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Abstract

This work derives an Intertemporal CAPM-based model that incorporates a feed-
back traders�e¤ect in the form of �rst-lag serial correlations. In the proposed model,
we use a non-standard market equilibrium condition that links traders demand
to current market value (wealth distribution over time) and not just to the mar-
ket portfolio (wealth distribution over assets). The market risk is modeled with a
Threshold-GARCH in-mean model in order to account for Time-varying conditional
variances of the assets�returns and asymmetric news impact curve. The model is es-
timated on weekly returns of the S&P index over the years 1980-2008. The empirical
analysis reject the Intertemporal CAPM and reveals that relation between expected
returns and risk is highly nonlinear. We also �nd evidence that both returns and
conditional variances are serially correlated.

1. Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964), Linter (1965)
and Mossin (1966) became one of the most popular models in the literature
of asset pricing. An important insight the CAPM provides is that expected
returns should be related to the degree of the asset risk. Particularly, the
CAPM imposes a restriction of linearity between expected returns and risk.
Because of its simplicity, the CAPM provides a very convenient framework



for asset pricing. However, evidence from stock markets behaviour show that
the CAPM may be too restrictive in both senses that the relation between
expected returns and risk might be nonlinear (Gennotte and Marsh 1993),
and in that expected returns seem to be a¤ected by other economic variables
(fundamentals), as well as by non-fundamentals (behavioral anomalies). For
instance, Cuthbertson and Nitzsche (2004) provides a comprehensive discus-
sion on these issues. Some attempts have been made to directly introduce
other economic variables to the model, such as dividend yields, size of �rm,
volume of the trading, January e¤ect, etc. The present study takes another
approach and focuses on several common phenomena of stock markets that
can be modeled by only variables that relates directly to the asset prices dis-
tributions.

One of the empirical phenomenons this work is concerned with is the existence
of noise traders in the markets. By de�nition, noise traders do not base their
asset decisions on fundamental values, but they rather "trade on noise as if it
were information" (Black 1986). DeLong, Shleifer, Summers and Waldmann
(1990) developed an equilibrium asset pricing model in which noise traders
may misperceive the true expected price of the risky assets, corresponding to
an independent and identically distributed normal random variable around the
true expected price. DeLong, Shleifer, Summers and Waldmann (1991) also
showed that noise traders may survive in the market in the long run together
with the sophisticated traders.

In this work, we will concentrate on a di¤erent type of noise traders, named
feedback traders. Feedback traders buy or sell assets according to only the
last period trend in the market. Positive feedback traders (also referred to
as momentum traders) buy after a price rise, and sell (or short sell) after
a price fall. This kind of behaviour is typical, for example, of charities that
chase trends, but can also be induced by a mass of stop-loss orders. Some
experiments (c.f. Shleifer and Summers 1990, Shiller 1990) show that this
kind of momentum behaviour may also stem from pure psychological factors.
Feedback trading is closely related to the well-known �herding behaviour�of
investors, and much evidence of its existence can be found in the literature
(e.g., Shleifer and Summers 1990, Shiller 1990). Another possibility for traders
considered here is to sell (or short sell) after a price rise and to buy after a
price fall. This manner of trading is expected from negative feedback traders,
who, for instance, follow the rule of �buy low and sell high�. It is also typical for
investors that maintain a constant ratio of each asset within their portfolio.

While empirical research on feedback or noise tends to focus on quanti�able
in�uences induced by the presence of noise traders in the markets, such as posi-
tive autocorrelation in the returns and mean-reversion (e.g. Taylor 1985, Fama
and French 1988, Poterba and Summers 1988, and Ma, Dare and Donaldson
1990), in this work we follow essentially the line of Sentana and Wadhwani
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(1992), and we formulate and �t an explicit CAPM-based model, which ac-
counts for feedback traders as well as for the rational traders that follow a
mean-variance e¢ cient strategy. It should be noted that Sentana and Wad-
hwani (1992) used a univariate �feedback traders�model that also incorpo-
rates the rest of the market characteristics discussed in this essay. However,
they resort to somewhat technical and empirical analysis, which lacks eco-
nomic interpretation. The main goal of this work is to formulate Sentana and
Wadhwani�s (1992) model as a general multivariate model, and to derive the
economic intuition that stands behind the predictions of the model. We also
use a non-standard market equilibrium condition that links traders demand
to current market value (wealth distribution over time) and not just to the
market portfolio (wealth distribution over assets). Crucially, this modi�ed con-
dition seems to correct a problematic result of Sentana andWadhwani�s (1992)
model.

A second feature of �nancial markets discussed in this work is the dynamic
and evolving nature of market risk and return. Early evidence of time vary-
ing volatilities in stock returns goes back to Mandelbrot (1963) and Fama
(1965). With the exception of a relatively few studies (c.f. Gibbons and Fer-
son 1985, Ferson, Kandel and Stambaugh 1987, and Ferson 1989), a lack of
appropriate econometric framework hindered the formulation of an asset pric-
ing model with time-varying risk until the development of the GARCH-in-
mean (GARCH-M) models (Engle, Lilien, and Robbins 1987). Indeed, this
development led Bollerslev (1987), French, Schwert, and Stambaugh (1987),
Chou (1988) and many others to test a CAPM model while taking into ac-
count the heteroscedasicity of the market. Overall, the results of these ex-
periments are not supportive of the CAPM, while on the other hand, it was
also demonstrated by these studies that the GARCH-M model is sensitive to
model speci�cation, so it is possible that these tests�results were in�uenced by
misspeci�cation of the true model. Many other works have been continually
attempting to reinvestigate the CAPM model with some more �exible and
sophisticated models, the results of which are not yet conclusive.

Finally, this work also deals with the issue of the so-called �asymmetric news
impact curve�, which corresponds to the fact that volatility and covariances
generally respond in an asymmetric way to positive or negative shocks in
share prices. Black (1976) suggested that this asymmetry may be caused by a
�leverage e¤ect�, according to which, if the share price of a company falls, the
debt-to-equity ratio of that company grows and, thus, the risk of this company
to go bankrupt grows. As a result of this increased risk, the company�s share
becomes more volatile. An alternative view of French, Schwert and Stambaugh
(1987) and Campbell and Hentschel (1992) is that the asymmetry e¤ect may
be caused if volatilities exhibit positive feedback e¤ect. In other words, the
�volatility feedback�theme is that asymmetric news impact curve may result
from a positively autocorrelated volatility, consistent with the GARCH-M ap-
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proach discussed above. This may happen if large absolute-valued shocks are
expected to be followed by further large absolute-valued shocks, which in turn,
by a CAPM-type argument, should lower the stock price. For large positive
shocks, this mechanism is expected to dampen the initial positive impact of
the good news, and therefore acts as a stabilizer of the share price. On the
other hand, for initial large negative shock, it intensi�es the negative impact of
the news and yields higher volatility after market fall. Several empirical stud-
ies that investigated the phenomena with GARCH-M models tend to agree on
the existence of an asymmetric news impact curve (see, for instance, Nelson
1991, Glosten, Jagannathan and Runkle 1993, and Bekaert and Wu 2000),
while the economic interpretation of this e¤ect is still controversial.

The rest of this essay is organized as follows. In Section 2 the Sentana and
Wadhwani�s (1992) version of the Intertemporal CAPM is developed and dis-
cussed. The main empirical model proposed in this essay is presented in Section
3. Section 4 estimates the model on the S&P 500 index. Section 5 concludes
and summarizes.

2. Background

2.1 Intertemporal CAPM

Let r1t ; r
2
t ; :::; r

N
t be random variables representing the rate of returns on risky

assets i = 1; 2; :::; N , respectively, between times t�1 and t, where t = 1; 2; ::T;

rit =

8><>: investment value inasset i at time t

9>=>;�
8><>: investment value inasset i at time t� 1

9>=>;8><>: investment value inasset i at time t� 1

9>=>;
:

We assume that all assets are in strictly positive supply. In addition, the
market consists of a risk-free asset (e.g., treasury bills) that yields a safe return
of r0t between times t� 1 and t. We use the notation r

p
t for the corresponding

return on an arbitrary risky portfolio, p, such that p01 = 1, and also by rmt
the corresponding return on the market portfolio, m, composed of the risky
assets aggregately held by the investors in proportion to the total wealth in
the economy.

The Intertemporal Capital Asset Pricing Model (ICAPM), developed by Mer-
ton (1973, 1980), extends the Sharpe-Linter-Mossin CAPM to captures the
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successive nature of the market. According to the ICAPM, under some restric-
tive assumptions (see Bodurtha and Mark 1991, footnote 3, for alternative sets
of assumptions) on the economy, the expected returns follow a linear relation
in congruence with the standard one-period CAPM, that is to say

Et�1
�
rit
�
= r0t + �

i
t �
h
Et�1 (r

m
t )� r0t

i
; t = 1; 2; :::: (1)

Here, �it is the (expected) �beta�of asset i at time t, de�ned as the conditional
correlation between asset i and the market portfolio,

�it =
Covt�1 (r

i
t; r

m
t )

V art�1 (rmt )
;

and

Et�1 (�) = E (�j	t�1) ; Covt�1 (�) = Cov (�j	t�1) and V art�1 (�) = V ar (�j	t�1)

denotes expectation, covariance and variance, respectively, conditional on the
past information 	t�1 available to investors at the end of period t � 1. It is
seen from (1) that the ICAPM allows the expected equilibrium returns to vary
across time provided that the conditional correlations, or the beta, are time
varying.

Denote the (conditional) �market price of risk�(or the �Sharpe ratio�) by

�mt =
[Et�1 (r

m
t )� r0t ]

V art�1 (rmt )
; (2)

where subscript m highlights the fact that �mt represents the aggregated risk
aversion of the wide-market (cf. Merton 1980). By linearity properties, the
ICAPM equation (1) implies that, for any risky portfolio p,

Et�1 (r
p
t ) = r

0
t + �

m
t Covt�1 (r

p
t ; r

m
t ) ; t = 1; 2; :::: (3)

Moreover, under the assumption of constant relative risk aversion utility func-
tions of the traders, Merton (1980, p. 329) showed that (3) can be approxi-
mated by

Et�1 (r
p
t ) = r

0
t + �

mCovt�1 (r
p
t ; r

m
t ) ; t = 1; 2; :::; (4)

where now the market price of risk, �m, is independent of time. In particular,
the expected risk premium of portfolio p, Et�1 (r

p
t )�r0t ; is proportional to the

conditional covariance between p and the market portfolio. The corresponding
equation for the return on the market portfolio is then given by

Et�1 (r
m
t ) = r

0
t + V art�1 (r

m
t ) ; t = 1; 2; :::: (5)
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To put the ICAPM into an appropriate empirical framework, we de�ne the
investor�s conditional forecast errors on portfolio p as "pt = Et�1 (r

p
t )� rpt . We

also assume here, as well as in the rest of the essay, that E ("pt ) = 0, that
is to say, the conditional expectation of the investor�s is always an unbiased
estimate of realized returns. It is straightforward now to see that (4) and (5)
can be rewritten as the applicable econometric model,

rpt = r
0
t + �

mCovt�1 (r
p
t ; r

m
t ) + "

p
t ; t = 1; 2; :::: (6)

and
rmt = r

0
t + �

m (�mt )
2 + "mt ; t = 1; 2; :::: (7)

with
E ("pt ) = 0 and (�

m
t )

2 = V art�1 ("
m
t ) :

2.2 Sentana-Wadhwani Model

Sentana and Wadhwani (1992) introduced the ICAPM model (7) with a new
interaction variable that represents an e¤ect of feedback traders. Sentana and
Wadhwani (1992) assumed that the proportional market demand, St, of the ra-
tional investors (henceforth the �smart money�) in the market follows a simple
mean-variance model described by the following equation,

St =
Et�1 (r

m
t )� �

�
h
(�mt )

2
i ; (8)

with parameter � > 0; represents a constant over time rate of return for which
the demand by smart money is zero and �

h
(�mt )

2
i
is a measure of the perceived

riskiness of shares. Note that if the smart money �takes over�the market, then
St = 1, and relation (8) reduces to a similar relation as the ICAPM relation
(7), but with � replacing the time-varying market risk-free rate r0t . However,
� is not predetermined like r0t ; but is rather a free parameter estimated by the
model.

On the other hand, proportional market demand for stocks by the feedback
traders is assumed to be determined by the rule

Ft =  � rmt�1; (9)

where  represents the feedback value.  > 0 indicates positive feedback
traders, while  < 0 indicates negative feedback traders. Sentana and Wad-
hwani (1992) now placed the market equilibrium requirement

St +Nt = 1; (10)
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re�ecting the fact that total supply of assets is �nite and strictly positive.
Putting (8), (9) and (10) together �nally yields the model

rmt = �+ �
h
(�mt )

2
i
�  � �

h
(�mt )

2
i
� rmt�1 + "t; t = 1; 2; :::: (11)

Comparing the Sentana-Wadhwani model with the CAPM equation (7), we
see that the term ��

h
(�mt )

2
i
rmt�1 is added to the model and allows for serial

correlations in the returns. It is also implied that the serial correlations vary
with the volatility. The Sentana-Wadhwani model suggests that stock market
price anomalies in the manner of serial correlations between consequent re-
turns are larger when the perceived riskiness of the market is high than when
it is low. When expected volatility rises, the demand (or supply) by the smart
money drops down, which in turn brings the feedback traders to dominate the
market, and causes returns to exhibit stronger serial correlation. Somewhat
surprisingly, the model also suggests that returns should exhibit negative se-
rial correlations when the market is in�uenced by positive feedback traders
( > 0), and it should exhibit positive serial correlations if the market is in�u-
enced by negative feedback traders ( < 0). However, it seems to us that this
implication results form a reverse causality arguments on the relative demand
of the two type of traders under equilibrium. Consider, for example, the case
where the market is in�uenced by a mass of positive feedback traders. In this
case, high positive returns at time t�1 will cause high positive demand of the
feedback traders at time t. According to Sentana-Wadhwani model, under mar-
ket equilibrium, this high demand must be met by a corresponding high supply
by the smart money. In market equilibrium with positive feedback traders we
therefore expect that high positive returns imply not only higher demand by
feedback traders, but also higher supply by the smart money traders. However,
since smart money buy and sell assets only when it is possible to gain higher
expected returns or lower risk, the model �forces�expected returns to fall after
price rise to justify the corresponding supply by the smart money. Therefore
the behaviour of the smart money, and also the expected market returns, are
a¤ected by the last period returns according to the equilibrium constraint (10).
In the following subsection we suggest an alternative equilibrium condition,
which, albeit not compatible with the standard ICAPM, seems to correct this
seemingly problematic implication of Sentana-Wadhwani model.

Sentana and Wadhwani (1992) implemented a linearised variant of (11) and
�tted the model

rmt = �+ � (�
m
t )

2 �
�
0 + 1 (�

m
t )

2
�
rmt�1 + "t; t = 1; 2; :::: (12)

to US stock returns daily and hourly data in the years 1855-1988. They used
a GARCH-M(1,1), an Exponential GARCH-M 1 (1,1) as well as a semipara-
metric model to estimate (�mt )

2 together with the parameters �, �, 0 and 1.

1 The Exponential GARCH-M model (EGARCH-M) was developed by Nelson
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They results show that � is not statistically di¤erent from zero, while 1 is
statistically signi�cant. This result imply that the in�uence of the expected
conditional volatility on the expected returns works only through the non-
linear interaction variable (�mt )

2 rmt�1, and not through � (�
m
t )

2 as suggested
by the ICAPM.

3. Generalized Asset Pricing Model

3.1 Feedback Traders

De�ne the vector of risky returns,

rt =
�
r1t ; r

2
t ; :::; r

N
t

�0
; t = 1; 2; ::: ;

and also let Vt be the conditional covariance matrix of rt given the past
information 	t�1. The demand vector, St, of the smart money is chosen to
correspond to the mean-variance e¢ cient portfolio,

St = �
�1V�1

t

h
Et�1 (rt)� r0t1

i
; (13)

where � = �m represents the wide-market risk aversion. Similarly to Sentana
and Wadhwani (1992), assume that the market consists of feedback traders,

whose demand vector for the risky assets, Ft =
�
F 1t ; F

2
t ; :::; F

N
t

�0
; depends

only on the last period returns, according to the equation

Ft = �
�1�rt�1; (14)

where � is in general a parameter matrix of size N �N .

In order to resolve the troublesome implication of Sentana-Wadhwani model
discussed in subsection 2.2, vectors St and Ft may sum up to any value and
not necessarily to one, as opposed to Sentana-Wadhwani model. These vectors
represent now the demand with respect to the level of wealth at the beginning
of time t (equivalently, the level of wealth at the end of time t� 1), and they
sum up to a value higher or lower than one in situations of excess demand or
excess supply (measured again at the point of time in the beginning of time t,
before trading activity starts and leads quickly to a new market equilibrium),

respectively. Let Wt =
�
W 1
t ;W

2
t ; :::;W

N
t

�0
be a vector of the total wealth

invested at time t in each of the risky assets by both two kind of traders,
so that the total aggregate wealth invested in the market at time t is equal

(1991) to allow for asymmetric variance e¤ects of the kind discussed in the in-
troduction.
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to Wm
t = W0

t1. In equilibrium, the observed market values must re�ect the
portfolio desired by investors in the aggregate, i.e. mt = (Wm

t )
�1Wt. Note

that Wt may be computed directly from the market as the market value of
each asset, i.e., the price of asset unit (e.g., a share) times the number of
assets units outstanding (see, for instance, Merton 1973). To retain market
equilibrium, we require for each asset i 2 f1; :::; Ng

Wm
t�1 (St + Ft) =Wt:

Equivalently, de�ne the vectorWt�1;t =
�
Wm
t�1

��1
Wt. The equilibrium con-

dition then becomes
St + Ft =Wt�1;t: (15)

The use of a general vectorWt�1;t enables to regard to relative demand func-
tions among di¤erent assets, and not just among smart money and feedback
traders in each of the assets. More importantly, unlike in Sentana-Wadhwani
model, W0

t�1;t1 =W
m
t /W

m
t�1 is not necessarily equal to one, but it is rather

a random variable that varies over time and may depend on past information
	t�1. While a rigorous theory, basically beyond the scope of this paper, would
be essential to properly justify the proposed market equilibrium condition, in-
tuitively we assume that changes in the total wealth of the economy are mainly
due to variations in asset values, i.e. share price, and not because of realloca-
tion of capital, i.e. the risk-free asset, new issued shares and other alternative
assets (cf. Merton 1973, footnote 11). This assumption may be justi�ed, for
example, by a constant relative risk aversion of both rational and feedback
traders, and by the assumption that the fraction of wealth invested in the
market is approximately constant for all investors, so maximizing expected
utility does not justify reallocation of capital. Under this setting, we may as-
cribe changes in market values only to demand and supply forces. Particularly,
Wt, the equilibrium market portfolio at time t, is assumed to properly re�ect
the demand and supply forces evolving over time. Crucially, we do not only
take into account the diversi�cation of the market wealth among the di¤erent
assets but also the diversi�cation among di¤erent time periods. The market
demand function, based on information given at time t � 1, determines the
market prices at time t, thus acting as a self-ful�lling prophecy. Interesting
enough, some similar ideas about self-ful�lling believes also in the context of
market that cinsists of technical analysts and momentum traders were sug-
gested by Menkho¤ (1997) and Jordan (2006).

To further understand the implication of this modi�cation, consider again
the example of the last section where the market is in�uenced by a mass of
positive feedback traders (� > 0) and returns at time t�1 are highly positive.
As before, increase in returns at time t�1 leads to a high positive demand by
feedback traders at time t. This time, however, the feedback traders�demand
is met by a corresponding high supply by the smart money only if the latter
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expect the prices to fall. Alternatively, the feedback traders demand may also
lead to an excess demand at the beginning of time t, which in turn raises
market prices until the market reaches an equilibrium in which we �nally have
Wt�1;t > 1.

Equations (8), (9) and (10) together yields now

Et�1 (rt) = r
0
t1+ �VtWt�1;t �Vt�rt�1: (16)

It is seen that this model is very similar to the univariate Sentana-Wadhwani
model in the sense that the term �Vt�rt�1; which stands for serial corre-
lations in the returns, is added to standard ICAPM equation. Note that it
is possible that returns will exhibit cross-sectional serial correlations if Vt�
forms a nondiagonal matrix. As already stressed above, Wt�1;t may depend
on rt�1 as well, so serial correlations may also manifest themselves indirectly
through the term �VtWt�1;t.

To show analogy of the model (16) to the standard ICAPM equation, multiply
(16) from left by p0, where p is an arbitrary risky portfolio. We get

Et�1 (r
p
t )= r

0
tp

01+ �p0VtWt�1;t � p0Vt�rt�1

= r0tp
01+ �p0VtWt�1;t � �p0VtFt

= r0tp
01+ �p0VtSt

= r0t1+ � � S0t1�Covt�1
�
rpt ; r

S
t

�
;

where rpt ; rSt are the returns at time t of portfolio p and of portfolio St/S
0
t1

that corresponds the smart money traders, respectively. Since the same rela-
tion holds for the portfolio p = St/S0t1, it is straightforward to see that the
following version of the standard ICAPM is obtained.

Et�1
�
rit
�
= r0t + �

i
t �
h
Et�1

�
rSt
�
� r0t

i
; t = 1; 2; :::;

Here, �it is a �modi�ed beta�of asset i at time t, de�ned by

�it =
Covt�1

�
rpt ; r

S
t

�
V art�1 (rSt )

: (17)

It is well known that in the standard ICAPM only the systematic risk, i.e. the
risk that is related to the market portfoliomt, is priced. In the feedback trader
model, however, only the systematic risk related to the smart money portfolio
St, is priced. Stock price anomalies e¤ects caused by feedback traders can be
ignored due to the presence of the smart money in the market. In other words,
feedback traders�behaviour is already taken into account by the smart money,
so that smart money behaviour already re�ects all knowledge market prices.
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As a result, in equilibrium, the risk of the market is measured relatively to St
and not to mt.

Finally, note that if the smart money �takes over�the market, then St = mt,
and the �modi�ed beta�(17) reduces to te standard beta. Hence, in this case
we get the standard ICAPM equation, even though we used a nonstandard
equilibrium equation.

3.2 The Econometric Framework

Ample empirical evidence from stock markets indicates that stock returns
share the following common features:

(1) Returns seem to be serially correlated.
(2) Market volatility seems to vary over time.
(3) Market volatility seems to react di¤erently to good news or to bad news.

The proposed econometric model attempts to capture these three features si-
multaneously. Because of the limitation of time, and lack of available computer
programs or code to support applications of multivariate GARCH-M mod-
els, only a univariate version of the model is proposed here. A more general
multivariate model can be also considered, though the computational burden
involved in estimating a multivariate GARCH-M model can be very heavy.

In order to capture feature 1, it is assumed that the market is composed of both
smart money and feedback traders consistently with the model developed in
the previous subsection. Multiplying equation (16) from left by a market-value
weighted portfolio mt = (W

m
t )

�1Wt, we get

Et�1 (r
m
t )= rtm

0
t1+ �m

0
tVtWt�1;t � m0

tVtrt�1 (18)

= r0tm
0
t1+ �

�
Wm
t /W

m
t�1

�
m0
tVtmt �m0

tVt�rt�1

= r0t + �
�
Wm
t /W

m
t�1

�
(�mt )

2 �m0
tVt�rt�1:

Note that Wm
t /W

m
t�1 = 1 +

�
Wm
t �Wm

t�1

�.
Wm
t�1 = 1 + rmt . Thus, writing

Et�1 (r
m
t ) = r

m
t + "t, the model (18) becomes

rmt =
�
1� � (�mt )

2
��1 h

r0t + � (�
m
t )

2 �m0
tVt�rt�1 + "t

i
: (19)

The term
�
1� � (�mt )

2
��1

suggests a nonlinear e¤ect of the volatility. By
de�nition of � (see (2)) we may restrict � to the range 0 � � < 1

(�mt )
2 , therefore

we expect
�
1� � (�mt )

2
��1

to be positive and strictly increasing with (�mt )
2.
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This term stands for higher orders of volatility, since by a Taylor expansion

�
1� � (�mt )

2
��1

= 1 + � (�mt )
2 + �2 (�mt )

4 + ::: :

The term m0
tVt�rt�1 is di¢ cult to interpret and work with. A convenient

simpli�cation is achieved by approximating m0
tVt� �  (�mt )

2mt�1. In this
case we get m0

tVt�rt�1 �  (�mt )
2 rmt�1; as in Sentana-Wadhwani model. This

approximation may be obtained, for instance, if � is equal to the outer product
mtm

0
t�1. Alternatively, it can also be obtained if we approximateVt � (�mt ) �

Id and � �  �Id; where Id is the identity matrix, and in additionmt �mt�1.
While it is seen that a much more general model is attained with a general
matrix �, we still adopt the proposed simpli�cation for the sake of simplicity,
and the model becomes

rmt
�
1� � (�mt )

2
�
= r0t + � (�

m
t )

2 �  (�mt )
2 rmt�1 + "t:

In a similar manner to Sentana and Wadhwani (1992) model, the following
linearised and more �exible variant of the model is considered

rmt =
�
1� �0 (�mt )

2
��1 h

�0r
0
t + �1 + �1 (�

m
t )

2 �
�
0 + 1 (�

m
t )

2
�
rmt�1 + "t

i
:

The parameters �; �0; �1; 0; 1 are restricted to satisfy 0 � �0; �1 <
1

(�mt )
2

and
���0 + 1 (�mt )2��� < 1 in order to guarantee stability of the process.

Correspondingly to feature 2, we use a GARCH-M (Engle, Lilien, and Robbins
1987) model in order to model the volatility dynamics. The standard GARCH
model of Engle (1982) and Bollerslev (1986) uses a representation of the condi-
tional variances and covariances as a weighted average of past squared forecast
errors and the past squared returns. The GARCH-M model is suited to esti-
mate the parameters in a CAPM-based equation, while simultaneously �tting
a GARCH model for the conditional volatility (�mt )

2. We adopt the GARCH-
M(1,1) approach, according to which the conditional volatility follows

(�mt )
2 = a+ b � "2t�1 + c �

�
�mt�1

�2
; (20)

where parameters a; b; c satisfy a > 0; b; c � 0 to ensure positivity of (�mt )
2 ;

and b+ c < 1 to ensure stationarity of the volatility process.

Finally, feature 3 is modeled by elaborating the standard GARCHmodel to get
a Threshold GARCH (TGARCH). Introduced by Zakoian (1991) and Glosten,
Jagannathan and Runkle ( 1993), the TGARCHmodels divide the distribution
of the innovations, which represents the unanticipated news e¤ecting the share
prices, into two disjoint intervals depending on the sign of the last innovation,
and then approximate a piecewise linear function for the conditional volatility.
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Applying the TGARCH(1,1) model to our case, equation (20) is changed to

(�mt )
2 = a+ b0 � "2t�1 + bs � sign f"t�1g � "2t�1 + c �

�
�mt�1

�2
;

where b0; bs are two parameters and sign f�g is the standard sign operator
with values �1. The absolute value of the parameter bs may be thought of
as a measure of the asymmetry e¤ect in the volatility. bs = 0 suggests that
volatility is symmetric with respect to unanticipated news, while large absolute
values of bs clearly indicates that news impact curve is asymmetric.

4. Evidence from the S&P 500

4.1 Empirical Setup

We consider 1475 successive observations of weekly realized returns for the
market-value weighted S&P 500 index over the period January 1st 1980 to
March 31st March 2008. This time period covers several of the contemporary
�nancial turmoils took place in the stock markets, among which are the market
crash of October 1987, the 1990 Gulf war, the 1998 Russian government default
on its debt payments, the 2000 dotcom bubble pop, the 9/11/2001 attack on
the US world trade center and Pentagon, the 2003 Iraq war and the recent
2007 subprime mortgage crisis. The risk-free rate r0t are determined as the
weekly returns on a 10 years Treasury bill. All data were taken from the
Yahoo Finance historical prices listings available in the internet. Figures 1
and 2 contain graphs of the S&P 500 index value and rate of returns over the
test period.

The market model developed in the previous section is implemented on the
data. Assuming that the forecast errors are normally distributed,

"tj	t�1 � N (0; �mt ) ; (21)

it is possible to apply a standard Gaussian MLE procedure to estimate the
TGARCH-M(1,1) system

rmt =
�
1� �0 (�mt )

2
��1 h

�0r
0
t + �1 + �1 (�

m
t )

2 �
�
0 + 1 (�

m
t )

2
�
rmt�1 + "t

i
;

(�mt )
2= a+ b0 � "2t�1 + bs � sign f"t�1g � "2t�1 + c �

�
�mt�1

�2
; (22)

with respect to the ten parameters �0; �1; �0; �1; 0; 1; a; b0; bs; c.

The log-likelihood function of the model with time horizon t = 1; :::; T is given
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Fig. 1. S&P 500 index value

Fig. 2. S&P 500 index returns

(up to a constant) by

logL (�) =
TX
t=1

Lt (�) ;
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where

Lt (�) = �
1

2

24log (�mt )2 +
 
"t
�mt

!235 :
� is a 10-dimensional vector that contains all unknown parameters for "t and
(�mt )

2. The maximum likelihood estimator b� is then obtain as the parameter
value that maximizes logL (�).

Under su¢ cient regularity conditions and particularly under the assumption
that the model is correctly speci�ed, the parameter estimators are expected
to be consistent and asymptotically normal with asymptotic variance corre-
sponding to the Cramér-Rao theorem,

p
T
�b� � �0� �d N �

0;� (�0)
�1
�
;

where � (�) is the Fisher information matrix of Lt (�). Furthermore, under
slightly stronger conditions (cf. Engle, Lilien, and Robbins 1987, p. 397), � (�0)
may be well approximated by S0S/T where S is the T � p matrix of the �rst
derivatives of the conditional likelihood function of each single observation,

[S]t;i =
@Lt

�b��
@�i

:

Therefore we get the property�b� � �0� �d N �
0; (S0S)

�1�
;

St;i may be conveniently estimated numerically, thus asymptotic variances
can be used to assess the signi�cance levels of the parameters by performing
t-tests.

The estimation was mades on an R 2.6.1 software. In order to locate the max-
imum likelihood estimate, the likelihood functions was numerically maximized
with the Broyden-Fletcher-Goldfard-Shanno variant of Davidon-Fletcher-Powell
algorithm 2 . The model is nonlinear and high dimensional, therefore the max-
imization algorithm may easily yield estimators corresponding to local maxi-
mum of the likelihood function. In order to enhance the chances of the algo-
rithm to �nd the global maximum, a relatively extensive search procedure for
the likelihood maximum was employed using numerous starting parameters
values (above 500), chosen randomly within the parameter space. For each of
the parameters, a two-tailed t-test with 1465 (={#{observations}- #{para-
meters}) degrees of freedom was performed corresponding to the hypotheses
that the parameters is insigni�cant.

2 A quasi-Newton maximization method. The code for the al-
gorithm was taken from the website of Daniel F. Heitjan at
http://www.cceb.upenn.edu/pages/heitjan/optimize/
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Parameter Estimate t statistic p-value

�0 0:010 0:443 0:65

�1 0:812 30:830 0:00

�0 263:124 4:147 0:00

�1 84:459 1:386 0:16

0 �0:169 18:500 0:00

1 156:253 8:598 0:00

a 6:2 � 10�5 3:446 0:00

b0 0:079 4:120 0:00

bs 0:020 1:590 0:11

c 0:801 17:333 0:00

Table 1. TGARCH-M(1,1) model: parameter estimates

4.2 Summary of Results

The estimation values results are reported in Table 1. The results do not reject
that the parameters �0 is zero at the 5% signi�cance level. The consequence
�0 = 0 implies that the risk-free rate does not in�uence the index returns in
line with standard pricing models. On the other hand the t-test rejects the
hypothesis that �1 or �0 are zero, maybe indicating that a more practical
measure of excess returns is of the form f (�mt ) � rmt ��1, rather than rmt � r0t ,
where f (�mt ) is a possibly nonlinear function of the market volatility. The
t-test also does not reject the hypothesis �1 = 0 at the 5% level. This result
contradicts the ICAPM predictions, but is consistent with similar conclusions
of Sentana and Wadhwani (1992) and other empirical works. The test statistic
for the 0; 1 parameters reject that they are zero. The values 0 = �0:169,
1 = 156:253; indicate that weekly stock returns are likely to exhibit positive
serial correlation most of the time, but when volatility is higher than a critical
value corresponding to (�mt )

2 = �0
1
= 1 � 10�3; then returns are more likely

to exhibit negative serial correlation. A similar result was also reported by
Sentana and Wadhwani (1992) for their daily data. The t-test do not reject
the hypothesis that the threshold parameter bs, representing the asymmetric
news impact curve, is zero, thus providing an evidence against the asymmetric
e¤ect, albeit with a relatively small p-value (0:11). The rest of the GARCH
parameters estimates a; b0 and c are signi�cant at the required level and their
values b0 + c = 0:88 suggest a high degree of persistence in volatility. Figure
3 presents the conditional market variance (�mt )

2 estimated by the model.
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Fig. 3. S&P 500 index returns estimated conditional variance. The red line indicates
the critical conditional varaince, above which the serial correlations are expected to
be negative

This �gure shows that besides in very few extremely volatile weeks, indeed
the variance is usually lower than the critical value 1 � 10�3, marked by the
horizontal red line in the �gure.

Finally, the model�s standardized residuals "t/�mt are analyzed graphically
in Figure 4 and Figure 5.These �gures show that the residuals come from
a distribution that appear to be close to a normal distribution, consistent
with the basic model assumption, though the left tail of the distribution that
corresponds to extreme negative returns is somewhat longer than what is
expected from standard normal distribution.

5. Conclusion

This essay develops a general asset pricing model that consists of feedback
traders along with rational traders that follow a mean-variance e¢ cient strat-
egy. The proposed equilibrium condition accounts not only for the market
portfolio but also for the market value, both are obtained as a �self-ful�lling
prophecy� induced by the traders demand functions. Based on this model,
an empirical univariate model that allows also for time-varying conditional
variances, serial correlations and asymmetric news impact curve, is estimated
using weekly data from the S&P 500 index.
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Fig. 4. The estimated model standardized residuals "t/�mt

Fig. 5. Normal QQ-plot of the standardized residuals "t/�mt

The results indicate that the returns are serially correlated, where the ser-
ial correlations depends also on the expected risk. In addition, we �nd clear
evidence that conditional variances change through time and that they are
highly persistent. The results are not supportive of the ICAPM, and they
suggest that relation between expected returns and risk is highly nonlinear.
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We also do not �nd support for a �leverage e¤ect�in the volatility. Hence our
rsults are consistent with the �volatility feedback�theory, which claims that
asymmetric news impact curve may result from a positively autocorrelated
volatility.

Overall, our results conform with some previous works, and in particular with
the conclusions of Sentana and Wadhwani (1992).
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