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Abstract

Nonparametric methods of estimation of conditional density functions when the di-

mension of the explanatory variable is large are known to su¤er from slow convergence

rates due to the �curse of dimensionality�. When estimating the conditional density of a

random variable Y given random d-vector X , a signi�cant reduction in dimensionality can

be achieved by approximating the conditional density by that of a Y given �TX , where

the unit-vector � is chosen to optimise the approximation under the Kullback-Leibler cri-

terion. The proposed estimation procedure is based on standard kernel methods. Under

strong-mixing conditions, we derive a general asymptotic representation for the orienta-

tion estimator, and as a result, the approximated conditional density is shown to enjoy

the same �rst-order asymptotic properties as it would have if the optimal � was known.

The method is illustrated in a simulation study with nonlinear time series models.
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1 Introduction

Conditional probability density functions play a key role in many statistical appli-

cations, including regression analysis (Yin and Cook 2002), forecasting (Hyndman

1995, Fan and Yao 2003), sensitivity to initial conditions in nonlinear stochastic dy-

namic systems (Yao and Tong 1994, Fan, Yao and Tong 1996), quantiles estimation

(Engle and Manganelli 2004, Wu, Yu and Mitra 2008), and asset pricing (Aït-Sahalia

1999, Engle 2001), among many others. In this paper we consider estimation of the

conditional density fY jX (yjx) of Y given X = x, where Y is a random scalar X is

a random d-vector.

If the conditional density is assumed to be normal, then the estimation of the pre-

dictive density reduces to estimation of the conditional mean and autocovariances.

However, in real life probability densities are often charachterised by asymmetry,

heavy-tails, and even multimodality. Moreover, even for a known parametric model,

the conditional density may be di¢ cult to derive analytically. In such cases, a non-

parametric estimation of the conditional density can be useful. Nonetheless, even

for small dimension of X, d � 2, nonparametric estimators are known to su¤er

from slow convergence rates and unstable performance in practice due to the �curse

of dimensionality�and the �empty space phenomenon�(see Silverman 1986, section

4.5). For this reason, we suggest approximating the conditional density fY jX (yjx)

by fY j�TX
�
yj�Tx

�
, the conditional density of Y given �TX = �Tx, where the orienta-

tion � is a scalar-valued d-vector that minimises the Kullback-Leibler (K-L) relative
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entropy,

E log fY jX (yjx)� E log fY j�TX
�
yj�Tx

�
: (1)

The approximated conditional density fY j�TX
�
yj�Tx

�
is estimated nonparametri-

cally by a kernel estimator. In doing so, our approach provides a low dimensional ap-

proximation of the conditional density which is optimal under the Kullback-Leibler

criterion.

In the popular single-index regression model it is typically assumed that Y =

g
�
�TX

�
+", where g is some link function and " is a noise term such that E ("jX) = 0

(see Ichimura 1993). Our methodology di¤ers from this regression model by aiming

for the most informative projection �TX of X to explain the conditional density

of Y given X, rather than just the conditional mean. However, that is not to say

that the true conditional distribution of Y jX is assumed to be the same as that of

Y j�TX. The method aims to provide the optimal single-index conditional density

approximation possible for a general fY jX (yjx).

The approach of using the K-L relative entropy for estimation of orientation has

been utilised by Delecroix, Härdle and Hristache (2003) in single-index regression,

Yin and Cook (2005) for dimension reduction subspace estimation, and by Fan et

al (2009), who similar to us, dealt with conditional densities. Yin and Cook (2005)

discuss several equivalent presentations of the K-L relative entropy and they show

relations to inverse regression, maximum likelihood and other ideas from information

theory. Our work extends the approaches taken by the above papers in two main
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aspects.

First, by allowing the data to be stationary strong mixing, the suggested method

is shown to be applicable for dependent data, and in particular to the estimation of

predictive densities in high-dimensional time series. As an example, ARMA, GARCH

and stochastic volatility processes were proved to be strong-mixing under some mild

conditions (cf. Pham and Tran 1985, Carrasco and Chen 2002, Davis and Mikosch,

2009), and our method can be applied to these series when the assumption of Gaus-

sianity is not applicable. For a general univariate strong mixing series fztgn+d+k�1t=1 ;

let

yt = Zt+d+k�1; xt = (Zt+d�1; :::; Zt)
T ; t = 1; :::; n:

Then fY j�T x
�
ytj�Txt

�
provides a k-steps ahead conditional density based on the d-

lagged vector xt, which allows generalising standard time series models to possibly

nonlinear or nongaussian processes.

As a second contribution, we derive a general asymptotic representation for the

di¤erence between the orientation estimator b� and the unknown optimal orientation �0
that is equal to a sum of zero-mean asymptotic Gaussian components with

p
n-rate

of convergence and two other, stochastic and deterministic, components. The rep-

resentation holds for kernels of either order two or four, while the asymptotically

dominant terms are determined by the order of kernels in use and the choice of

kernel bandwidths.

Kernels of high-order bene�t from reduced asymptotic bias in the estimation,
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yet they take negative values and thus often produce negative density estimates.

An investigation by Marron and Wand (1992) of higher order kernels for density

estimation concluded that the practical gain from higher order kernels is often absent

or insigni�cant for realistic sample sizes (see also Marron 1992 for graphical insight

into the e¤ectiveness high-order kernels). Our proposed procedure allows estimating

�0 with high-order kernels, while then estimating the conditional density with non-

negative second-order kernels.

We carry out a numerical study to compare the performances of the orientation

estimators obtained with second and fourth order kernels. Our results indicate that

despite having better asymptotic properties, orientation estimators obtained with

fourth-order kernels perform poorly relative to those obtained with only second-

order non-negative kernels. Our conclusion is that the �failure�of high-order kernels

to attain their theoretical bene�t in realistic sample sizes carries through to the

estimation of the orientation.

The outline for the rest of paper is as follows. Section 2 states the model�s general

setting and estimation methodology; Section 3 contains the assumptions and main

theoretical results; and Section 4 presents a Monte-Carlo study with three simulated

time series examples. The proofs of the main theorems are given in Appendix A,

while some other technical lemmas are outlined in Appendix B.
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2 Model and Estimation

Let fyj; xjgnj=1 be strictly stationary strong mixing observations with the same dis-

tribution as (Y;X), where Y is a random scalar and X is a random d-vector. Our

aim is to estimate the conditional density fY j�TX
�
yj�Tx

�
of Y given a random d-

vector �TX=�Tx; where � is a vector in Rd that minimises the K-L relative entropy

(1). Since the �rst term of the K-L relative entropy does not depend on �, min-

imising K-L relative entropy is equivalent to maximising the expected log-likelihood

E log fY j�TX
�
yj�Tx

�
. Clearly, the orientation � is identi�able only with regards to

its direction, and we therefore consider unit-vectors that belong to the compact

parameter space

� =
�
� 2 Rd : �T � = 1; �1 � c > 0

	
;

where �1 is the �rst element of the orientation and c > 0 is arbitrarily small. For

example, if Yt is the k-step ahead observation of a time series and Xt consists of d

lagged values of the series, then the constraint that �1 6= 0 represents the belief that

the k-step ahead observation depends on the most recent observed value.

In order to ensure the uniform convergence of our estimator, we need to restrict

ourselves to a compact subset of the support of Z = (Y;X) such that for any

� 2 � the probability density fY j�TX
�
yj�Tx

�
is well de�ned and bounded away from

0. Denote such a subspace by S, and let also SX =
�
x 2 Rd : 9y s.t. (y; x) 2 S

	
.
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Let �0 be the maximiser of expected log-likelihood conditional on Z 2 S, that is,

�0 = argmax
�2�

ES

�
log fY j�TX

�
Y j�TX

��
; (2)

where ES is the conditional expectation given Z 2 S. Note that the condition Z 2 S

should not have any signi�cant e¤ect on �0 if the subset S is large enough. For ease

of presentation, we shall assume that all observations fyj; xjgnj=1 belong to S.

To estimate �0 one can maximise a sample version of (2). De�ne the orientation

estimator by b� = argmax�2� L(�), where L(�) is the likelihood function
L(�) = 1

n

nP
i=1

log bf�i
Y j�TX

�
yij�Txi

�b��i : (3)

Here, b��i is a trimming term, which is discussed below, and with probability 1 it
is eventually equals to 1 for large enough n. The unknown conditional density is

estimated by a nonparametric kernel estimator

bf�i
Y j�TX

�
yij�Txi

�
=
bf�i
Y;�TX

�
yi; �

Txi
�

bf�i
�TX

�
�Txi

� :

where bfY;�TX �y; �Tx� and bf�TX ��Tx� denote the standard kernel probability density
estimates, whereas the superscript ��i�indicates exclusion of the i0th observation

from the calculation, that is,

bf�i
Y;�TX

�
yi; �

Txi
�
= f(n� 1)hyhxg�1

P
j 6=i

K

�
yj � yi
hy

�
K

�
�T (xj � xi)

hx

�
;

bf�i
�TX

�
�Txi

�
= f(n� 1)hxg�1

P
j 6=i

K

�
�T (xj � xi)

hx

�
;

where hy; hx are bandwidths and K is a �xed, bounded-support, kernel function.
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The trimming term b��i that appears in (3) is introduced to stabilise the �nite-
sample performances of the algorithm. To appreciate the role of this term, observe

that even if observation (yi; xi) belongs to S it may still be the case that the kernel

estimates bf�i
Y;�TX

�
yi; �

Txi
�
, bf�i

�TX

�
�Txi

�
rely on very few neighbouring observations,

or even none, and as a result these estimates may be close to zero and even non-

positive when high-order kernels are used. Including log bf�i
Y j�TX

�
yij�Txi

�
in the

computation of the likelihood function in such cases may have a drastic adverse e¤ect

on the accuracy of the likelihood surface estimates, and it is therefore preferable to

trim such terms. In this paper, we adopted the following simple trimming scheme,

which works very well in practice (For alternative trimming schemes cf. Härdle and

Stoker 1989, Ichimura 1993, Delecroix, Hristache and Patilea 2006, Ichimura and

Todd 2006 and Xia Härdle and Linton 2012). For a given observation (yi; xi) and

� 2 �, let

I in;� =

8>><>>:
1; if min

nbf�i
Y;�TX

�
yi; �

Txi
�
; bf�i
�TX

�
�Txi

�o
> a0n

�c;

0; otherwise,

for some small constants a0; c > 0. As I in;� depends on � it needs to be normalised

to account for the actual number of observations considered in the computation of

L(�), and hence we take

b��i = I in;�
� 1
n

Pn
i=1 I

i
n;�: (4)

We show in appendix B that if c is su¢ ciently small, then b��i eventually equals to
1 for any large enough n with probability 1. Therefore, b��i has no asymptotic e¤ect
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on the method performance.

It is common in single-index regression models, that the kernel�s bandwidths for

orientation estimation are required to undersmooth the nonparametric estimator of

the link function (cf. Hall 1989, p. 583). Our theory indicates that a similar property

arises in single-index conditional density estimation. It is therefore the reason that

a second stage of estimation is utilised when now fY j�TX
�
yj�Tx

�
is estimated with

the already estimated orientation b� and with optimal bandwidths Hy and Hx.

Let the conditional density estimator be obtained with non-negative symmetric

kernels eK with all observations and bandwidths Hy and Hx in place of hy and hx;

ef
Y jb�TX

�
yjb�Tx� = 1

nHyHx

Pn
j=1

eK �yj�y
Hy

� eK �b�T (xj�x)
Hx

�
1

nHx

Pn
j=1

eK �b�T (xj�x)
Hx

� :

The following section presents the asymptotic properties of b� and ef
Y jb�TX

�
yjb�Tx�.

3 Asymptotic Results

We introduce some new notations that will be used throughout the section and in

the proofs. For a function g (�) that possibly also depends on y and x, let rg (�)

and r2g (�) be the vector and matrix of partial derivatives of g (�) with respect to

�, i.e.,

frg (�)gk =
@g (�)

@�k
and

�
r2g (�)

	
k;l
=
@2g (�)

@�k@�l
; k; l 2 f1; :::; dg :
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Denote now Z = (X; Y ) and

	(�) = ES

h
r log fY j�TX

�
Y j�TX

�
r log fY j�TX

�
Y j�TX

�Ti
;


 (�) = ES

h
�r2 log fY j�TX

�
Y j�TX

�i
:

where ES is the conditional expectation given Z 2 S. For some small � > 0, de�ne

also the set S� distant no further than � > 0 from some
�
y; �Tx

�
such that (y; x) 2 S

and � 2 �.

The following assumptions are required to obtain the asymptotic results for the

orientation estimator b�.
(A1) (Y;X) 2 Rd+1 is strong mixing with mixing coe¢ cients that satisfy �t �

At��1 with 0 < A < 1 and �1 > 3, and X 2 Rd is strictly stationary and strong

mixing with �t � Bt��2 with 0 < B <1 and �2 > 2:

(A2)K (�) is a symmetric, compactly supported, boundedly di¤erentiable kernel.

(A3) The bandwidths satisfy hy; hx = o(1) and lnn
n�1hyhx

= o(1) with �1 = (�1 �

3)=(�1 + 1) and
lnn
n�2hx

= o(1) with �2 = (�2 � 2)=(�2 + 2):

(A4) For all � 2 �;
�
Y; �TX

�
has probability density fY;�TX (y; t) with re-

spect to Lebesgue measure on S� and inf(y;t)2S� fY;�TX (y; t) > 0. fY;�TX (y; t) and

E
�
XjY = y; �TX = t

�
and E

�
XXT jY = y; �TX = t

�
are twice continuously di¤er-

entiable with respect to (y; t) 2 S�. Moreover, there is some j� such that for all j > j�

and
�
Y1; �

TX1

�
;
�
Yj; �

TXj

�
2 S� the joint probability density of

�
Y1; �

TX1; Yj; �
TXj

�
is bounded.

(A5) For the trimming operator, we require that a0; c > 0 and nc
�
h2y + h2x

�
=
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o (1) and n1�2chyhx !1.

(A6) For all � 2 �; ES
�
log fY j�TX

�
is �nite and it has a unique global maximum

�0 that lies in the interior of �.

We further require that K (�) is either a second-order or a fourth-order kernel

function, such that

Z
ujK (u) du = 0 for j = 1; :::; p� 1; and

Z
upK (u) du 6= 0;

for p = 2 or p = 4. We then make the following assumptions.

(A7) K (�) is p�th-order kernel with p = 2 or p = 4, and it is three times

boundedly di¤erentiable.

(A8) The bandwidths hy; hx satisfy n2��hyh5x !1 for some � > 0.

(A9) fY;�TX (y; t) and E
�
XjY = y; �TX = t

�
and E

�
XXT jY = y; �TX = t

�
are

(2 + p)-times continuously di¤erentiable with respect to (y; t) 2 S�:

(A10) w
 (�0)wT > 0 for any non-zero d-vector w ? �0.

Conditions (A1)-(A6) are needed for uniform consistency of the log-likelihood

function on �� S, and therefore for consistency of b�. In particular, condition (A1)
allows the data to come from a strong mixing process. For many common time series

processes (e.g. ARMA, GARCH), the mixing coe¢ cients decay exponentially and

�1 and �2 can be taken as +1. Condition (A2) requires that K (�) is symmetric

and therefore it is of second-order at the least. Condition (A3) on the bandwidths is

needed to obtain uniform convergence of the kernel density estimators. In condition

(A4), the bound on the joint probability density of
�
�TX1; Y1; �

TXj; Yj
�
may not hold
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for j � j�, which allows components of X1 and Xj to overlap for some small j�s, as

in the case where Xt consists of multiple lags of Yt. Condition (A5) for the trimming

operator terms is derived from Lemma 8 in the appendix. (A6) is an identi�ability

requirement for �0. Conditions (A7)-(A9) are stronger versions of (A2)-(A4) and are

needed for the derivation of the rate of consistency of b�. Condition (A8) discusses
rate of decay for the bandwidths. It implies together with condition (A3) that the

exponent for the mixing coe¢ cients in (A1) cannot decay too slowly. For example,

if both bandwidths hy; hx are taken to be proportional to n�;  > 0; then by (A3)

and (A8)  must satisfy

0 <  < min

�
1=3;

�1 � 3
2(�1 + 1)

;
�2 � 2
�2 + 2

�
:

Finally, condition (A10) is a standard requirement (see Hall and Yao 2005).

We now turn to state the main theorems of the paper, proved in appendix A.

The following theorem shows the consistency of b�:
Theorem 1 Let (A1)-(A6) hold. Then as n!1

b� !p �0:

As an implication of Theorem 1 and the fact that both �0 and b� are unit-vectors,
it follows from a simple geometric argument that the di¤erence b� � �0 can be ap-
proximated up to �rst-order asymptotics by b�?, the projection of b� into the plane
orthogonal to �0, i.e.,

b� � �0 = b�? + op

�b� � �0� .
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Since fY j�TX
�
Y j�TX

�
depends only on the direction of �, then for any vector � 2 Rd

we get that both vector r log fY j�TX
�
Y j�TX

�
and the column (row) space spanned

by matrix r2 log fY j�TX
�
yj�Tx

�
are perpendicular to �. Indeed, this can also be

seen directly from Lemma 4 in appendix B. Note, however, that by (A10) there is a

generalised inverse of 
 (�0), denoted 
 (�0)
�, that is well de�ned in the perpendic-

ular space to �0. Let now V (�0) = 
 (�0)
�	(�0) 
 (�0)

�. The next theorem gives

a general second-order asymptotic representation for b� � �0.
Theorem 2 Let (A1)-(A10) hold. Then

b� � �0 = n�1=2V (�0)
1=2 Z +Op

�
n2��hyh

3
x

��1=2
+O(hpy + hpx);

where Z is asymptotically normal N (0; I) random d-vector and � > 0 arbitrarily

small.

It is clear from this theorem that for b� to be pn-consistent estimator of �0, one
needs �

n2��hyh
3
x

��1=2 � n�1=2 and hpy + hpx � n�1=2: (5)

However, it is easy to see that both conditions cannot be satis�ed if p = 2, and

hence the
p
n-convergence rate is not achieved in that case (cf. Remark 2 of Fan et

al 2009), although the convergence rate can still become arbitrarily close to
p
n. By

increasing the order of the kernel to p = 4, the condition (5) can be ful�lled under

hy; hx � n�1=8 and hyh3x � n��1, and if the two last inequalities are strict, then the

Theorem implies asymptotic normality of the estimate.
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The asymptotic expression given by Theorem 2 at the limit � ! 0 suggests that

the optimal bandwidths hy and hx have both the asymptotic rate n�1=(p+2), where p is

the kernel�s order. Taking p = 2, for example, we have that the optimal bandwidths

are of asymptotic order n�1=4. This optimal rate re�ects undersmoothing of the

kernel estimator, which is a typical requirement in many single-index models.

Under appropriate choice of bandwidths, b� can converge fast enough to �0 so
that ef

Y jb�TX
�
yjb�Tx� estimates fY j�T0 X �yj�T0 x� with the same �rst-order asymptotic

properties as if �0 was known. The Theorem below formalises this idea.

Theorem 3 Let (A1)-(A10) hold and HyHx=hyh
3
x = o

�
n1��

�
for some � > 0 and

HyHx

�
h2py + h2px

�
= o (n�1). In addition let eK be a symmetric, compactly supported,

boundedly di¤erentiable kernel, and Hy; Hx = O
�
n�1=6

�
and lnn

nHyHx
= o (1) : Then

for any � > 0;

sup
(y;x)2S

��� ef
Y jb�TX

�
yjb�Tx�� fY j�T0 X �yj�T0 x���� = Op

 �
lnn

nHyHx

�1=2!
:

4 Implementation and Simulations

In this section, we discuss implementation of the proposed method and we examine

its �nite-sample properties over few simulated time series models.

In all of the simulations we used the three-time di¤erentiable and IMSE optimal

kernels with support (�1; 1), derived by Müller (1984) and speci�ed below. The

second-order Müller�s kernel, also known as the Triweight kernel, is given for u 2
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(�1; 1) by

K(u) = 35=32 �
�
1� 3u2 + 3u4 � u6

�
; (6)

and the fourth-order Müller�s kernel is given for u 2 (�1; 1) by

K(u) = 315=512 �
�
3� 20u2 + 42u4 � 36u6 + 11u8

�
:

For the estimation of the conditional density ef
Y jb�TX

�
yjb�Tx� we use only the non-

negative Triweight kernel.

In order to facilitate the implementation, we standardised xj = (xj1; :::; xjd) by

setting xj  S�1x (xj � x) and we standardised yj by setting yj  (yj � y) =sy,

where x and y are the vector and scalar sample means of fxjgnj=1 and fyjg
n
j=1 ;

and S2x and s2y are the d � d-matrix and the scalar sample variances. Once the

two-stage estimation procedure was complete, the estimates of the orientation and

the conditional density were transformed back to the original coordinates by setting

b�  S�1x
b�=S�1x b� and efY jb�TX �yjb�Tx� ef

Y jb�TX
�
yjb�Tx� =sy.

We now provide a brief discussion on the topic of bandwidths selection. Typical

bandwidths selection methods proposed in the literature of single-index models usu-

ally su¤er from heavy computational burden (cf. Xia, Tong, Li 1999, Härdle, Hall,

and Ichimura 1993, Hall and Yao 2005). Such burden may be particularly noticeable

in models like ours, where the estimation requires solving a numerical multivariate

optimisation problem. In practice, however, various prior numerical studies that

we carried out with di¤erent selection rules for hy and hx demonstrated that the

orientation estimator is very robust to the choice of bandwidths as long as the band-
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widths are not too small. Motivated by the single-index regression algorithm of Xia,

Härdle, Linton (2012), we propose the following iterative procedure that successfully

reconciles e¤ective bandwidth selection with fast and robust numerical optimisation.

Step 0. Let b�0 2 � be any initial guess for �0, for example b�0 = (1; 0; :::; 0). Set
also a �nite sequences of decreasing bandwidths h�y = h�x = a�n�1=(p+2); � = 1; :::; T ,

where p is the kernel-order and fa�g > 0 is a decreasing sequence such that the

�rst bandwidths notably oversmooth the unconditional density and the last one is

chosen, e.g., by Scott�s (1992) normal reference rule. In our simulations, we used�
a1; a2; :::; aT

�
= (9; 8; :::; 3), which yields good results. Set the iteration number

� = 1.

Step 1. Apply a multivariate variant of the Newton-Raphson method with

starting point b���1 to �nd a maximum log-likelihood estimate b�� numerically based
on bandwidths h�y and h

�
x (e.g. use the Broyden-Fletcher-Goldfarb-Shanno BFGS

method).

Step 2. Stop the procedure and use the estimate b� = b�� either if � = T or if a

certain convergence criterion is met, i.e. if
�b���T b���1 > 1� " for some small " > 0.

Otherwise, set �  � + 1 and h�y = h�x = a�n�1=(p+2), and return to Step 1.

Note that since h1y = h1x = 9n
�1=(p+2) are chosen to oversmooth the conditional

density in the �rst iteration of estimation, the corresponding likelihood surface is

thus oversmoothed as well, and the optimisation algorithm is insensitive to the

choice of b�0. On the other hand, if we simply use one step of maximization with
16



only hy = hx = 3n�1=(p+2), then the algorithm is very likely to converge to some

local maximum, depending on the starting point b�0 provided.
For the second stage estimator of the conditional density, ef

Y jb�TX
�
yjb�Tx�, we

used Scott�s (1992) normal reference rule for bandwidth selection, which suggests

using bandwidths given by Hy = Hx = an�1=6, where for Triweight kernel (6) a � 3.

In all of our simulations, we used all observations in both stages of the estimation,

but we set b��i to trim down only observations whose density estimates were non-

positive.

The performances of the proposed methods are demonstrated in the following

three examples of simulated time series models.

Example 1. As a �rst example, we consider the linear AR(4) model

yt = 0:5 �
X4

j=1
�0;jyt�j + 0:5 � "t;

where �T0 � (�0;1; ::; �0;4) = (3; 2; 0;�1) =
p
14 and "t are i.i.d. N (0; 1).

Example 2. In the next example we consider the nonlinear AR(4) model

yt = g
�X4

j=1
�0;jyt�j

�
+ 0:5 � "t;

where g (u) = exp ((0:4� 2u2)u), �T0 � (�0;1; ::; �0;4) = (1; 2;�1; 0) =
p
6, and the

"t are as in Example 1.

Example 3. Finally we would like to examine how the method works where the

optimal projection �T0X is related to higher moments of X. For the third example,
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Table 1: Mean and Standard error (in brackets) of the inner product b�T �0.
k:order n = 100 n = 200 n = 400 n = 800

Example 1

p = 2 0.9241 (0.0776) 0.9630 (0.0312) 0.9758 (0.0258) 0.9864 (0.0182)

p = 4 0.8958 (0.1026) 0.8962 (0.0949) 0.8953 (0.0799) 0.9113 (0.0529)

Example 2

p = 2 0.8867 (0.2193) 0.9632 (0.1325) 0.9809 (0.1043) 0.9936 (0.0654)

p = 4 0.7114 (0.2617) 0.7203 (0.2969) 0.7122 (0.2970) 0.7439 (0.3154)

Example 3

p = 2 0.6412 (0.2864) 0.7374 (0.2636) 0.8703 (0.1689) 0.9301 (0.0961)

p = 4 0.6858 (0.2757) 0.8131 (0.2201) 0.8914 (0.1534) 0.9195 (0.0975 )

we consider the nonlinear ARCH(4) model

yt = g
�X4

j=1
�0;jyt�j

�
� "t;

where g (u) = 0:5
p
1 + u2

:
. Here, �0;j = exp (�j) =

qP4
k=1 exp (�2k), j = 1; :::; 4; and

the "t are as in the previous examples.

All the three models can easily be veri�ed to be geometrically ergodic by either

Theorem 3.1 or Theorem 3.2 of An and Huang (1996), and hence they are strictly

stationary and strong mixing with exponential decaying rates (see Fan and Yao 2003,

p. 70). In all examples, our goal was to estimate the optimal orientation �0 and the

single-index predictive density fY j�T x
�
ytj�Txt

�
of yt given the lagged observations

18



xt = (yt�1; yt�2; yt�3; yt�4). For each model 200 replications were generated with

sample sizes n = 100; 200; 400 and 800, and we implemented the method to produce

the corresponding estimates b� and ef
Y jb�TX

�
yjb�Tx�.

Table 1 presents the average and standard error (over 200 replications) of the

inner products
���b�T �0��� obtained for the three models with di¤erent sample sizes.

Note that since b� and �0 are unit vectors, ���b�T �0��� is just jcos�j, where � is the angle
between b� and �0. Therefore the closer ���b�T �0��� is to 1, the more accurate the estimate
b�.

As a general conclusion from Table 1, we can see that the orientation estimates

become more accurate as the sample size increases, although the rate of improvement

is not as fast as suggested by the theoretical asymptotic results. Two exceptions

appear for the fourth order kernel in Examples 1 and 2, where the average accuracy

of the estimates did not improve between n = 200 and n = 400. For both Examples 1

and 2, the fourth-order kernel yields consistently much inferior estimates with higher

standard errors in comparison to the second-order kernel. We therefore attribute

these two exceptions to sample �uctuations.

Comparing between the accuracy of the orientation estimates across the three

di¤erent models, one can see that the method seems to be less accurate for the

nonlinear models, and in particular for the nonlinear ARCH model with relatively

small sample sizes (n = 100 or 200). However, when the number of observations is

increased to 800, the average of the inner product
���b�T �0��� is consistently higher than
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0:9 for all of the models with second-order kernels, and two out of the three models

with fourth-order kernels.

The generally better performances of the second-order kernels compared with

the fourth-order kernels in terms of the accuracy of the corresponding orientation

estimates are particularly striking in Examples 1 and 2. In Example 3, on the other

hand, the fourth-order kernel yields some more accurate estimates for �0 with sample

sizes n = 100; 200 or 400. However, when the sample size is increased to n = 800

the accuracy of the second-order kernels �catches up�with that of the fourth-order

kernels. An extensive investigation performed by Marron and Wand (1992) of the

e¤ectiveness of high-order kernels in nonparametric density estimation provides an

explanation for this discrepancy between theory and practice as it shows that it

may take extremely large sample sizes (with a typical order of magnitude of few

thousands and up to hundreds of thousands) for the asymptotic dominant e¤ect

to begin to be realised, and for the high-order kernels to produce more accurate

estimates. In particular, Marron and Wand (1992) conclude that high-order kernels

are not recommended in practice for kernels density estimation with realistic sample

sizes.

In order to assess the accuracy of the conditional density estimator, ef
Y jb�TX

�
yjb�Tx� ;

we used the sample Root Mean Square Percentage Error (RMSPE),

RMSPE =
nP
i=1

h ef
Y jb�TX

�
yijb�Txi�� fY jX (yijxi)i2� nP

i=1

fY jX (yijxi)2 ;

where fY jX (yijxi) is the real conditional density of the model. The average and

20



Table 2: Mean and standard error (in brackets) of the sample RMSPE.

k:order n = 100 n = 200 n = 400 n = 800

Example 1

p = 2 0.0460 (0.0201) 0.0327 (0.0117) 0.0245 (0.0097) 0.0167 (0.0055)

p = 4 0.0497 (0.0213) 0.0415 (0.0156) 0.0363 (0.0130) 0.0289 (0.0102)

Example 2

p = 2 0.0756 (0.0333) 0.0511 (0.0205) 0.0370 (0.0167) 0.0272 (0.0086)

p = 4 0.1050 (0.0355) 0.0939 (0.0376) 0.0866 (0.0413) 0.0722 (0.0453)

Example 3

p = 2 0.0712 (0.0271) 0.0500 (0.0172) 0.0374 (0.0148) 0.0276 (0.0100)

p = 4 0.0626 (0.0241) 0.0455 (0.0165) 0.0347 (0.0135) 0.0256 (0.0093)

standard error (over 200 replications) of the sample RMSPE are given in Table 2.

Here, we see that the estimation error given by the sample RMSPE consistently

decreases as the sample size increases for all the simulation settings. Observe that

although the average accuracy of the orientation estimates did not improve in Ex-

amples 1 and 2 between n = 200 and n = 400, the approximated conditional density

obtained at the second stage is more accurate on average for the larger sample size

n = 400. Finally, as a consequence of the orientation estimation performances, we

see that in Examples 1 and 2 the conditional density estimates obtained by us-

ing second-order kernels (at the �rst-stage of the estimation) outperforms the ones
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obtained with fourth-order kernels. In Example 3, however, the estimates corre-

sponding to fourth-order kernels are slightly more accurate on average.

5 Appendix A - Proofs of the Theorems

Proof of Theorem 1. By (A6) it is su¢ cient to prove that

sup
�2�

����L (�)� ES �log fY j�TX �yj�Tx������ = op (1) : (7)

By Lemma 8 we can ignore the trimming-terms, i.e. set b��i � 1, in the sense of

almost sure consistency. Since fY;�TX
�
y; �Tx

�
; f�TX

�
�Tx

�
are bounded from below

by " > 0 on �� S and �� SX , by Lemma 5 and the continuous mapping theorem

we get with zj = (yj; xj) ;

sup
�2�

���� 1n nP
i=1

log bf�i
Y j�TX

�
yij�Txi

�
� 1
n

nP
i=1

log fY j�TX
�
yij�Txi

�����
� max

1�i�n
sup
�2�

���log bf�i
Y;�TX

�
yi; �

Txi
�
� log fY;�TX

�
yi; �

Txi
����

+ max
1�i�n

sup
�2�

���log bf�i
�TX

�
�Txi

�
� log f�TX

�
�Txi

����
� sup

�2�;z2S

���log bfY;�TX �y; �Tx�� log fY;�TX �y; �Tx����
+ sup
�2�;x2SX

���log bf�TX ��Tx�� log f�TX ��Tx����+ o (1)

= op (1) : (8)

Next, the series log fY j�TX
�
yij�Txi

�
is itself strong mixing with �t = O (t��1) (see,

for instance, White 1984). By the ergodic theory we get for any � 2 ������ 1n nP
i=1

log fY j�TX
�
yij�Txi

�
� ES

�
log fY j�TX

�
yj�Tx

�������! 0 a:s: (9)
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By smoothness condition (A4) we have that for any " > 0 there exists a positive

constant � > 0 such that for any (�1; y; x) 2 �� S and � 2 U� (�1), a �-ball with

centre at �1, ���log fY j�TX �yj�Tx�� log fY j�TX �yj�T1 x���� < ":

As a result, we have

sup
�2U�(�1)

����� 1n nP
i=1

log fY j�TX
�
yij�Txi

�
� ES

�
log fY j�TX

�
yj�Tx

�������
= 2"+

����� 1n nP
i=1

log fY j�TX
�
yij�T1 xi

�
� ES

�
log fY j�TX

�
yj�T1 x

������� : (10)

Note also that since is � compact, it is possible to construct a �nite open covering

of � by �-balls U� (�k) , k = 1; :::; K. Thus, using (10) we have that for any " > 0

P

�
sup
�2�

���� 1n nP
i=1

log bf�i
Y j�TX

�
yij�Txi

�
� ES

�
log fY j�TX

�
yj�Tx

������ > 4"�
� P

�
sup
�2�

����� 1n nP
i=1

log bf�i
Y j�TX

�
yij�Txi

�
� 1
n

nP
i=1

log fY j�TX
�
yij�Txi

������ > "

�
+K max

k=1;:::;K
P

 
sup

�2U�(�k)

����� 1n nP
i=1

log fY j�TX
�
yij�Txi

�
� ES

�
log fY j�TX

�
yj�Tx

������� > 3"
!

� P

�
sup
�2�

����� 1n nP
i=1

log bf�i
Y j�TX

�
yij�Txi

�
� 1
n

nP
i=1

log fY j�TX
�
yij�Txi

������ > "

�
+K max

k=1;:::;K
P

������ 1n nP
i=1

log fY j�TX
�
yij�Tk xi

�
� ES

�
log fY j�TX

�
yj�Tk x

������� > "

�

Results (8), (9) imply that the last expression approaches zero as n ! 1, i.e., (7)

is proved. �

Proof of Theorem 2. Since �0 lies in the interior of � and b� converges in
probability to �0, then rL

�b�� = op (1). By an application of the mean value

theorem it is su¢ cient to prove the following assertions.
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(a) rL (�0) = n�1=2	(�0)
1=2 Z + Op

�
n2��hyh

3
x

��1=2
+ O(hpy + hpx) for some

� > 0,

(b) � !p �0 implies r2L
�
�
�
!p �
 (�0) :

Denote rL (�0) and r2L (�) as the versions of rL (�0) and r2L (�) when con-

ditional density estimates are replaced by the true conditional densities, that is,

rkL (�0) = n�1
nP
i=1

rk log fY;�T0 X
�
yij�T0 xi

�
;

for k = 1; 2. By the central limit theorem (CLT) for �-mixing processes (cf. Fan

and Yao 2003, Theorem 2.21),

n1=2rL (�0)!d N (0;	(�0)) ;

and with smoothness condition (A9), it follows from � !p �0 that

r2L
�
�
�
+ 
(�0) = op (1) :

We therefore get that assertions (a) and (b) will be established if we show the

following two assertions.

(a�) rL (�0) � rL (�0) = Op
�
n2��hyh

3
x

��1=2
+ O(hpy + hpx) for some � > 0,

and

(b�) sup�2U�(�0)
��r2L (�)�r2L (�)�� = op (1), where U� (�0) is an arbitrarily

small neighborhood of �0.

We can simplify the new assertions (a�) and (b�) somewhat further. Setting

b��i � 1 by Lemma 8, we have
rL (�0) = n�1

nP
i=1

0@r bf�iY;�T0 X �yi; �T0 xi�bf�i
Y;�T0 X

�
yi; �

T
0 xi
� � r bf�i�T0 X

�
�T0 xi

�
bf�i
�T0 X

�
�T0 xi

�
1A ;
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and

r2L (�) = n�1
nP
i=1

0@r2 bf�iY;�TX �yi; �T0 xi�bf�i
Y;�TX

�
yi; �

T
0 xi
� � r2 bf�i�TX ��Txi�bf�i

�TX

�
�Txi

�
1A

�n�1
nP
i=1

0@r bf�iY;�TX �yi; �T0 xi�r bf�iY;�TX �yi; �Txi�Tbf�i
Y;�TX

�
yi; �

T
0 xi
�2 �

r bf�i
�TX

�
�Txi

�
r bf�i

�TX

�
�Txi

�T
bf�i
�TX

�
�Txi

�2
1A :

Recalling that n2��hyh5x = o(1), assertions (a�) and (b�) will follow if we prove the

following six assertions. For some � > 0,

(a�)(i) n�1
nP
i=1

 
r bf�i

�T0 X
(�T0 xi)bf�i

�T0 X
(�T0 xi)

�
rf

�T0 X
(�T0 xi)

f
�T0 X
(�T0 xi)

!
= Op

�
n2��h3x

��1=2
+O(hpx);

(a�)(ii) n�1
nP
i=1

 
r bf�i

Y;�T0 X
(yi;�T0 xi)bf�i

Y;�T0 X
(yi;�T0 xi)

�
rf

Y;�T0 X
(yi;�T0 xi)

f
Y;�T0 X

(yi;�T0 xi)

!
= Op

�
n2��hyh

3
x

��1=2
+O(hpy + hpx):

In addition, uniformly on a small neighborhood of �0,

(b�)(i) n�1
nP
i=1

�
r2 bf�i

�T X
(�T xi)bf�i

�T X
(�T xi)

� r2f
�TX(�

T xi)
f
�TX(�

T xi)

�
= Op

�
n2��h5x

��1=2
+O(hpx);

(b�)(ii) n�1
nP
i=1

�
r2 bf�i

Y;�T X
(yi;�T0 xi)bf�i

Y;�T X
(yi;�T0 xi)

� r2f
Y;�TX(yi;�

T
0 xi)

f
Y;�TX(yi;�

T
0 xi)

�
= Op

�
n2��hyh

5
x

��1=2
+O(hpy + hpx);

(b�)(iii) n�1
nP
i=1

�
r bf�i

�T X
(�T xi)r bf�i

�T X
(�T xi)

T

bf�i
�T X
(�T xi)

2 � rf
�TX(�

T xi)rf�TX(�
T xi)

T

f
�TX(�

T xi)
2

�
= Op

�
n2��h3x

��1=2
+O(hpx);

(b�)(iv) n�1
nP
i=1

 
r bf�i

Y;�T X
(yi;�T0 xi)r bf�iY;�T X(yi;�T xi)Tbf�i

Y;�T X
(yi;�T0 xi)

2 � rf
Y;�TX(yi;�

T
0 xi)rfY;�TX(yi;�

T xi)
T

f
Y;�TX(yi;�

T xi)
2

!
= Op

�
n2��hyh

3
x

��1=2
+O(hpy + hpx);

The proofs of (a�)(i)-(ii) and (b�)(i)-(iv) are long and tedious. However, they are

all proved similarly with the theory for U-statistics given in Lemma 7. For the sake
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of brevity, we shall focus here on proving (a�)(i), while the rest of the assertions

follow by the same line of arguments. The uniformity of arguments (b�)(i)-(iv) is

achieved from the regularity conditions on the kernel and the density functions. Note

also that the proof of assertion (a�)(i) involves handling some third-order U-statistic

remainder terms that are similar to the terms in assertion (b�)(iii)-(iv).

In the following, whenever confusion does not occur we denote f�TX � f�TX
�
�T0 xi

�
and bf�i

�TX
� bf�i

Y;�TX

�
�T0 xi

�
for some xi 2 SX . We now have by the mean-value theo-

rem with
��f �T x � f�T x�� < ��� bf�i�TX � f�T x���,

1bf�i
�TX

� 1

f�T0 X
= � 1�

f�T0 X

�2 � bf�i�TX � f�T0 X�+ 2�
f �T0 X

�3 � bf�i�TX � f�T0 X�2 : (11)

We then obtain

r bf�i
�TXbf�i
�TX

=
r bf�i

�TX

f�T0 X
+

"
1bf�i
�TX

� 1

f�T0 X

# h
rfY;�T0 X +

�
r bf�i

�TX
�rfY;�T0 X

�i

=
rf�T0 X
f�T0 X

+

0B@r bf�i�TX
f�T0 X

�
bf�i
�TX
rfY;�T0 X�
f�T0 X

�2
1CA�

� bf�i
�TX
� f�T0 X

��
r bf�i

�TX
�rf�T0 X

�
�
fY;�T0 X

�2
+
2rf�T0 X

� bf�i
�TX
� f�T0 X

�2
�
f �T0 X

�3 +
2
�
r bf�i

�TX
�rf�T0 X

�� bf�i
�TX
� f�T0 X

�2
�
f �T0 X

�3 :

Thus,

1

n

nP
i=1

r bf�i
�TXbf�i
�TX

=
1

n

nP
i=1

rf�T0 X
f�T0 X

+ U
(A)
�0
� U (B)�0

�R1 +R2 +R3; (12)

where

U
(A)
� =

1

n (n� 1)
nP
i=1

P
j 6=i

�
(A)
� (xi; xj) ; U

(B)
� =

1

n (n� 1)
nP
i=1

P
j 6=i

&
(B)
� (xi; xj) ;
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are second order Rd-vector U-statistics with arguments

&
(A)
� (xi; xj) =

1

h2x

1

f�TX
�
�Txi

� (xj � xi)K 0
�
�T (xj � xi)

hx

�
� 1

hx

rf�TX
�
�Txi

�
f 2
�TX

�
�Txi

� K ��T (xj � xi)
hx

�
;

&
(B)
� (xi; xj) =

1

h3x

Z �
xj � E

�
Xj�TX = t

��
K

�
�Txi � t
hx

�
K 0
�
�Txj � t
hx

�
f (t)�1 dt

�E
�
r log f�TX

�
�TX

�
j�TX = �Txi

�
� E

�
r log f�TX

�
�TX

�
j�TX = �Txj

�
+E

�
r log f�TX

�
�TX

��
:

Note that U (B)� was added to (12) simply to make R1 a degenerate U-statistic. Now,

R1; R2; R3 are the high-order remainder terms,

R1 =
1

n

nP
i=1

� bf�i
�TX
� f�T0 X

��
r bf�i

�TX
�rf�T0 X

�
�
fY;�T0 X

�2 � U (B)�0
;

R2 =
1

n

nP
i=1

2rf�T0 X
� bf�i

�TX
� f�T0 X

�2
�
f �T0 X

�3 ;

R3 =
1

n

nP
i=1

2
�
r bf�i

�TX
�rf�T0 X

�� bf�i
�TX
� f�T0 X

�2
�
f �T0 X

�3 :

We now handle the terms in the expansion (12) and we prove that for � > 0 an

arbitrarily small constant

U
(A)
�0
; U

(B)
�0

= Op
�
n2��h3x

��1=2
+O (hpx) ; (13)

and

R1; R2; R3 = op

��
n2��h3x

��1=2�
+O (hpx) : (14)

The asymptotic bounds (13) are derived with Lemma 7. Consider �rst U (A)�0
. Write
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U
(A)
�0

as

U
(A)
� =

2

n (n� 1)
P

1�i<j�n

1

2

�
&
(A)
� (xi; xj) + &

(A)
� (xj; xi)

�
� 2

n (n� 1)
P

1�i<j�n
�
(A)
� (xi; xj) :

We also show now that U (A)� is a degenerate U-statistic up to a O(hpx) term. Let

Z
(1)
� (xi; xj) =

1

hx
f�TX

�
�Txi

��1
K

�
�T (xj � xi)

hx

�
;

Z
(2)
� (xi; xj) =

1

h2x
f�TX

�
�Txi

��1
(xj � xi)K 0

�
�T (xj � xi)

hx

�
; (15)

so that

&
(A)
� (xi; xj) = Z

(2)
� (xi; xj)�

rf�TX
�
�Txi

�
f 2
�TX

�
�Txi

� Z(1)� (xi; xj) :

For a �xed xi 2 SX we obtain with a change of variables, integration by parts and

Taylor expansion and Lemma 4 thatE
�
rf

�TX(�
TX)

f
�TX(�

TX)
Z(1) (xi; X)

�
andE

�
Z(2) (xi; X)

�
are both equal to

rf�TX
�
�Txi

�
f�TX

�
�Txi

� +O(hpx); (16)

while for a �xed xj 2 SX , E
�
rf

�TX(�
T xj)

f
�TX(�

T xj)
Z
(1)
� (X; xj)

�
and E

�
Z
(2)
� (X; xj)

�
are

equal to

� d

dt

����
t=�T x

E
�
Xj�TX = t

�
+O(hpx) (17)

= E
�
r log f�TX

�
�TX

�
j�TX = �Tx

�
+O(hpx);

uniformly on��SX . By denoting �(A)� (�) � E
�
�
(A)
� (X; �)

�
and �(A)� = E

�
�
(A)
� (X)

�
,

it follows from (16)-(17) that E
�
�
(A)
� (X; x)

�
= O(hpx) and �

(A)
� = O(hpx). Hence,

U
(A)
� = U

�(A)
� +O(hpx); (18)
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where U�(A)� is the degenerate U-statistic,

U
�(A)
� =

2

n (n� 1)
X

1�i<j�n
�
�(A)
� (xi; xj) ;

with elements

�
�(A)
� (xi; xj) = �

(A)
� � �

(A)
� (xi)� �(A)� (xj) + �

(A)
� :

Applications of Chebyshev�s inequality and Lemma 7 then yield

U
�(A)
� = Op

 
2

n (n� 1)[E(
P

1�i<j�n
�
�(A)
� (xi; xj))

2]1=2

!
(19)

= Op

�
n�1

�
M

(A)
�

�1=(2+�)�
;

where

M
(A)
� = max

1�i<j�T
max

�
E
�����(A)� (xi; xj)

���2+� ;Z �����(A)� (xi; xj)
���2+� dP (xi) dP (xj)� :

Here, P (X) denotes the probability measure of r.v. X and 0 < � < 1. Since

�
�(A)
� (xi; xj) = �

(A)
� (xi; xj) +O (hpx), we get with the Cr inequality,

M
(A)
� = max

1�i<j�T
max

�
E
����(A)� (xi; xj)

���2+� ;Z ����(A)� (xi; xj)
���2+� dP (xi) dP (xj)�

+O
�
h(2+�)px

�
;

A standard calculation leads to

M
(A)
� = O

�
h�2(2+�)+1x

�
= O

�
h�(3+2�)x

�
: (20)

Hence, we conclude with results (18)-(20) that U (A)�0
= Op

�
n2��h3x

��1=2
+O (hpx).
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We now turn to deal with U (B)�0
. Note that the �rst term in the de�nition of

&
(B)
� (xi; xj) is

&
(B;1)
� (xi; xj) �

1

h3x

Z �
xj � E

�
Xj�TX = t

��
K

�
�Txi � t
hx

�
K 0
�
�Txj � t
hx

�
f (t)�1 dt:

(21)

Using Fubini�s theorem and applying the standard argument, it is easy to see that

both E
�
&
(B;1)
� (X; x)

�
and E

�
&
(B;1)
� (x;X)

�
are equal to

� d

dt

����
t=�T x

E
�
Xj�TX = t

�
+O(hpx) (22)

= E
�
r log f�TX

�
�TX

�
j�TX = �Tx

�
+O(hpx);

for �xed x 2 SX . Thus, we have again that U (B)� is a degenerate U-statistic up to a

O(hpx) term. Applying Lemma 7 to the U-statistic U
(B)
�0

in a similar way to U (A)�0
, it

is possible to show now that U (B)�0
= Op

�
n2��h3x

��1=2
+O (hpx). Thus, (13) is proved.

We continue to prove the asymptotic bounds in probability for the remainder

terms R1; R2 and R3. We start with

R1 =
1

n

nX
i=1

� bf�i
�TX
� f�T0 X

��
r bf�i

�TX
�rf�T0 X

�
�
fY;�T0 X

�2 � U (B)�0
:

Put

�1;� (xi; xj; xk) � Z
(1)
� (xi; xj)Z

(2)
� (xi; xk)�Z(1)� (xi; xj)

rf�TX
�
�Txi

�
f�TX

�
�Txi

� �Z(2)� (xi; xk)+
rf�TX

�
�Txi

�
f�TX

�
�Txi

� ;
where Z(1) (�; �) and Z(2) (�; �) are de�ned in (15). Note that R1 can be rede�ned as
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a sum of third and second order Rd-vector U-statistics in the following way

R1 =
1

n (n� 1)2
P
i

P
j 6=i

P
k 6=i

�
(1)
� (xi; xj; xk)� U (B)�0

=
n� 2
n� 1 �

1

n (n� 1) (n� 2)
P

1�i6=j 6=k�n

�
�1;� (xi; xj; xk)� &

(B)
� (xj; xk)

�
+

1

n� 1 �
1

n (n� 1)
P

1�i6=j�n
�1;� (xi; xj; xj)

� n� 2
n� 1 � U

(1;A) +
1

n� 1 � U
(1;B): (23)

We have for �xed xj; xk 2 SX ;

E
�
Z
(1)
� (X; xj)Z

(2)
� (X; xk)

�
= &

(B;1)
� (xj; xk) ; (24)

with &(B;1)� (xi; xj) as in (21), and it is easy to verify with results (16), (17), (22) and

(24) that U (1;A) is a degenerate U-statistic up to a O(hpx) term, in the sense that for

any �xed xi; xj; xk 2 SX ;

E
�
�1;� (X; xj; xk)� &

(B)
� (xj; xk)

�
= O(hpx); E

�
�1;� (xi; X; xk)� &

(B)
� (X; xk)

�
= O(hpx);

and E
�
�
(1)
� (xi; xj; X)� &(B)� (xj; X)

�
= O(hpx):

As an Applications of Lemma 7 we now obtain

U (1;A) = Op
�
n3��h5x

��1=2
+O (hpx) : (25)

For U (1;B), it is enough to note that by Lemma 5 and the continuous mapping

theorem, we have � (xi; xj; xk) = Op

��
lnn
nh3x

�1=2�
+O (hpx) and hence

U (1;B) = Op
�
n3��h3x

��1=2
+O

�
n�1hpx

�
: (26)
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Thus, it is clear from (23), (25) and (26) that

R1 = op

��
n2��h3x

��1=2�
+O (hpx) :

Next, we show a stochastic bound for

jR2j =

�������2
1

n

nX
i=1

rf�T0 X
� bf�i

�TX
� f�T0 X

�2
�
f �T0 X

�3
������� � 2 supx2SX

�������
rf�T0 Xf

2
�T0 X�

f �T0 X

�3
��������
1

n

nX
i=1

 bf�i
�TX

f�T0 X
� 1
!2

:

(27)

Note as that as the �rst term in the RHS is bounded, it is enough to bound the

second term in probability. Let now

�2;� (xi; xj; xk) = Z(1) (xi; xj)Z
(1) (xi; xk)� Z(1) (xi; xj)� Z(1) (xi; xk) + 1;

where Z(1) (�; �) is de�ned in (15), and

&
(C)
� (xi; xj) =

1

h2x

Z
K

�
�Txj � t
hx

�
K

�
�Txi � t
hx

�
f (t)�1 dt� 1:

We have for large enough n,

1

n

nX
i=1

 bf�i
�TX

f�T0 X
� 1
!2

=
1

n (n� 1)2
P
i

P
j 6=i

P
k 6=i

�2;� (xi; xj; xk)

=
n� 2
n� 1 �

1

n (n� 1) (n� 2)
P

1�i6=j 6=k�n

�
�2;� (xi; xj; xk)� &

(C)
� (xj; xk)

�
+

1

n� 1 �
1

n (n� 1)
P

1�i6=j�n
�2;� (xi; xj; xj) +

1

n (n� 1)
P

1�i6=j�n
&
(C)
� (xi; xj)

� n� 2
n� 1 � U

(2;A) +
1

n� 1 � U
(2;B) + U (2;C):

Here, U (2;A) is a third order Rd-vector U-statistic, and U (2;B) and U (2;C) are second

order Rd-vector U-statistics. Following a similar treatment as above, these three
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U-statistics are shown to be degenerate up to a O(hpx) term, and by Lemma 7 we

have

U (2;A) = Op
�
n3��h3x

��1=2
+O (hpx) ; U (2;B) = Op

�
n3��hx

��1=2
+O (hpx) ;

and U (2;C) = Op
�
n2��hx

��1=2
+O (hpx) :

The last arguments imply that

R2 = op

��
n2��h3x

��1=2�
+O (hpx) :

Finally, bounding R3 is trivial with the continuous mapping theorem. We have

therefore established (14). Retracing through results (12)-(14), we have completed

the proof of assertion (a�)(i). �

Proof of Theorem 3. By the mean-value theorem with mean value � and

Theorems 2 and 5,

sup
(y;x)2S

��� ef
Y jb�TX

�
yjb�Tx�� efY j�T0 X �yj�T0 x����

�
b� � �0

 sup(y;x)2S
rf

Y j�TX

�
yj�Tx

�
+ op (1)

 = op

 �
lnn

nHyHx

�1=2!
: �

6 Appendix B - Technical Lemmas

This section gives some useful technical results that are needed in the proofs of the

main theorems.

Recall that for a function g (�) that depends on � 2 � and possibly also on

other variables we denote rg (�) and r2g (�) as the vector and matrix of partial
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derivatives of g (�) with respect to �. As a convention, we also use r0g (�) = g (�).

The following Lemma gives the forms of the partial derivatives of fY;�TX
�
y; �Tx

�
and f�TX

�
�Tx

�
with respect to �. One has to remember that � a¤ects the value of the

probability densities fY;�TX
�
y; �Tx

�
and f�TX

�
�Tx

�
not only through the variable

�Tx, but it also de�nes the density functions fY;�TX (�; �) and f�TX (�) themselves.

Lemma 4 Let E
�
XjY = y; �TX = t

�
; E
�
XXT jY = y; �TX = t

�
; E
�
Xj�TX = t

�
;

E
�
XXT j�TX = t

�
and fY;�TX (y; t) and f�TX (t) exist and they are twice di¤eren-

tiable with respect to y; t 2 R. Then

rfY;�TX
�
y; �Tx

�
=

d

dt

����
t=�T x

�
E
�
x�XjY = y; �TX = t

�
fY;�TX (y; t)

	
;

r2fY;�TX
�
y; �Tx

�
=

d2

dt2

����
t=�T x

n
E
�
(x�X) (x�X)T jY = y; �TX = t

�
fY;�TX (y; t)

o
;

and similarly,

rf�TX
�
�Tx

�
=

d

dt

����
t=�T x

�
E
�
x�Xj�TX = t

�
f�TX (t)

	
;

r2f�TX
�
�Tx

�
=

d2

dt2

����
t=�T x

n
E
�
(x�X) (x�X)T j�TX = t

�
f�TX (t)

o
:

Proof. We prove here only the last two identities of the Lemma as the �rst

two follow similarly. Assume �d 6=0 since otherwise we may reduce the dimension to

d� 1. Let fX (�1; :::; �d) be the probability density of X at (�1; :::; �d). We now have

f�TX (t) = ��1d

Z
fX

 
�1; :::; �d�1; �

�1
d (t�

d�1X
j=1

�j�j)

!
d�1:::d�d�1;

where ��1d is the determinant of the Jacobian matrix. Thus, for t = �Tx,

f�TX
�
�Tx

�
= ��1d

Z
fX(�1; :::; �d�1; xd + ��1d

d�1X
j=1

�j
�
xj � �j

�
)d�1:::d�d�1:
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Note also that for k; l 2 f1; 2; :::; d� 1g we have

E
�
Xkj�TX = t

�
f�TX (t) = ��1d

Z
�kfX(�1; :::; �d�1; �

�1
d (t�

d�1X
j=1

�j�j))d�1:::d�d�1;

E
�
Xdj�TX = t

�
f�TX (t) = ��2d

Z
(t�

d�1X
j=1

�j�j)fX(�1; :::; �d�1; �
�1
d (t�

d�1X
j=1

�j�j))d�1:::d�d�1;

E
�
XkXlj�TX = t

�
f�TX (t) = ��1d

Z
�k�lfX(�1; :::; �d�1; �

�1
d (t�

d�1X
j=1

�j�j))d�1:::d�d�1;

E
�
XkXdj�TX = t

�
f�TX (t) = ��2d

Z
�k(t�

d�1X
j=1

�j�j)fX(�1; :::; �d�1; �
�1
d (t�

d�1X
j=1

�j�j))d�1:::d�d�1;

E
�
X2
d j�TX = t

�
f� (t) = ��3d

Z
(t�

d�1X
j=1

�j�j)
2fX(�1; :::; �d�1; �

�1
d (t�

d�1X
j=1

�j�j))d�1:::d�d�1:

Using the above expressions one can use direct di¤erentiation to verify the last two

identities of the Lemma. �

The proofs of Theorems 1 and 2 rely heavily on the uniform consistency of the

kernel density estimators�derivatives with respect to �. The next two Lemmas are

direct modi�cations of the results of Hansen (2008), but unlike Hansen�s (2008)

theory, they concern with partial derivatives of the kernel estimates with respect to

�, rather than with derivatives with respect to the density variables themselves.

Lemma 5 Let (A1)-(A4) hold. Then

sup
�2�;z2S

��� bfY;�TX �y; �Tx�� fY;�TX �y; �Tx���� = Op

 �
lnn

nhyhx

�1=2
+ h2y + h2x

!
;

sup
�2�;x2SX

��� bf�TX ��Tx�� f�TX ��Tx���� = Op

 �
lnn

nhx

�1=2
+ h2x

!
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If, in addition, also (A7) and (A9) hold. Then for k = 0; 1; 2,

sup
�2�;z2S

���rk bfY;�TX �y; �Tx��rkfY;�TX �y; �Tx���� = Op

 �
lnn

nhyh1+2kx

�1=2
+ hpy + hpx

!
;

sup
�2�;x2SX

���rk bf�TX ��Tx��rkf�TX ��Tx���� = Op

 �
lnn

nh1+2kx

�1=2
+ hpx

!
:

Proof of Lemma 5. We prove here only that

sup
�2�;x2SX

���r bf�TX ��Tx��rf�TX ��Tx���� = Op

 �
lnn

nh3x

�1=2
+ hpx

!
:

The proofs for the rest of the arguments are very similar. By Lemma 6, it is su¢ cient

to prove that sup��SX

���E �r bf�TX ��Tx���rf�TX ��Tx���� = O(hpx). A change of

variables, integration by parts, and a Taylor expansion around hx = 0 yield with

(A7) and (A9) that uniformly in x 2 SX ;

E
�
r bf�TX ��Tx��

=
1

h2x

Z �
x� E

�
Xj�TX = t

��
K 0
�
�Tx� t
hx

�
f�TX (t) dt

=
1

hx

Z �
x� E

�
Xj�TX = �Tx� hxu

��
K 0 (u) f�TX

�
�Tx� hxu

�
du

=

Z
d

dt

����
t=�T x�hxu

��
x� E

�
Xj�TX = t

��
f�TX (t)

�
K (u) du

=

Z (p�1X
j=1

�
d1+j

dt1+j

����
t=�T x

�
x� E

�
Xj�TX = t

��
f�TX (t) (�hxu)

j

�
+O (hpx)

)
K (u) du

=
d

dt

����
t=�T x

��
x� E

�
Xj�TX = t

��
f�TX (t)

�
+O(hpx):

By Lemma 4, the last expression is just rf�TX
�
�Tx

�
+O(hp). �
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Lemma 6 Let (A1)-(A4) hold. Then

sup
�2�;z2S

��� bfY;�TX �y; �Tx�� E bfY;�TX �y; �Tx���� = Op

 �
lnn

nhyhx

�1=2!
;

sup
�2�;x2SX

��� bf�TX ��Tx�� E bf�TX ��Tx���� = Op

 �
lnn

nhx

�1=2!
;

If, in addition, also (A7) holds. Then for k = 0; 1; 2,

sup
�2�;z2S

���rk bfY;�TX �y; �Tx�� Erk bfY;�TX �y; �Tx���� = Op

 �
lnn

nhyh1+2kx

�1=2!
;

sup
�2�;x2SX

���rk bf�TX ��Tx�� Erk bf�TX ��Tx���� = Op

 �
lnn

nh1+2kx

�1=2!
:

Proof. We prove here only that

sup
��SX

���r bf�TX ��Tx�� Er bf�TX ��Tx���� = Op

 �
lnn

nh3x

�1=2!
:

The proofs for the rest of the arguments in the Theorem are very similar. Let �1 2 �,

x1 2 SX and de�ne

A1 =

(
�; x :

���1 � �hx lnn
n

�1=2
; kx� x1k �

�
hx lnn

n

�1=2)
: (28)

Since��SX is compact, then it can be covered by J (n) = O
�

n
hx lnn

�
such subspaces

A1; :::; AJ around centres
��
�k; xk

�	J
j=1
. Since

P

 
sup
��SX

���r bf�TX ��Tx�� Er bf�TX ��Tx���� > � lnnnh3x

�1=2!

� J (n) max
j=1;:::;J

P

 
sup

(�;x)2Aj

���r bf�TX ��Tx�� Er bf�TX ��Tx���� > � lnnnh3x

�1=2!
;

it is therefore su¢ ce to prove that for any
�
�1; x1

�
2 �� SX and A1 as in (28), the

following holds

P

 
sup

(�;x)2A1

���r bf�TX ��Tx�� Er bf�TX ��Tx���� > � lnnnh3x

�1=2!
= o

�
hx lnn

n

�
; (29)
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where the constant in the o (�) term is independent of
�
�1; x1

�
and n.

De�ne the functions eKj; j = 1; 2; 3; on T =
n
t 2 R : t = �T x

hx
for some � 2 � and x1 � x 2 SX

o
by

eK1 (t) = sup
H(t)

�
kxk

����K 00
�
�Tx

hx

�
x

����� ; eK2 (t) = sup
H(t)

�
k�k

����K 00
�
�Tx

hx

�
x

����� ;
and

eK3 (t) = sup
H(t)

���� K 0
�
�Tx

hx

����� :
where all the sups are taken over � 2 � and x 2 SX such that �TX

hx
is not too far

from t in the sense that

H (t) �
(
(�; x) : k����k �

�
hx lnn

n

�1=2
; kx� x�k �

�
hx lnn

n

�1=2
and

�T� x�
hx

= t

)

Note that eKj; j = 1; 2; 3; are well-de�ned and �nite for any t 2 T by assumption

(A7) and compactness of � and SX . Let xi denote the i0th X-observation, and for

any (�; x) 2 A1 we have with mean-values ��, x� such that
�1 � �� � �1 � � �
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�
hx lnn
n

�1=2
and kx1 � x�k � kx1 � xk �

�
hx lnn
n

�1=2
that�����rK

 
�
T

1 (x1 � xi)
hx

!
�rK

�
�T (x� xi)

hx

������
� 1

hx

�����
"
K 0

 
�
T

1 (x1 � xi)
hx

!
�K 0

�
�T (x� xi)

hx

�#
(x1 � xi)

�����
+
1

hx

����K 0
�
�T (x� xi)

hx

�
(x1 � x)

����
� 1

h2x

������1 � ��T (x1 � xi)K 00
�
�T� (x� � xi)

hx

�
(x1 � xi)

����
+
1

h2x

�����T (x1 � x)K 00
�
�T� (x� � xi)

hx

�
(x1 � xi)

����+ 1

hx

����K 0
�
�T (x� xi)

hx

�
(x1 � x)

����
�

�1 � �
h2x

����� eK1

 
�
T

1 (x1 � xi)
hx

!�����+ kx1 � xkh2x

����� eK2

 
�
T

1 (x1 � xi)
hx

!�����
+
kx1 � xk

hx

����� eK3

 
�
T

1 (x1 � xi)
hx

!�����
�

�
lnn

nh3x

�1=2
�
 

3X
j=1

����� eKj

 
�
T

1 (x1 � xi)
hx

!�����
!

(30)

Note that the last term is independent of (�; x) 2 A1. We now de�ne for any

(�; x) 2 A1 and j = 1; 2; 3;

ef�TX;j ��Tx� = 1

nhx

Xn

i=1

eKj

�
�T (x� xi)

hx

�
:

We have

E
��� ef�TX;j ��Tx���� � sup

(�;x)2��SX

��f�T x ��Tx��� Z ��� eKj (u)
��� du <1; (31)

Also, inequality (30) implies

sup
(�;x)2A1

���r bf�TX ��T1 x��r bf�TX ��Tx���� � � lnnnh3x

�1=2
�
 

3X
j=1

��� ef�j ��T1 x1����
!
: (32)
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Thus, the last three inequalities yield for any (�; x) 2 A1, for some large enough M ,

independent on �1, x1 and n;

sup
(�;x)2A1

���E nr bf�TX ��T1 x��r bf�TX ��Tx�o��� �M

�
lnn

nh3x

�1=2
: (33)

Next, results (31), (32), (33) and the condition that lnn
nhx

= o(1) give

sup
(�;x)2A1

���r bf�TX ��Tx�� Er bf�TX ��Tx����
� sup

(�;x)2A1

���r bf�TX ��T1 x��r bf�TX ��Tx����+ ���r bf�TX ��T1 x�� Er bf�TX ��T1 x����
+ sup
(�;x)2A1

���E nr bf�TX ��T1 x��r bf�TX ��Tx�o���
�

�
lnn

nh3x

�1=2 3X
j=1

n��� ef�TX;j ��T1 x1�� E ef�TX;j ��T1 x1����+ E
��� ef�TX;j ��T1 x1����o

+
���r bf�TX ��T1 x1�� Er bf�TX ��T1 x1����+M

�
lnn

nh3x

�1=2
� 1

hx

3X
j=1

��� ef�TX;j ��T1 x1�� E ef�TX;j ��T1 x1����+ ���r bf�TX ��T1 x1�� Er bf�TX ��T1 x1����
+2M

�
lnn

nh3x

�1=2
:

As a result we get

P

 
sup

(�;x)2Ak

���r bf�TX ��Tx�� Er bf�TX ��Tx���� > 5M �
lnn

nh3x

�1=2!
(34)

� P

 ���r bf�TX ��T1 x1�� Er bf�TX ��T1 x1���� > M

�
lnn

nh3x

�1=2!
+

+
3X
j=1

P

 ��� ef�TX;j ��T1 x1�� E ef�TX;j ��T1 x1���� > M

�
lnn

nh3x

�1=2!
:

We now bound the four terms in the RHS of (34) using the same argument, as all

kernels used in the construction of ef�TX;j and bf�TX all bounded and compactly sup-
ported. We therefore prove the bound only for the term

���r bf�TX ��Tx�� Er bf�TX ��Tx����.
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Set m =
�
nhx
lnn

�1=2
, and note that for n su¢ ciently large, m < max

�
n; "

4b

�
where

b = 2 sup��SX
��kxk @

@u
K (u)

�� <1, and " =M (nhx lnn)
1=2. De�ne for (�; x) 2 A1;

Zi = (x� xi)
(
@

@t

����
t=

�T (x�xi)
hx

K (t)� E
 
@

@t

����
t=

�T (x�xi)
hx

K (t)

!)
; i = 1; :::;m:

Now, notice that jZij � b, and by Theorem 1 of Hansen (2008),

�2 (m) � sup
(�;x)2A1

E

������
bmcX
i=1

Zi

������
2

� Cmhx

for some large enough C > 0. By Theorem 2.1 of Liebscher (1996) we obtain

P

 ���r bf�TX ��T1 x1�� Er bf�TX ��T1 x1���� > M

�
lnn

nh3x

�1=2!

= P

 �����
nX
i=1

Zi

����� > "

!

� 4 exp

�
� "2

64 n
m
�2 (m) + 8

3
"mb

�
+ 4

n

m
�m

� 4 exp

�
� M2 (nhx lnn)

64Cnhx + 3Mnhxb

�
+ 4An

�
nhx
lnn

��(�2+1)=2
� 4 exp

�
� M2 lnn

64C + 3Mb

�
+ 4An

�
lnn

nhx

�(�2+1)=2
� 4n�M=(64+3b) + 4An

�
lnn

nhx

�(�2+1)=2
; (35)

where the last inequality is justi�ed by taking M � C. Now, we have for the �rst

term of (35), n�M=(64+3b) = o
�
hx lnn
n

�
for su¢ ciently large M . Also, recall that

lnn
n�2h2x

= o(1) with �2 = (�2 � 2)=(�2 + 2) 2 (0; 1). Thus, using lnn
nhx

= o(hxn
�2�1) =

o(hxn
�4=(�2+2)) we get for the the second term of (35), 4An

�
lnn
nhx

�(�2+1)=2
= o (hxn

�1) :

Hence (29) is established. This completes the proof of Lemma 6. �

The next Lemma is Lemma C.2 of Gao and King (2004) that gives a bound
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for the stochastic order of second- and third-order degenerate U-statistics of strong

mixing stochastic process.

Lemma 7 (Gao and King, 2004) (i) Let  (�; �; �) be a symmetric Borel function

de�ned on Rr � Rr � Rr, and let the process �i be an r-dimensional strictly sta-

tionary and strong mixing stochastic process. Assume that for any �xed x; y 2 Rr,

E [ (�1; x; y)] = 0. Then

E

( P
1�i<j<k�T

 
�
�i; �j; �k

�)2
� CT 3M1=(1+�);

where 0 < � < 1 is a small constant, C > 0 is a constant independent of T and the

function  , M = max fM1;M2;M3g, and

M1 = max
1�i<j�T

max

�
E
�� ��1; �i; �j���2+� ;Z �� ��1; �i; �j���2+� dP (�1) dP ��i; �j�� ;

M2 = max
1�i<j�T

max

�Z �� ��1; �j; �k���2+� dP (�i) dP ��1; �j�� ;
M3 = max

1�i<j�T
max

�Z �� ��1; �j; �k���2+� dP (�1) dP (�i) dP ��j�� :
(ii) Let � (�; �) be a symmetric Borel function de�ned on Rr � Rr, and let the

process �i be de�ned as in part (i). Assume that for any �xed x 2 Rr, E [� (�1; x)] =

0. Then

E

( P
1�i<j<k�T

�
�
�i; �j

�)2
� CT 2M

1=(1+�)
4 ;

where 0 < � < 1 is a small constant, C > 0 is a constant independent of T and the

function �, and

M4 = max
1�i�T

max

�
E j� (�1; �i)j

2+� ;

Z
j� (�1; �i)j

2+� dP (�1) dP (�i)

�
:
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We conclude the appendix by proving that the trimming term b��i , de�ned in (4),
is eventually equals to 1 for any su¢ ciently large n with probability 1.

Lemma 8 Let (A1)-(A4) hold and

I in;� =

8>><>>:
1; if min

nbf�i
Y;�TX

�
yi; �

Txi
�
; bf�i
�TX

�
�Txi

�o
> a0n

�c;

0; otherwise,

for some small constants a0; c > 0 such that nc
�
h2y + h2x

�
= o (1) and n1�2chyhx !

1. Then eventually for any su¢ ciently large n

max
1�i�n

sup
�2�

��I in;� � 1�� = 0
with probability 1.

Proof. De�ne

T� =
�
(y; x) 2 R1+d : min

�
fY;�TX

�
y; �Tx

�
; f�TX

�
�Tx

�	
> 2a0n

�c	 :
It is trivial now to show that

sup
�2�

��I in;� � 1�� � sup
�2�

If(yi;xi)=2T�g + IfZin>a0n�cg;

where

Zin = sup
�2�

max
n��� bf�i

Y;�TX

�
yi; �

Txi
�
� fY;�TX

�
yi; �

Txi
���� ; ��� bf�i

�TX

�
�Txi

�
� f�TX

�
�Txi

����o :
By de�nition of S there exists some large N such that for any n � N; we have that

S �
T
�2�

T�, and as (yi; xi) 2 S, we get sup�2� If(yi;xi)=2T�g = 0 for any 1 � i � n. We

now show that

P

�
lim sup
n!1

�
nS
i=1

�
Zn > a0n

�c	�� = 0: (36)
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For sake of brevity, we prove here only that

1X
n=1

P

�
nS
i=1

�
sup
�2�

��� bf�i
Y;�TX

�
yi; �

Txi
�
� fY;�TX

�
yi; �

Txi
���� > a0n

�c
��

<1; (37)

from which (36) follows by the Borel-Cantelli lemma. The second term of Zin can

be handled in the same way.

For some C1; C2 > 0 independent of n, we have

sup
�2�

��� bf�i
Y;�TX

�
yi; �

Txi
�
� bfY;�TX �yi; �Txi���� � C1

nhyhx
;

and from the proof of Lemma 5,

sup
�2�;z2S

���E bfY;�TX �yi; �Txi�� fY;�TX �y; �Tx���� � C2
�
h2y + h2x

�
:

where z = (y; x). The last two results imply that for n large enough,

1X
n=1

P

�
nS
i=1

�
sup
�2�

��� bf�i
Y;�TX

�
yi; �

Txi
�
� fY;�TX

�
yi; �

Txi
���� > a0n

�c
��

�
1X
n=1

P

�
sup
z2S

sup
�2�

��� bfY;�TX �y; �Tx�� E bfY;�TX �y; �Tx���� > an�c
�
; (38)

for some 0 < a < a0. We can continue to bound the last term as in the proof of

Lemma 6. Let fAkgJk=1 form a cover of subspace ��S, with J (n) = O
�
h�1y h�1x n2c

�
,

and

Ak =
n
�; x; y :

���k � �hxn�c�1=2 ; kx� xkk � �hxn�c�1=2 ; ky � ykk � hxn
�c
o
;

De�ne for
�
�k; yk; xk

�
;

Zi = K

 
�
T

k (xk � xi)
hx

!
K

 
�
T

k (yk � yi)
hy

!
�E

 
K

 
�
T

k (xk � xi)
hx

!
K

 
�
T

k (yk � yi)
hy

!!
:
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Now, notice that jZij � b � 2 sup��SX jK (u)j < 1, and by Theorem 1 of Hansen

(2008), for any 1 � m � n;

�2 (m) � sup
(�;x)

E

������
bmcX
i=1

Zi

������
2

� Cmhyhx

for some large enough C > 0. Set m = Cn1�2chyhx=a1 and " = a1n
1�chyhx, and

note that 4bm < " for any su¢ ciently large n. By Theorem 2.1 of Liebscher (1996)

we obtain

P
���� bfY;�TX �yk; �Tk xk�� E bfY;�TX �yk; �Tk xk���� > a1n

�c
�

= P (Zi > ")

� 4 exp

�
� "2

64 n
m
�2 (m) + 8

3
"mb

�
+ 4

n

m
�m

� 4 exp

 
�

a21n
2�2ch2yh

2
x

64Cn1hyhx +
8
3
Cn2�3ch2yh

2
xb

!
+ 4An��1h�1y h�1x n2c

� 4 exp

�
� a21n

c

C (64 + 3b)

�
+ 4AJ (n)n��1 ;

where J (n) = h�1y h�1x n2c. Thus, we have

1X
n=1

J (n)

�
sup
z2S

sup
�2�

��� bfY;�TX �y; �Tx�� E bfY;�TX �y; �Tx���� > a1n
�c
�
<1; (39)

and (37) is established with (38), (39), and the arguments in the proof of Lemma 6.
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