complex form for the models (2.2) (except in very simple
versions) and (2.4), especially when d > 0. On the other hand, (2.22) and
(2.23) directly depend on g(λj; θ), which is available automatically in case of
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(2.2) and (2.4). So again, (2.22) and (2.23) might seem especially suitable
for important classes of long range dependent models.
Finally, the computation of periodograms at Fourier frequencies λj can be

rapidly carried out by means of the fast Fourier transform. Statistics arising
in the other Whittle estimates, such as sample autocovariances, can also be
computed via the first Fourier transform, but the direct dependence of (2.22)
and (2.23) on the I(λj) appears to give them further advantage, especially
in the long series which seem the most natural context for investigating long
range dependence.
A preference for (2.22) and (2.23) must, however, be tempered by the

lack of any very comprehensive numerical comparison of the various Whittle
estimates. Certainly, all of them are liable to be consistent and have the same
first order limit distribution and properties, the usual basis for statistical
inference, with very similar conditions.
To discuss the asymptotic theory, a convenient starting point is the pa-

per of Hannan (1973), who studied (2.7), (2.21) and (2.23), under (2.3) (see
also Dzhaparidze, 1974). Though various authors had previously worked
on asymptotics for Whittle estimation under short range dependence, Han-
nan’s paper represented a somewhat definitive treatment, and provides some
benchmark for what might be achieved under long range dependence. Indeed,
Hannan’s basic dependence condition for (strong) consistency is ergodicity,
which covers long range dependence. For asymptotic normality of estimates
of θ∗, his regularity conditions explicitly rule out long range dependence,
though in other respects they are noticeably weak, in particular the ε(n)
in (2.9) can be stationary martingale differences with only second moments
existing (so that Gaussianity was not required). The central limit theorem
has form

N
1
2 (bθ∗−θ∗)→d N

⎛⎝0,
⎛⎝ 1

4π

πZ
−π

½
∂

∂θ
log g∗(λ; θ∗)

¾½
∂

∂θ
log g∗(λ; θ∗)

¾
dλ

⎞⎠−1⎞⎠
(2.25)

where bθ∗ is any of the above estimates of θ∗.
Robinson (1978) considered instead (2.22), being concerned with non-

standard parameterizations, and though he again referred only to short range
dependent cases his central limit theorem for the estimates of θ∗ hints at how
a degree of long range dependence might be covered given finite fourth mo-
ments. The reason is that he reduces the problem to a central limit theorem
for sample autocovariances, which, from Hannan (1976), essentially rests on
only square integrability of g(λ), which is satisfied for the models (2.1), (2.2)
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and (2.4), for example, when d < 1
4
. The central limit theorem has the form

N
1
2 (bθ − θ)→d N

¡
0, 2Ω−1 + Ω−1ΞΩ−1

¢
, (2.26)

where

Ω =
1

2π

πZ
−π

µ
∂

∂θ
log g(λ; θ)

¶µ
∂

∂θ
log g(λ; θ)

¶0
dλ, (1)

Ξ =
1

2π

πZ
−π

πZ
−π

f(λ, µ,−µ)
g(λ, θ)g(µ, θ)

µ
∂

∂θ
log g(λ; θ)

¶µ
∂

∂θ
log g(µ; θ)

¶0
dλdu

(2)

where f is the fourth cumulant spectral density of X(n) (vanishing under
Gaussianity) and bθ is the estimate of θ. In order to employ this result in
statistical inference, a consistent estimate of Ω is

1

N

N−1P
j=1

½
∂

∂θ
log g(λj;bθ)¾½ ∂

∂θ
log g(λj;bθ)¾0 , (2.29)

with an analogous expression in case of (2.25). When X(n) is Gaussian,
Ξ = 0, otherwise its consistent estimation was discussed by Taniguchi (1981).
Yajima (1985) explicitly considered the central limit theorem, in this case
d < 1

4
, for the estimates minimizing (2.14) and (2.20) under (2.3), in case of

model (2.2) with a ≡ b ≡ 1 a priori that is

g(λ; θ) =
θ1
2π

¯̄
1− eiλ

¯̄−2θ2
. (2.30)

A major breakthrough, again with respect to the objective function (2.20)
under (2.3) and for Gaussian X(n), was Fox and Taqqu (1986). Their basic
insight was that the vanishing of g∗(λ; θ∗)−1 at λ = 0 in (2.21) compensates
for the blowing up of I(λ) there, so that square integrability is no longer
necessary and any d < 1

2
is permitted. Again under Gaussianity, Dahlhaus

(1989) studied both (2.7) and (2.15), showing that the Cramer-Rao efficiency
bound is still obtained under long range dependence. For the same estimate
as Fox and Taqqu, Giraitis and Surgailis (1990) relaxed Gaussianity of X(n)
to a linear process representation in independent identically distributed in-
novations with finite fourth moments. Subsequent references are Heyde and
Gay (1993), Hosoya (1997), who consider multivariate models and allow mar-
tingale difference innovations and more general models.
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For short range dependent models, Whittle estimates will be asymptoti-
cally normal under a very wide variety of weak dependence conditions even
if these have not all been explicitly studied, for example, various mixing con-
ditions. With long range dependence, however, many situations have arisen,
with a variety of statistics, in which non-normal limit disteibutions arise, due
to forms of nonlinearity and starting with the work of Rosenblatt (1961) (see
Section 4). This is certainly the case withWhittle estimates also ... (Liudas,
please summarize your work here).
While Whittle estimation has dominated the literature on estimating

models with long range dependence, some mention must be made of al-
ternative methods. In the sample model (2.30) Kashyap and Eom (1988)
proposed

bθ2 = −1
2

N−1P
j=1

log
¯̄
1− eiλj

¯̄
log I(λj)

N−1P
j=1

(log |1− eiλj |)2
,

which comes out of logging (2.31), replacing g(λ; θ) by I(λ), and employ-
ing least squares. This estimate is less efficient than Whittle estimates for
(2.30), having relative efficiency 6/π2, but, being defined in closed form, has
some computational advantage over the implicitly-defined Whittle estimate.
Robinson (1994a) extended ( ) to the model (2.4) with p > 1, pointing out
a desirable orthogonality property of the estimates of θ3, ..., θp−1. Recently,
asymptotic theory for such estimates has been given by Moulines and Soulier
(1999), for more general models and GaussianX(n). Though Gaussianity can
doubtless be relaxed, it is unlikely that as neat conditions can be achieved
here as for Whittle estimates, whose basic statistics are quadratic forms
rather than the, mathematically rather inconvenient, weighted averages of
logged periodograms. The main appeal of these parametric log periodogram
estimates is their computational simplicity in case of the model (2.4), but
the greater efficiency of the Whittle estimates can then be achieved by just
one Newton-type step, in terms of Whittle function gradients.
Other estimates have been considered. Define the sample autocovariances

br(j) = 1

N

N−jP
j=1

¡
X(n)−X

¢ ¡
X(n+ j)−X

¢
, 0 ≤ j < N,

and the vector br = (br(0), ..., br(s))0, s < N . Writing r(θ) = (r(0; θ), ..., r(s; θ))0,
we can estimate θ by minimizing

(br − r(θ))0A(br − r(θ)),
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where A is a prescribed (s+ 1)× (s+ 1) matrix. When θ has p = s+ 1 ele-
ments (cf (2.2), (2.4)), ( ) amounts just to the method of moments, solving
the simultaneous equations br(j) = r(j;bθ), j = 0, ..., p − 1. With s > p − 1,
it is a version of what econometricians call ‘generalized method of moments’
and has been explicitly considered by Tieslau, Schmidt and Baillie (1996).
While any s ∈ [p − 1, N − 1] can legitimately be considered, it seems ap-
propriate that s be regarded as increasing with N in long range dependent
models, because intuitively estimation of d should make appropriate use of
as long run information as is available (such a semiparametric version of (
) was mentioned by Robinson (1994a)). Whittle estimates, however, auto-
matically achieve this, and naturally compensate for long memory, and while
it is possible to discuss choices of A in ( ) which can lead to a matching of
Whittle efficiency, in general the limiting variance matrix of the estimates
is relatively cumbersome, involving fourth cumulants even for ‘standard pa-
rameterizations’, while the relatively complicated nature of the r(n; θ) and
dependence on X makes it less attractive than (2.22) and (2.23) on compu-
tational grounds, and possibly finite sample statistical ones. While it may
be that it can sometimes exhibit finite sample superiority over versions of
Whittle it seems hard to see how it might be preferred by a worker who fully
understands the characteristics of Whittle estimation we have described.
We now consider extension to nonstationary processes. Let us look first

at two modified versions of ( ), namely

X(n) = (1− αL)−1ε(n), n ≥ 1
X(n) = (1− L)−dε(n), n ≥ 1,

assuming that
ε(n) = 0, n ≤ 0.

The initial condition ( ) ensures that versions of ( ) and ( ) with α and d in
the ‘nonstationary’ regions |α| ≥ 1 and d ≥ 1

2
are well-defined (though this

would be true of ( ) under a milder condition, such as ε(0) = 0). Even for
“stationary” values of α and d (i.e. |α| < 1 and d < 1

2
), X(n) given by ( )

and ( ) are only “asymptotically stationary”, but our interest here is in the
nonstationary regions of the parameter space. A special case is α = 1, d = 1,
when ( ) and ( ) are identical. It is well known that least squares and other
popular estimates of α have nonstandard limit distributions when α = 1,
while associated test statistics, such as score statistics (as usually defined) for
testing α = 1 have nonstandard null limit distributions. However, Robinson
(1994b) showed that score tests for d = 1 in ( ) have standard (χ2) null limit
distributions, indeed this is the case for all other values of d, stationary and
nonstationary. These different outcomes also appear in more general versions
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of ( ), in particular extending ( ) to (2.5) with d < 1
2
but with b(z; θ) having a

zero on the unit circle, and extending ( ) to (2.5) with d ≥ 1
2
but b(z; θ) having

all zeros outside the unit circle. Likewise, it seems that estimates of d and the
other parameters can have standard asymptotics when d ≥ 1

2
. Beran (1996)

claims this when using the objective function (2.14). Velasco and Robinson
(1999) have considered a version of (2.22) after multiplying {X(n)} by a
data taper. Providing the data taper has sufficient “smoothness” properties
an outcome similar to (2.5) is achieved, for any d ≥ 1

2
, with an extended

definition of the spectrum and multiplying the variance matrix in the limit
distribution by a factor (greater than 1) of the data taper.

3 Estimation of ‘dynamic’ parameters, moti-
vated by non-Gaussianity

It is important to stress that while the central limit theory for Whittle es-
timates is affected at the very most by the addition of a fourth cumulant
term in the limiting variance matrix (see (2.25), (2.26)), when X(n) is linear
but in non-Gaussian, they are not the most efficient approach here. Given
a parametric form f(ε; ν) for the probability density of the ε(n) in (2.9),
(2.12), assumed independent and identically distributed, where ν is a vector
of parameters, likelihood considerations suggest maximizing, for example,

NQ
n=1

f (eε(n; θ); ν) (3.1)

with respect to θ and ν, where the eε(n; θ) are given by (2.13) (cf (2.14)). If f
has been correctly specified one expects the estimates to achieve the asymp-
totic Cramer-Rao bound, which will not be attained by Whittle estimates
if f is not the normal density. Such an approach, incidentally, also allows
one to impose empirically observed phenomena such as asymmetry or long-
tailedness, for example. However, use of (3.1) is not necessarily guaranteed
to produce consistent estimates of θ if f is mis-specified, so that something
of the robustness property of Whittle estimation may be lost.
For some forms of non-Gaussianity that arise in practice, the Whittle esti-

mates of Section 2 are not at all informative. Some time series, such as asset
returns or exchange rates, can exhibit little or no autocorrelation, but can-
not be regarded as independent across time because certain instantaneous
nonlinear functions, such as squares and absolute values, are clearly cor-
related. When the correlations are consistent with short range dependence,
the ARCH(p) and GARCH(p, q) models for “autoregressive conditional het-
eroscedasticity”, see e.g. Engle (1982), or the stochastic volatility models of
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Taylor (1986), may be appropriate, though of course any number of nonlin-
ear models can be designed to give rise to this kind of behaviour. However
empirical evidence can also be suggestive of long range dependence in the
nonlinear functions, and we discuss the parametric modelling and estimation
of this phenomenon.
We first consider extensions of Engle’s (1982) ARCH(p) model. This

emphasizes autocorrelation in squares X(n)2, and starts from the conditional
moment restrictions

E (X(n) |Fn−1 ) = 0 (3)

V (X(n) |Fn−1 ) = σ2n (4)

almost surely, where Fn is the σ-field of events generated by X(m), m ≤ n.
Clearly (3.2) entails EX(n) = 0 (which can be relaxed) but also r(n) = 0, all
n 6= 0. On the other hand, the conditional variance σ2n in (3.3) is a function
of X(n− 1), X(n− 2), ..., in general.
As a prescription for (3.3), consider first

σ2n = σ2 + (1− τ(L))
¡
X(n)2 − σ2

¢
(3.4)

where σ2 = Eσ2n = EX(n)2, under the presumption that X(n) is stationary,
with τ(L) = 1 −

P∞
j=1 τ jL

j. When the weights τ j satisfy τ j = 0, j > p,
we have the ARCH(p) model of Engle (1982), whereas for suitably chosen
exponentially decaying τ j we have the GARCH(p, q) model of Bollerslev
(1986), both of which extail short range dependence. However, rewriting
(3.4) as

τ(L)(X(n)2 − σ2) = X(n)2 − σ2n, (3.5)

the right side is a martingale difference, in view of (3.3) so that, with reference
to (2.2), say, choice of

τ(L) = (1− L)da(L)/b(L) (3.6)

with 0 < d < 1
2
, we might thereby produce squares X(n)2 that have long

range dependent autocorrelation, even though X(n) itself is uncorrelated.
The general set up (3.2) - (3.4), and the special case τ(L) = (1−L)d of (3.6)
(cf (2.30)), was discussed by Robinson (1991) in a hypothesis testing context,
the latter special case also being considered by Ding and Granger (1996).
Giraitis, Kokoszka and Leipus (1999) have considered sufficient conditions
for a stationary solution of (3.5) when (3.2) and (3.3) are satisfied by X(n) =
σnε(n), where σn is the positive square root of σ2n and ε(n) is an independent
identically distributed sequence. Imposing the requirements τ j ≥ 0, for all j,P∞

j=1 τ j < 1, which are sufficient for σ
2
n ≥ 0 for all n, the sufficient conditions
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of Giraitis, Kokoszka and Leipus (1999) do not, however, permit long range
dependent X(n)2. Baillie, Bollerslev and Mikkelsen (1996) modify (3.4) to

σ2n = ω +

µ
1− (1− L)d

a(L)

b(L)

¶
X(n)2 (3.7)

where ω > 0. This again specializes τ(L) in (3.4) but in (3.4) we then have
ω = τ(1)σ2 = 0 for any d > 0, since (1 − L)d = 0 at L = 1. Of course the
requirement ω = 0 in (3.4) is essential for EX(n)2 <∞ when d > 0, so that
Baillie, Bollerslev and Mikkelen (1996) are concerned in (3.7), which they
term a FIGARCH model, with describing series X(n) which are strictly, but
not covariance, stationary.
The short range dependent ARCH literature contains many functional

forms, so that there are other models besides (3.4) that might have the poten-
tial to entail long range dependence in X(n)2 and other functions. Another
case considered by Robinson (1991) was

σ2n =

Ã
1 +

∞P
j=1

τ 2j

!−1Ã
σ +

∞P
j=1

τ jX(n− j)

!2
. (3.8)

This can also be viewed as an extended type of one version of a bilinear
model (see Granger and Andersen, 1978), though not a version that has
been investigated in the bilinear time series literature. Giraitis, Robinson
and Surgailis (1999) consider a reparameterized version of (3.2), (3.3) and
(3.8), with X(n) = σnε(n), where σn is not necessarily the positive square
root of σ2n, but rather the linear-in-X’s square root. Now the constraint
τ j ≥ 0 is not necessary. These authors show that their exist weights rj such
that the processes X(n)c, c ≥ 2, have autocorrelation consistent with long
range dependence.
For estimates of a parameterized σ2n = σ2n(θ) in (3.4) it is convenient to

suppose that X(n) is Gaussian conditional on Fn−1, as often in the short
range dependence literature. Now given X(1), ...,X(N), the σ2n(θ) arising
from the examples (3.4), (3.7) and (3.8) are not computable, so we need to
proxy σ2n(θ) by eσ2n(θ) depending only on X(n− 1), ...,X(1), for example by
taking τ j = 0, j ≥ n. Likelihood considerations then lead to

NP
j=1

½
log eσ2n(θ) + X(n)2eσ2n(θ)

¾
. (3.9)

However, we know of no rigorous asymptotic theory for estimates of θ mini-
mizing (3.9) in the long range dependent circumstances envisaged above.
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There is a model which provides uncorrelated X(n) and X(n)2 with long
range dependent autocorrelations for which asymptotic theory of estimates
has been given. Robinson and Zaffaroni (1997, 1998) consider models includ-
ing

X(n) = η(n)

(
α+

∞P
j=1

τ jε(n− j)

)
(3.10)

where {ε(n)} and {η(n)} are each sequences of independent and identically
distributed random variables, and either η(n) ≡ ε(n), when (3.10) is a nonlin-
ear moving average model, or {ε(n)} and {η(n)} are mutually independent,
when (3.10) can be compared with “two-shock” stochastic volatility models
of Taylor (1986). In either case Robinson and Zaffaroni (1997, 1998) showed
that the τ j can be chosen to provide X(n)2 with long range dependent au-
tocorrelation. Unfortunately, after parameterizing the τ j, approximate max-
imum likelihood estimation, cf (3.9), seems relatively intractable even com-
putationally. Instead Robinson and Zaffaroni (1997, 1998) proposed Whittle
estimation as considered in Section 2 but based on the X(n)2 sequence, hav-
ing derived formula for their spectral density and autocovariances function.
Of course these estimates can never be asymptotically efficient, as Gaussian
X(n)2 is a logical impossibility, but Zaffaroni (1999) has derived a central
limit theorem analogous to (2.26). Harvey (1993) had considered Whittle
estimation for an alternative functional form to (3.10), for the case of {η(n)}
independent of {ε(n)}, and the factor in braces replaced by eα+

P∞
j=1 τjε(n−j)

(cf Taylor, 1986) with certain long range dependent weights τ j, but gave no
asymptotic theory. Whittle estimation based on squares can also be used
in the ARCH-type models discussed above, but again there is currently no
asymptotic theory covering long range dependence.

4 Estimation of ‘static’ parameters

We first pass briefly over the topic of scale estimation, bearing in mind that
Section 2 essentially covered estimation of the variance of uncorrelated inno-
vations in long range dependent models. Here we consider direct estimation
of the variance σ2 = V (X(n)) of a stationary long range dependent series
without necessarily having a parameterization of the dependence structure,
though the parameter θ1 in (2.1) is an example of such a variance. Assuming
first that X(n) has known, zero, mean, we can estimate σ2 by

bσ2 = 1

N

NP
n=1

X(n)2. (4.1)
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For a very wide range of short range dependent X(n), N
1
2 (bσ2−σ2) is asymp-

totically normally distributed. This can still be the case under (1.1) with
0 < d < 1

4
. Taking X(n) to be Gaussian, we then have

n
1
2 (bσ2 − σ2)→d N

µ
0, 2

∞P
n=−∞

r(n)2
¶
= N

µ
0,

4C2

4d− 1

¶
(4.2)

with a fourth cumulant term appearing in case of non-Gaussian X(n) (as-
suming finite fourth moments). For d ≥ 1

4
, however, r(n) is not square

summable, and Rosenblatt (1961) showed that N2d(bσ2 − σ2) converges to
a certain nonnormal, nonstandard distribution, which Taqqu (1975) termed
the ‘Rosenblatt distribution’. A similar result holds for certain more general,
non-Gaussian, X(n), as shown by Taqqu (1975). If EX(n) is unknown, and
instead we estimate σ2 by

bσ2 = 1

N

NP
n=1

¡
X(n)−X

¢2
, (4.3)

then, for 0 < d < 1
4
, (4.2) still holds, but the limit distribution ofN2d(bσ2−σ2)

for d > 1
4
contains an additional term, besides the Rosenblatt one.

In location and regression estimation, a prime interest is efficiency, as-
suming X(n) has finite variance. The estimates of µ = EX(n) of particular
interest in the Gaussian case are the sample mean or ordinary least squares
(OLS) estimate and the generalized least squares (GLS) estimate

eX =
10
P−1X

10
P−1 1

, (4.4)

where 1 is the column vector of N 1’s, and
P
is the N × N matrix with

(m,n)th element r(m−n). In practice
P
will rarely be assumed known, but

if parameterized it can be estimated as described in Section 2.
For short range dependent X(n), in particular when g(λ) is continuous

and positive at λ = 0, then

V (X) ∼ V ( eX) ∼ 2π
n
g(0), as n→∞, (4.5)

so that no efficiency loss is incurred by X (see Grenander, 1954). Under long
range dependence however, this is no longer the case. Nevertheless, available
numerical evidence, in case of the simple model (2.30), is that the asymptotic
efficiency loss of X is very small (see Samarov and Taqqu, 1988). It can be
much greater if X(n) is negative dependent, so d < 0, see Vitale (1973),
Adenstedt (1974).
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Yajima (1988, 1991) considered the more general, linear regression, model

Y (n) = β0Z(n) +X(n), (4.6)

where Z(n) and β are p × 1 vectors. We observe Y (n), Z(n), n = 1, ..., N ,
and because Z(n) can include an intercept we take EX(n) = 0. Yajima
(1988, 1991) treated the Z(n) as deterministic sequences, including the case

Z(n) =
¡
1, n, n2, ..., np−1

¢0
. (4.7)

Again we know, from Grenander (1954), that the OLS and GLS estimates of
β have the same asymptotic variance, in case of (4.7), when g(λ) is contin-
uous and positive at λ = 0. For long range dependent X(n), Yajima (1988,
1991) described the asymptotic variance of OLS and GLS under (4.7) and
more generally, with numerical evidence including how the efficiency of OLS
decreases with p under (4.7). Both estimates are asymptotically normal when
X(n) is a linear long range dependent process (early references being Eicker,
1967, Hannan, 1979), but not necessarily otherwise (see Taqqu, 1975).
(Liudas, please discuss other work for deterministic Z(n).)
When Z(n) is stochastic a rather different theory prevails. Let both

X(n) and Z(n) in (4.6) have long range dependence, and Z(n) to have lag-
n autocorrelation decaying like n2c−1, 0 < c < 1

2
(cf. (1.1)), where for

simplicity we take p = 1. While OLS can still be asymptotically normal
when c + d < 1

2
, it has a non-standard limit distribution for c + d ≥ 1

2
(see

Robinson, 1994a). Robinson and Hidalgo (1997) considered a general class
of estimates which entail, in the frequency domain, a weight function φ(λ)
which is zero at frequency zero and alleviates the possibly strong spectral
poles of X(n), Z(n) at frequency zero. They showed such estimates to be
asymptotically normal. Because GLS corresponds to taking φ(λ) = g(λ)−1

(which included zero at λ = 0 for long range dependent X(n)), we find a
new advantage in GLS beyond the traditional one of improved efficiency.
Robinson and Hidalgo (1997) gave extensions to parametric autocorrelation
in X(n), and nonlinear regression models.
When both X(n) and Z(n) are stationary, they need to be at least un-

correlated in order to avoid asymptotic bias in both OLS and GLS. In econo-
metrics, regression models also arise in which Z(n) is stochastic but non-
stationary, for example having a unit root, and X(n) can be stationary or
nonstationary. In cointegration analysis (see e.g. Engle and Granger, 1987)
we interpret the regression relation (4.6) such that X(n) is short range de-
pendent, or stationary long range dependent, or nonstationary but less so
than Z(n), perhaps using a definition of nonstationary series in the spirit of
( ). There is typically no natural reason to assume uncorrelatedness between
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X(n) and Z(n) here, but fortunately that is unnecessary for consistency of,
for example, OLS, due to the asymptotic dominance of X(n) by Z(n). Nev-
ertheless there is a bias due to the correlation, which can even affect rates
of convergence. After writing OLS as a decomposition of frequency-domain
quantities across the frequencies λj = 2πj/n, Robinson and Marinucci (1997)
found that an estimate based on a possibly arbitrarily slowly increasing num-
ber of such frequencies, nearest to frequency zero, incurs less bias and thereby
has asymptotic properties that are at least as good as, and sometimes better
than OLS, depending on the degrees of dependence of X(n) and Z(n).

5 References

Adenstedt, R. (1974). On large-sample estimation for the mean of a station-
ary random sequence, Annals of Mathematical Statistics, 2, 1095-107.

Arteche, J. and Robinson, P.M. (1999). Seasonal and cyclic long memory.
In Asymptotics, Nonparametrics and Time Series: A Tribute to Madan
Lal Puri (s. Ghosh, ed.). Marcel Dekker, New York, 125-145.

Baillie, R., Bollerslev, T. and Mikkelsen, H. (199 ). Fractionally integrated
autoregressive conditional heteroscedasticity, Journal of Econometrics,
79, 3-30.

Beran, J. (1995). Maximum likelihood estimation of the differencing para-
meter for invertible short- and long-memory ARIMA models, Journal
of the Royal Statistical Society, Series B, 57, 659-672.

Bloomfield, P. (1973). An exponential model for the spectrum of a scalar
time series, Biometrika, 60, 217-26.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedas-
ticity, Journal of Econometrics, 31, 307-327.

Box, G.E.P. and Jenkins, G.M. (1971). Time Series Analysis, Forecasting
and Control. Holden-Day, San Francisco.

Cheung, Y. and Diebold, F. (1994). On maximum likelihood estimation
of the differencing parameter of fractionally integrated noise with un-
known mean. Journal of Econometrics, 62, 301-316.

Dahlhaus, R. (1989). Efficient parameter estimation for self-similar processes,
Annals of Statistics, 17, 1749-66.

20



Dahlhaus, R. (1996). Efficient location and regression estimation for long
range dependent regression models, Annals of Statistics, 23, 1629-1097.

Ding, Z. and Granger, C.W.J. (1996). Modelling volatility persistence of
speculative returns: a new approach, Journal of Econometrics, 73, 185-
215.

Dzhaparidze, K.O. (1974). A new method for estimating spectral parame-
ters of a stationary time series. Theory of Probability and its Applica-
tions, 19, 122-132.

Eicker, F. (1967). Limit theorems for regressions with unequal and depen-
dent errors, Proc. Fifth Berkeley Symp. Math. Statist. Probab., 1,
59-82. Univ. California Press, Berkeley.

Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with esti-
mates of the variance of United Kingdom inflation, Econometrica, 50,
987-1008.

Engle, R.F. and Granger, C.W.J. (1987). Co-integration and error-correction:
representation, estimation and testing. Econometrica, 55, 251-276.

Fox, R. and Taqqu, M.S. (1986). Large-sample properties of parameter es-
timates for strongly dependent stationary Gaussian time series, Annals
of Statistics, 14, 517-32.

Giraitis, L., Koul, H. and Surgailis, D. (1994). Asymptotic normality of re-
gression estimators with long memory errors, Statistics and Probability
Letters.

Giraitis, L. and Koul, H. (1997). Estimation of the dependence parameter in
linear regression with long-range dependent errors. Stochastic Processes
and their Applications, 71, 207-224.

Giraitis, L., Kokoszka, P. and Leipus, R. (1999). Stationary ARCH models:
dependence structure and central limit theorem, Econometric Theory,
forthcoming.

Giraitis, L., Robinson, P.M. and Surgailis, D. (1999). A model for long
memory conditional heteroscedasticity, preprint.

Giraitis, L. and Surgailis, D. (1990). A central limit theorem for quadratic
forms in strongly dependent random variables and its application to
asymptotical normality of Whittle’s estimate, Probability Theory and
Related Fields, 86, 87-104.

21



Granger, L.W.J. and Andersen, A.P. (1978). An Introduction to Bilinear
Time Series Models. Vandenhoek and Rupecht, Gottingen.

Granger, L.W.J. and Joyeux, R. (1980). An introduction to long-memory
time series and fractional differencing. Journal of Time Series Analysis,
1, 15-30.

Grenander, U. (1954). On the estimation of regression coefficients in the
case of autocorrelated disturbance, Annals of Mathematical Statistics,
25, 252-72.

Hannan, E.J. (1973). The asymptotic theory of linear time series models,
Journal of Applied Probability, 10, 130-45.

Hannan, E.J. (1976). The asymptotic distribution of serial covariances,
Annals of Statistics, 4, 396-9.

Hannan, E.J. (1979). The central limit theorem for time series regression,
Stochastic Processes and their Applications, 9, 281-289.

Harvey, A. (1993). Long memory in stochastic volatility, preprint.

Heyde, C. and Gay, G. (1993). Smoothed periodogram asymptotics and
estimation for processes and fields with long-range dependence. Sto-
chastic Processes and their Applications, 45, 169-187.

Hosoya, Y. (1997). Limit theory with long-range dependence and statistical
inference of related models, Annals of Statistics, 25, 105-137.

Kashyap, R.L. and Eom, K.-B. (1988). Estimation in long-memory time
series model, Journal of Time Series Analysis, 9, 35-41.

Koul, H.L. (1992). M-estimators in linear models with long range dependent
errors, Statistics and Probability Letters, 14, 153-164.

Koul, H.L. and Mukherjee, K. (1993). Asymptotics of R-, MD- and LAD
estimators in linear regression models with long range dependent errors,
Probability Theory and Related Fields, 95, 538-553.

Mandelbrot, B.B. and Van Ness, J.W. (1968). Fractional Brownian motions,
fractional noises and applications, SIAM Review, 10, 422-37.

Mandelbrot, B.B. and Wallis, J.R. (1968). Noah, Joseph and operational
hydrology, Water Resources Research, 4, 909-18.

22



Moulines, E. and Soulier, P. (1999). Broad band log-periodogram regres-
sion of time series with long range dependence, Annals of Statistics,
forthcoming.

Robinson, P.M. (1978) Alternative models for stationary stochastic processes,
Stochastic Processes and their Applications, 8, 141-152.

Robinson, P.M. (1991) Testing for strong serial correlation and dynamic
conditional heteroskedasticity in multiple regression, Journal of Econo-
metrics, 47, 67-84.

Robinson, P.M. (1994a). Time series with strong dependence, in Advances
in Econometrics, vol.1 (C.A. Sims, ed.) Cambridge University Press,
Cambridge, 47-95.

Robinson, P.M. (1994b). Efficient tests of nonstationary hypotheses, Jour-
nal of American Statistical Association, 89, 1420-1437.

Robinson, P.M. and Hidalgo, J.F. (1997). Time series regression with long
range dependence, Annals of Statistics, 25, 77-104.

Robinson, P.M. and Zaffaroni, P. (1997). Modelling nonlinearity and long
memory in time series, Fields Institute Communications, 11, 161-170.

Robinson, P.M. and Zaffaroni, P. (1998). Nonlinear time series with long
memory: a model for stochastic volatility, Journal of Statistical Plan-
ning and Inference, 68, 359-371.

Rosenblatt, M. (1961). Independence and dependence, Proceedings of the
4th Berkeley Symposium on Mathematical Statistics and Probability,
Berkeley: University of California Press, 411-43.

Samarov, A. and Taqqu, M.S. (1988). On the efficiency of the sample mean
in long memory noise, Journal of Time Series Analysis, 9, 191-200.

Sowell, F.B. (1992). Maximum likelihood estimation of stationary univari-
ate fractionally integrated time series models. Journal of Econometrics,
53, 165-188.

Taqqu, M. (1975). Weak convergence to fractional Brownian motion and to
the Rosenblatt process, Zeitschrift für Wahrscheinlichkeitstheorie, 31,
287-302.

Taniguchi, M. (1982). On estimation of the integrals of the fourth order
cumulant spectral density, Biometrica, 69, 117-122.

23



Taylor, S.J. (1986). Modelling Financial Time Series, Chichester, UK.

Treslau, M.A., Schmidt, P. and Baillie, R. (1996). A minimum distance
estimator for long memory processes. Journal of Econometrics, 71,
249-264.

Velasco, C. and Robinson, P.M. (1999). Whittle pseudo-maximum likeli-
hood estimation of nonstationary time series, preprint.

Vitale, R.A. (1973). An asymptotically efficient estimate in time series
analysis, Quarterly Journal of Applied Mathematics, 421-40.

Yajima, Y. (1985). On estimation of long-memory time series models, Aus-
tralian Journal of Statistics, 27, 303-20.

Yajima, Y. (1988a). On estimation of a regression model with long-memory
stationary errors, Annals of Statistics, 16, 791-807.

Yajima, (1991). Asymptotic properties of the LSE in a regression model
with long-memory stationary errors, Annals of Statistics, 19, 158-177.

Zaffaroni, P. (1999). Gaussian estimation of long-range dependent volatility
in asset prices, preprint.

24


