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Consistency, asymptotic normality, and efficiency of the maximum likelihood esti-
mator for stationary Gaussian time series were shown to hold in the short memory
case by Hannan (1973, Journal of Applied Probability 10, 130–145) and in the long
memory case by Dahlhaus (1989, Annals of Statistics 34, 1045–1047). In this pa-
per we extend these results to the entire stationarity region, including the case of
antipersistence and noninvertibility.

1. INTRODUCTION

Let Xt , t ∈ Z, be a stationary Gaussian time series with mean μ and spectral
density fθ (ω), ω ∈ � ≡ [−π,π ], and denote the true values of the parameters
by μ0 and θ0. We are concerned with spectral densities fθ (ω) that belong to the
parametric family { fθ : θ ∈ � ⊆ Rp}, such that for all θ ∈ �

fθ (ω) ∼ |ω|−α(θ) Lθ (ω) as ω → 0, (1)

where α (θ) < 1 and Lθ (ω) is a positive function that varies slowly at ω = 0. Xt

is said to have long memory (or long-range dependence) if 0 < α(θ) < 1, short
memory (or short-range dependence) if α (θ) = 0, and antipersistence if α (θ) < 0.
The range α (θ) ≤ −1 corresponds to noninvertibility, and our results cover this
case as well. Two examples of parametric models that are consistent with (1) are
the fractional Gaussian noise (Mandelbrot and Van Ness, 1968) and the autore-
gressive fractionally integrated moving average (ARFIMA) models (Granger and
Joyeux, 1980; Hosking, 1981).
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The asymptotic properties of the Gaussian maximum likelihood estimator
(MLE) for short memory dependent observations were derived by Hannan (1973).
For the Gaussian ARFIMA(0,d,0) model, the memory parameter is d, which
corresponds to α (θ)/2 in (1). Yajima (1985) proved consistency and asymptotic
normality of the MLE when 0 < d < 1

2 and asymptotic normality of the least
squares estimator when 0 < d < 1

4 . Dahlhaus (1989, 2006) established consis-
tency, asymptotic normality, and efficiency for general Gaussian stationary pro-
cesses with long memory satisfying (1) and 0 < α < 1. Similar results for the
parametric Gaussian MLE under antipersistence and noninvertibility do not ap-
pear to be documented in the literature.

In the semiparametric framework, Robinson (1995b) established consistency
and asymptotic normality of the log-periodogram estimator when −1 < α < 1.
Velasco (1999b) extended these results by showing that consistency still holds for
the range −1 <α < 2 and asymptotic normality for −1 <α < 3/2. Moreover, with
a suitable choice of data taper, a modified version of this estimator was shown to
be consistent and asymptotically normal for any real α.

For the Whittle MLE, Fox and Taqqu (1986) proved consistency and asymp-
totic normality under the condition 0 < α < 1. Velasco and Robinson (2000) ex-
tended these results to the range −1 < α < 2 and with adequate data tapers, to
any degree of nonstationary. Lately, Shao (2010) considered a nonstationarity-
extended Whittle estimation that is shown to be consistent and asymptotically
normal for any α > −1 (except α = 1,3,5, ...) and to enjoy higher efficiency than
Velasco and Robinson’s (2000) tapered Whittle estimator in the nonstationary
case.

The local Whittle estimator was shown by Robinson (1995a) to be asymptot-
ically normal for −1 < α < 1, and Velasco (1999a) extended these results by
proving consistency for −1 < α < 2 and asymptotic normality for −1 < α < 3/2.
As with the “ordinary” Whittle MLE, with suitable tapering, the results are ex-
tended to any α ≥ 1. Abadir, Distaso, and Giraitis (2007) developed an unta-
pered nonstationarity-extended local Whittle estimation and proved consistency
and asymptotic normality when the generating process is linear, for any α > −3
(except α = −1,1,3, ...) with higher efficiency than Velasco’s (1999a) tapered
local Whittle estimator.

For the exact local Whittle estimator, Shimotsu and Phillips (2004) proved
asymptotic normality for any real α, if the true mean of the series is known, and
Shimotsu (2010) showed that similar results hold in the case where the process
has an unknown mean and a linear time trend, for α ∈ (−1,4).

The purpose of this paper is to continue this line of literature and fill the gap
concerning the asymptotic properties of the Gaussian-MLE by extending it to the
case α < 1.

Noninvertible processes may arise in practice by over-differencing to eliminate
stochastic and deterministic trends; see Beran, Feng, Franke, Hess, and Ocker
(2003). Antipersistence behavior was also noticed as a feature of financial time
series including, for example, Peters (1994) and Shiryaev (1999), who modeled
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implied and realized volatility of the Standard & Poor’s 500 index, and Karuppiah
and Los (2005), who investigated nine foreign exchange rates and concluded that
most rates are antipersistent. For other examples of antipersistent processes, we
refer the reader to Tsai (2009) and the references therein.

Although there are simulations studies that analyze the performance of these
estimators in long- and short memory and antipersistence (see Sowell, 1992;
Cheung and Diebold, 1994; Hauser, 1999; Nielsen and Frederiksen, 2005), we
emphasize that to date, consistency, asymptotic normality, and efficiency of the
Gaussian MLE antipersistence and noninvertibility case have not been estab-
lished. We prove these properties without making a priori assumptions on the
memory type of the series. By this it is meant that the researcher is free to find the
MLE over the entire range α < 1.

In practice, to date, if the MLE for the memory of a given data set was found
to be negative and the process was assumed to have positive memory, the value
of the MLE was censored to zero. In various simulation experiments, this re-
sulted in a pileup of MLE values at zero, and essentially this amounts to restricted
maximum likelihood estimation, rather than the unrestricted analogue. See, for
instance, Lieberman and Phillips (2004). By establishing a theory for the range
α < 1, the pileup at zero is avoided.

Our set of assumptions is not stronger than those of Dahlhaus (1989, 2006) and
is satisfied in the stationary ARFIMA (p,d,q) model, allowing for the possibility
that d ≤ −1/2.

The outline of the paper is as follows. Section 2 states the model and main
results of the paper. Section 3 concludes. The Appendix gives the main proof.
Auxilliary results are contained in Appendix B of the full version of this paper,
available at http://www.ceremade.dauphine.fr/˜rousseau/LRRlongmemo.html.

2. ASSUMPTIONS AND MAIN RESULTS

As in Dahlhaus’s (1989) notation, let

∇gθ =
(

∂

∂θj
gθ

)
j=1,...,p

and ∇2gθ =
(

∂2

∂θj∂θk
gθ

)
j,k=1,...,p

.

We denote by ‖A‖ the spectral norm of an N × N matrix A and by |A| the
Euclidean norm of A, that is,

‖A‖ = sup
x∈Cn

(
x∗ A∗ Ax

x∗x

)1/2

, |A| = [tr(A∗ A
)]1/2

,

where A∗ is the conjugate transpose of A. We require the following assumptions.

Assumption 0. (a) Xt , t ∈ Z, is a stationary Gaussian sequence with mean
μ ∈ R and spectral density fθ (ω), ω ∈ � ≡ [−π,π ]. The true values of the pa-
rameters of the process are μ0 and θ0 ∈ � ⊆ Rp. If θ and θ ′ are distinct elements
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of �, we assume that the set {ω| fθ (ω) �= fθ ′ (ω)} has a positive Lebesgue
measure.

(b) The parameter θ0, lies in the interior of �, and � is compact.

There exists α : � → (−∞,1) such that for each δ > 0, we have the following.

Assumption 1. fθ (ω), f −1
θ (ω), ∂/∂ω fθ (ω) are continuous at all (ω,θ),

ω �= 0, and

fθ (ω) = O
(
|ω|−α(θ)−δ

)
; f −1

θ (ω) = O
(
|ω|α(θ)−δ

)
;

∂

∂ω
fθ (ω) = O

(
|ω|−α(θ)−1−δ

)
.

Assumption 2. ∂ fθ (ω)/∂θj and ∂2 fθ (ω)/∂θj∂θk are continuous at all (ω,θ),
ω �= 0, and

∂

∂θj
fθ (ω) = O

(
|ω|−α(θ)−δ

)
, 1 ≤ j ≤ p,

∂2

∂θj∂θk
fθ (ω) = O

(
|ω|−α(θ)−δ

)
, 1 ≤ j,k ≤ p,

∂3

∂θj∂θk∂θl
fθ (ω) = O

(
|ω|−α(θ)−δ

)
, 1 ≤ j,k, l ≤ p.

Assumption 3. ∂2 fθ (ω)/∂ω∂θk are continuous at all (ω,θ), ω �= 0, and

∂2

∂ω∂θk
fθ (ω) = O

(
|ω|−α(θ)−1−δ

)
, 1 ≤ j ≤ p.

Assumption 4. The function α (θ) is continuous, and the constants appearing
in the O (·) above can be chosen independently of θ (not of δ).

We also assume that μ̂N , the estimator of μ0, fulfills the following condition.

Assumption 5. For each δ > 0,

μ̂N = μ0 +op

(
N {α(θ0)−1}/2+δ

)
.

Assumptions 0–4 are modifications of Dahlhaus’s (1989) assumptions (A0),
(A2), (A3), and (A7)–(A9). The most important aspect of the assumptions is that
α (θ) may have values in the interval (−∞,1), extending Dahlhaus’s (1989) as-
sumptions, which limited α (θ) to the interval (0,1). Assumption 5 corresponds
to the assumption on μ̂N in Theorem 3.2 of Dahlhaus (1989). This condition is
fulfilled, for example, by the arithmetic mean and linear M-estimates (see Beran,
1991), for α (θ0) ∈ (−1,1), but Samarov and Taqqu (1988) showed that it does
not hold for the arithmetic mean when α (θ0) < −1. Adenstedt (1974) proved that
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Assumption 5 is in fact satisfied for the generalized least squares (GLS) estimator
for all α (θ0) < 1, which is not a feasible estimator, but we can easily extend his
result for any estimator μ̂N of the form

μ̂N = (1′
N
(

f ∗)1)−1
1′
N

(
f ∗)X,

where 1 is an N × 1 vector of 1’s, X = (X1, ..., X N )′, 
N ( fθ ) is the covariance
matrix ofX, given by


N ( f ) =
[∫ π

−π
ei(r−s)ω f (ω)dω

]
r,s=1,...,N

, (2)

f ∗ = fθ∗ , with θ∗ any value in � satisfying α(θ∗) = infθ∈� α(θ) (by compactness
of � there exists at least one such value), or even f ∗(λ) = (1−cosλ)−α∗/2, where
α∗ ≤ infθ∈� α(θ). Indeed, we can then bound

E
(
μ̂N −μ0

)2 = E

((
1′
N

(
f ∗)−1

1
)−1
1′
N

(
f ∗)−1

(X−μ01)

)2

≤
(
1′
N

(
f ∗)−1

1
)−2 ∣∣∣1′
N

(
f ∗)−1


N
(

fθ0

)

N
(

f ∗)−1
1
∣∣∣

≤
(
1′
N

(
f ∗)−1

1
)−1∥∥∥
N

(
f ∗)−1/2


N
(

fθ0

)

N
(

f ∗)−1/2
∥∥∥

≤ K Nα∗−1+(α(θ0)−α∗)+δ ≤ K N−1+α(θ0)+δ,∀δ > 0,

where the last line is deduced from Theorem 5.2 of Adenstedt (1974) for the
term 1′
N ( f ∗)−11 and from Lemma 2 of Lieberman, Rosemarin, and Rousseau
(2010). Note that this result could be guessed from Theorem 7.2 of Adenstedt,
which proved that underestimating α does not change the rate at which the BLUE
estimator of μ converges.

Assumptions 0(a) and 1–4 hold if Xt −μ0 is a fractional Gaussian noise with
self-similarity parameter 0 < H < 1, or a Gaussian ARFIMA process with a dif-
ferencing parameter d < 1

2 . Finally, note that as in Dahlhaus (1989), our Assump-
tion 1 allows neither a pole nor a zero outside the origin, which excludes processes
such as seasonally (possibly fractionally) differenced series.

Denote by θ̂N the estimator obtained by minimizing the −1/N -normalized
Gaussian plug-in log-likelihood function

LN (θ) = 1

2N
logdet
N ( fθ )+ 1

2N

(
X− μ̂N1

)′

N ( fθ )

−1 (X− μ̂N1
)

with respect to θ . The main results of the paper are stated in the following theo-
rem. It establishes consistency, asymptotic normality, and efficiency of the Gaus-
sian MLE, θ̂N .

THEOREM 1. Under Assumptions 0–2, 4, and 5:
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(i) θ̂N →p θ0.

(ii)
√

N
(
θ̂N − θ0

)
→
d

N
(
0,� (θ0)

−1) , (3)

where �(θ) is the Fisher information matrix, given by

�(θ) = 1

4π

∫ π

−π
(∇ log fθ (ω))(∇ log fθ (ω))′ dω.

The main effort in the proof is in the establishment of consistency.
Because of the nonuniform behavior of the quadratic form

(
X− μ̂N1

)′

N ( fθ )−1 (X− μ̂N1

)
around α (θ0) − α (θ) = 1, implied by Theorem 5 of

Lieberman et al. (2010), in our proof we consider separately the regions of θ with
α (θ0)−α (θ) < 1 and with α (θ0)−α (θ) ≥ 1. A similar distinction between the
two cases was made by Fox and Taqqu (1987), Terrin and Taqqu (1990), Robinson
(1995a), and Velasco and Robinson (2000). We derive a uniform limit for the
plug-in log-likelihood function that is valid on any compact parameter subspace
of � in which maxθ (α (θ0)−α (θ)) < 1. To handle the region of θ ′s on which
α (θ0)−α (θ) ≥ 1, we adopt a similar idea to that of Velasco and Robinson (Thm.
1), who proved that in this region, the discrete −1/N -normalized Whittle log-
likelihood converges to +∞ a.s. as N → ∞.

3. CONCLUSIONS

There is a very large body of literature on long memory processes and, in par-
ticular, on the asymptotic properties of various estimators in this context under
different conditions. The main contribution that this paper makes is in the es-
tablishment of consistency, asymptotic normality, and efficiency of the Gaussian
MLE when the memory parameter satisfies α (θ0) < 1. This range includes all
types of memory under stationarity and allows for the possibility of noninvertibil-
ity. This work therefore extends Dahlhaus’s (1989, 2006) seminal contribution,
which was done under long memory only, i.e., under the condition 0 < α(θ) < 1.
Similar progress has already been made in the semiparametric literature recently
(e.g., Velasco, 1999a; 1999b; Velasco and Robinson, 2000; Shimotsu, 2010), but
up to this point in time, the results for the parametric Gaussian case were confined
to the long memory range only.
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APPENDIX

Throughout the Appendix, whenever no confusion occurs, we shall use α to denote
α(θ) with the relevant θ ∈ � and α0 to denote α(θ0). Also, K denotes a generic positive
bounding constant that may vary from step to step.

Proof of Theorem 1. (i) Set Y = X− μ01 and Z = 
N (θ0)−1/2Y, so that Z ∼
N (0, IN ). Using the positive and negative parts of ∇ fθ together with Chebyshev’s in-
equality, Theorem 5.2 of Adenstedt (1974), and Lemma 2 of Lieberman et al. (2010), we
have for any θ ∈ �∣∣∣1′
−1

N (θ)
N (|∇ fθ |)
−1
N (θ)Y

∣∣∣≤ K (Z′Z)1/2 N (α(θ0)−α(θ))+/2+1/2−α(θ)/2+δ,

∀δ > 0. (A.1)

Using the mean value theorem with mean value θ∗ and applying (A.1), we obtain

A(θ,θ ′) ≡ |LN (θ)−LN (θ ′)| (A.2)

= 1

2N

∣∣∣Y′[
N ( fθ )−1 −
N ( fθ ′)−1]Y + logdet
[

N ( fθ )
N ( fθ ′)−1

]∣∣∣
+ (μ0 − μ̂N )2

2N

∣∣∣1′[
N ( fθ )−1 −
N ( fθ ′)−1]1
∣∣∣

+|μ0 − μ̂N |
N

∣∣∣1′[
N ( fθ )−1 −
N ( fθ ′)−1]Y
∣∣∣≤ |θ − θ ′|

2N

×
[
|Y′[
N ( fθ∗)−1
N (∇ fθ∗)
N ( fθ∗)−1]Y|
+|tr

[

N ( fθ∗)−1
N (∇ fθ∗)

]
|
]

+K
|θ − θ ′|

2N

(
N−1+α0+δ1′
N ( fθ∗)−1
n(|∇ fθ∗ |)
N ( fθ∗)−11

+K N (α0−α(θ∗))+/2+α0/2−α(θ∗)/2+δ(Z′Z)1/2
)

, ∀δ > 0.



ASYMPTOTIC THEORY FOR MLE 465

Thus, using Lemma 2 of Lieberman et al. (2010) for the first two terms, there exists a
γ ∈ (1,∞) such that

A(θ,θ ′) ≤ |θ − θ ′|K
2N

[
Z′ZNγ + Nγ+1 + Nγ (Z′Z)1/2

]
, ∀δ > 0.

Hence, setting cN ≡ N−γ−ε/2, for any ε > 0

Pθ0

[
sup

|θ−θ ′|<cN

|A(θ,θ ′)| > ε

]
≤ Pθ0

(
Z′Z

N
> εN ε/2

)
+o(1) = o(1). (A.3)

Let L N (θ) = LN (θ,μ0). We see that

|LN (θ)− L N (θ)| = 1

2N

∣∣∣(X− μ̂N1
)′


N ( fθ )−1 (X− μ̂N1
)−Y′
N ( fθ )−1Y

∣∣∣(A.4)

≤ 1

N

∣∣μ0 − μ̂N
∣∣ ∣∣∣1′
N ( fθ )−1Y

∣∣∣+ 1

2N

∣∣μ0 − μ̂N
∣∣21′
N ( fθ )−11.

Let �+(δ) = {θ ∈ �; α(θ) ≥ α0; |θ − θ0| ≥ δ}, �−(δ) = {θ ∈ �; α(θ) ≤ α0; |θ − θ0| ≥
δ}, �+ = �+(0), �− = �−(0). Using Theorem 5.2 of Adenstedt (1974), we obtain
supθ∈�+ 1

′
N ( fθ )−11 ≤ K N 1−α+δ ≤ K N 1−α0+δ, ∀δ > 0 so that together with As-
sumption 5, this implies

1

2N

∣∣μ0 − μ̂N
∣∣21′
N ( fθ )−11= oP (N−1+δ), ∀δ > 0, (A.5)

uniformly in θ ∈ �+. Similarly, with probability going to one, uniformly in θ ∈ �+ and
∀δ > 0,

1

N

∣∣μ0 − μ̂N
∣∣ ∣∣∣1′
N ( fθ )−1Y

∣∣∣ ≤ K N−3/2+α0/2+δ
(
1′
N ( fθ )−11

)1/2 (
Z′Z
)1/2 |

×
∥∥∥
N (θ0)1/2
N (θ)−1/2

∥∥∥
= oP (1). (A.6)

Equations (A.5) and (A.6) imply that (A.4) is oP (1) uniformly on �+. Together with (A.3),
we have for all ε > 0

Pθ0

[
sup

|θ ′−θ |<cN ,θ ′,θ∈�+
|L N (θ ′)− L N (θ)| > ε

]

≤ Pθ0

[
sup

|θ−θ ′|<cN ,θ ′,θ∈�+
|A(θ,θ ′)| > ε/2

]
+o(1) = o(1). (A.7)

We now prove that, for all ε > 0, Pθ0

[
infθ∈�+(δ) L N (θ)− L N (θ0) < ε

]→N→∞ 0. Con-
sider a covering of �+, with balls of radii cN and centers θj , j = 1, ..., JN , where

JN ≤ K N pK1 . Such a covering is possible because of the compactness of �+. Applying
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the chaining lemma (Polard, 1984) and using (A.3), for all ε > 0,

Pθ0

[
inf

θ∈�+(δ)
L N (θ)− L N (θ0) < ε

]
≤ Pθ0

[
sup

|θ ′−θ |<cN ,θ ′,θ∈�+
|L N (θ ′)− L N (θ)| > ε/2

]

+
JN

∑
j=1

Pθ0

[
L N (θj )− L N (θ0) < ε/2

]

≤
Jn

∑
j=1

Pθ0

[
L N (θj )− L N (θ0) < ε/2

]+o(1). (A.8)

Continuing, each term in (A.8) can be written as

Pθ0

[
L N (θ1)− L N (θ0) < ε/2

]= Pθ0

[
Y′[
N (θ0)−1 −
N (θ1)−1]Y−�N > 0

]
,

where �N is given by �N = −εN + logdet[
N (θ1)
N (θ0)−1]. Since α0 ≤ α(θ1) on �+,
an application of Chernoff’s inequality, with 0 < s < 1, yields

Pθ0

[
Y ′[
N (θ0)−1 −
N (θ1)−1]Y −�N > 0

]
(A.9)

≤ exp

{
sεN/2− s N K ( fθ0 , fθ1)+ s2

2
tr
[
(IN −
N (θ1)−1
N (θ0))2

]}
,

where

K ( f1, f2)N =
(

tr[
N ( f1)
N ( f2)−1 − IN ]− logdet[
N ( f2)−1
N ( f1)]
)

/2.

As in Dahlhaus (1989, p. 1755), uniformly in �+,

K ( fθ0 , fθ1) ≥ K

N
tr
[
(IN −
N (θ0)
N (θ1)−1)2

]
, (A.10)

implying that

Pθ0

[
Y ′[
N (θ0)−1 −
N (θ1)−1]Y −�N > 0

]
× ≤ exp

{
εN/2− K tr

[
(IN −
N (θ1)−1
N (θ0))2

]}
. (A.11)

By Theorem 5 of Lieberman et al. (2010), for any 0 < u < 1, uniformly in �+(δ) ∩
{θ ; α(θ) ≥ −1+u}, there exists a b1(δ) > 0 such that, for a large enough N ,

tr
[
(IN −
N (θ1)−1
N (θ0))2

]
= N

4π

∫ ( fθ0(ω)

fθ1(ω)
−1

)2
dω ≥ Nb1(δ). (A.12)

Further, uniformly in �+(δ) ∩ {θ ; α(θ) < −1 + u}, because α(θ) < 0, we have

N (θ1)−1 ≥ K IN , and

tr
[
(IN −
N (θ1)−1
N (θ0))2

]
≥ NC2

∫ (
fθ1(ω)− fθ0(ω)

)2 dω ≥ Nb2(δ), (A.13)
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for some b2(δ) > 0. It follows from (A.9)–(A.13) that we can choose ε > 0 small enough
such that

Pθ0

[
L N (θ1)− L N (θ0) < ε/2

]≤ e−N K b(δ)/2. (A.14)

Combining (A.8) with (A.14), we see that, for some constant K ′ > 0,

Pθ0

[
inf

θ∈�+(δ)
L N (θ)− L N (θ0) < 0

]
≤ K ′−N K b(δ)N pK1 +o(1) = o(1). (A.15)

To proceed, we decompose �−(δ) as �−(δ) = �1− ∪ �2−, with �1− = {θ ∈
�−(δ); α(θ) ≥ −1 + α0 + ε′} and �2− = �−(δ)��1−, for some small ε′ > 0. With
very similar calculations to those leading to (A.15), we obtain

Pθ0

[
inf

θ∈�1−
LN (θ)− L N (θ0) < ε

]
= o(1). (A.16)

We now study the behavior of Ln(θ) over �2−. Let c > 0 and b ∈ R be such that g(x) =
cx−b ≤ inf�2− fθ (x), and f2 (x) = C |x |−α0+1−ε′

such that f2 (x) ≥ sup�2− fθ (x) . Such
functions exists by the compactness of �. Note that for all θ ∈ �2−,

LN (θ) ≥ 1

2N
[Y′
N ( f2)−1Y−2(μ̂N −μ0)1
N ( f2)−1Y+ log |
N (g)|].

Because (μ̂N −μ0)1
N ( f2)−1Y = op (1) and the fact that

1

N
log |
N (g)
N ( f0)−1| →N→∞

1

2π

∫ π

−π
(log g(ω)− log f0(ω))dω,

uniformly in �2−, we have

LN (θ)− L N (θ0) ≥ 1

2N

[
Y′(
N ( f2)−1 −
N (θ0)−1)Y

]
− K ,

with probability going to 1. If α0 ≥ 0, then α0 −1+ε′ > −1, and by Theorem 5 of Lieber-
man et al. (2010),

1

N
tr
[

N (θ0)
N ( f2)−1 − IN

]
≥ 1

2π

∫ π

−π

[
Kω−1+ε′ −1

]
dω ≥ K

ε′ .

If α0 ≤ 0, then Lemma 7 of Lieberman et al. (2010) implies that for all A > 0 if ε′ is
sufficiently small

1

N
tr
[

N (θ0)
N ( f2)−1 − IN

]
≥ A.
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Hence for any ε > 0, by setting A > 2(K + ε) and ε′ small enough, we get

Pθ0

[
inf

θ∈�2−
LN (θ)− L N (θ0) < ε

]

≤ Pθ0

[
1

2N

[
Y′(
N ( f2)−1 −
N (θ0)−1)Y

]
≤ ε + K

]

≤ P0

[
Y′(
N (θ0)−1 −
N ( f2)−1)Y+ tr

[

N (θ0)
N ( f2)−1 − IN

]
× ≥ 1

2
tr
[

N (θ0)
N ( f2)−1 − IN

]]

≤
4tr

[(

N (θ0)1/2
N ( f2)−1
N (θ0)1/2 − IN

)2
]

(
tr
[

N (θ0)1/2
N ( f2)−1
N (θ0)1/2 − IN

])2
≤ 8[|
N (θ0)1/2
N ( f2)−1/2|2||
N ( f2)−1/2
N (θ0)1/2||2 + N ]

|
N (θ0)1/2
N ( f2)−1/2|4
= o (1) . (A.17)

Equations (A.15), (A.16), and (A.17) complete the proof of consistency.
(ii) By the mean value theorem,

∇LN

(
θ̂N

)
−∇LN (θ0) = ∇2LN

(
θ N , μ̂N

)(
θ̂N − θ0

)
, (A.18)

with
∣∣θ N − θ0

∣∣ ≤
∣∣∣θ̂N − θ0

∣∣∣. Since θ0 lies in the interior of �, for all ε > 0,(√
N∇LN

(
θ̂N

)
> ε
)

→p 0. Also,

√
N∇LN (θ0) = 1

2
√

N
tr
{

−1

θ0

∇,θ0

}
− 1

2
√

N

(
X− μ̂N1

)′

N ( fθ )−1 
N (∇ fθ )
N ( fθ )−1 (X− μ̂N1

)
.

Using similar decompositions to (A.4), supθ∈�

√
N |∇LN (θ0)−∇L N (θ0)| →p 0 and

√
N∇L N (θ0) = √

N∇2LN
(
θ N , μ̂N

)(
θ̂N − θ0

)
+op(1).

We now prove that

LN
(
θ N , μ̂N

)= 1

4π

∫ π

−π

∇ fθ0∇ fθ0

f 2
θ0

(ω)dω+op(1). (A.19)
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Set JN = 1
4π

∫ π−π
∇ fθ0∇ fθ0

f 2
θ0

(ω)dω, and write 
θ = 
N ( fθ ), 
∇,θ = 
N (∇ fθ ), 
∇2,θ =


N

(
∇2 fθ

)
,

∇2LN (θ) = − 1

2N
tr
(

−1

θ 
∇,θ
−1
θ 
∇,θ

)
+ 1

2N
tr
(

−1

θ 
∇2,θ

)
+ 1

N

(
X− μ̂N1

)′

−1

θ 
∇,θ
−1
θ 
∇,θ
−1

θ

(
X− μ̂N1

)
− 1

2N

(
X− μ̂N1

)′

−1

θ 
∇2,θ
−1
θ

(
X− μ̂N1

)
,

so that

∇2LN (θ)−∇2L N (θ) = 1

N

[
2Y′ Aθ1(μ0 − μ̂N )+ (μ0 − μ̂N )21′ Aθ1

]
, (A.20)

where Aθ is a linear combination of matrices of the form 
−1
θ 
∇,θ
−1

θ 
∇,θ
−1
θ

and 
−1
θ 
∇2,θ
−1

θ . On an application of Lemma 2 of Lieberman et al. (2010),
the absolute value of (A.20) is less than or equal to

K
[

N−1+α0/2+(α0−α(θ))++δ (Z′Z
)1/2 + N−1+α0+δ

]
= o(1),

uniformly on Uε (θ0) = {θ ; |θ −θ0| ≤ ε}, with ε > 0 small. By similar calculations to those
involving (A.2), letting cN = N−γ for some γ > 0, it can be seen that, for all ε′ > 0,

Pθ0

[
sup

|θ−θ ′|≤cN

∣∣∣∇2L N (θ)−∇2L N
(
θ ′)∣∣∣> ε′

]
= o(1) (A.21)

and

Pθ0

[∣∣∣∇2LN (θ,μ0)−∇2LN (θ0,μ0)
∣∣∣> u

]
≤ e−cN 1−2δu2

, (A.22)

for some c > 0 and δ < 1/2, which can be chosen as small as need be. Inequalities (A.21)
and (A.22) imply that

Pθ0

[
sup

|θ−θ0|<ε

∣∣∣∇2LN (θ,μ0)−∇2LN (θ0,μ0)
∣∣∣> ε′

]
= o(1).

Lemma 8 or Theorem 5 of Lieberman et al. (2010) implies (A.19). Note that JN ≥ cIN

for some positive constant c > 0. Therefore, we set Z N = √
N J−1/2

N ∇LN (θ0,μ0). Since

||
−1/2
θ0



1/2
|∇j |,θ0

||2 ≤ C N δ and since JN ≥ cIN for N large enough, the following Laplace

transform satisfies
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E(t) = EN
0

[
et ′ Z N

]

= exp

⎧⎨⎩ t ′ J−1/2
N tr

[

−1

θ0

∇,θ0

]
2
√

N

⎫⎬⎭
∣∣∣∣∣∣IN + t ′ J−1/2

N 

−1/2
θ0


∇,θ0

−1/2
θ0√

N

∣∣∣∣∣∣
−1/2

= exp

{
1

4N
tr

[{

−1

θ0

(
t ′ J−1/2

N 
∇,θ0

)}2
]

+ 1

6N 3/2 tr

[{(
IN +2u


−1/2
θ0

(
t ′ J−1/2

N 
∇,θ0

)



−1/2
θ0

)−1

×

−1/2
θ0

(
t ′ J−1/2

N 
∇,θ0

)



−1/2
θ0

}3
]}

,

for u ∈ (0,1).

It is quite easy to verify that

tr

[{

−1

θ0

(
t ′ J−1/2

N 
∇,θ0

)}2
]

4N
= ∑k

j=1 t2
j

2
+o(1).

We thus need only prove that the second term is o(1). We have already proved that(
IN +2u


−1/2
θ0

(
t ′ J−1/2

N 
∇,θ0

)



−1/2
θ0

)
> IN /2.

Thus the second term is bounded by

1

6N 3/2 tr

[{(
IN +2u


−1/2
θ0

(
t ′ J−1/2

N 
∇,θ0

)



−1/2
θ0

)−1

×

−1/2
θ0

(
t ′ J−1/2

N 
∇,θ0

)



−1/2
θ0

}3
]

≤ 4

3N 3/2 tr

[{



−1/2
θ0

(
t ′ J−1/2

N 
∇,θ0

)



−1/2
θ0

}3
]

≤ C N−1/2||
−1/2
θ0



1/2
|∇j |,θ0

||6

≤ C N δ−1/2, ∀δ > 0 = o(1).

This leads to E(t) = e|t |2/2(1+o(1)) for all t , so that Zn →N (0, Ip), and (ii) of Theorem
1 is proved. �


