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Abstract

Lagrange multiplier tests of spatial uncorrelatedness in a pure spatial autoregres-
sive model have advantages over other forms of testing. They are typically based on
the (χ2) first-order asymptotic approximation to the distribution of the test statistic.
In small samples this approximation may be poor. We develop refined tests based
on Edgeworth expansion. These are compared by Monte Carlo simulations to ones
that are respectively based on a bootstrap, and on the exact finite sample distribu-
tion. Generally such tests are found to significantly outperform those based on the
χ2 approximation. We also develop Edgeworth-based tests for uncorrelatedness of
disturbances in a regression model, against the alternative of spatial autoregressive
disturbances.
JEL classifications: C29
Keywords: Spatial autocorrelation; Lagrange multiplier test; Edgeworth expansion;
bootstrap; finite-sample corrections.

1 Introduction

The spatial autoregressive (SAR) model is a parsimonious method of de-
scribing spatial dependence, conveniently depending only on economic distances
rather than actual locations, which may be unknown or irrelevant. It thus pro-
vides a convenient, widely-usable class of alternatives in testing the null hypoth-
esis of spatial uncorrelatedness which, if true, considerably simplifies statistical
inference. Lagrange multiplier (LM) testing is especially computationally conve-
nient because it depends on the null model, and thus does not require estimating
the spatial autoregressive coefficient. An LM test can be expected to be efficient
against local SAR alternatives, and to have an asymptotic null χ2 distribution
under the null hypothesis. However, the χ2 approximation may not be accurate
in modest samples, so a test based on it may be badly sized. Thus we develop
tests with improved finite-sample properties.

The SAR model is given by

Yn = λWnYn + εn, (1.1)
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where Yn is a n× 1 vector of observations, εn is a n× 1 vector of unobservable,
mutually independent, random variables, with zero mean and finite variance, λ
is a scalar, and Wn is a given n×n “weight” matrix. In the sequel, we drop the
n subscript, writing ε = εn, Y = Yn, W = Wn, with the same convention for
other n−dependent quantities. In particular, W has zero diagonal elements,
and typically satisfies some normalization restrictions (which aid identification
of λ). Generally when λ 6= 0, (1.1) implies spatial correlation among elements
of Y . However, when λ = 0 these elements are mutually independent. We thus
consider testing the null hypothesis

H0 : λ = 0 (1.2)

in (1.1). Various such tests have already been discussed in the literature (see
e.g. Moran (1950), Cliff and Ord (1972), Burridge (1980), Pinkse (2004) ).

Superficial inspection of (1.1) suggests a Wald test based on the ordinary
least squares (OLS) estimate of λ. However, unlike in the case of stationary
time series autoregression, the dependence in general of each element of Y on
each element of ε (rather than on just the ”present and past” ones) produces
inconsistency (Lee (2002)). On the other hand when λ = 0 we have Y = ε
and, under regularity conditions, the OLS estimate converges to zero, and thus
could be used to test (1.2). But because it converges as n → ∞ to a biased
probability limit when λ 6= 0, there are questions about power, and the classical
asymptotic local and non-local power properties of Wald tests will not apply.
A second familiar course of action is to consider the maximum likelihood (ML)
estimate, assuming also that the elements of ε are identically distributed normal
variables. Lee (2004) showed that under regularity conditions the ML estimate
of λ is consistent and asymptotically normal (for any λ), and thus can be used
in Wald testing. The drawback here is computational, as the ML estimate is
not defined in closed form, and this affects also likelihood-ratio testing. The
other class commonly linked with Wald and likelihood-ratio tests is LM testing,
based on a normal likelihood, and as usual this produces a relatively simple
closed-form statistic for testing (1.2) (or indeed for testing any value of λ).

With regularity conditions, the LM statistic has a null limiting χ2 distribu-
tion, as n → ∞. Frequently, however, spatial economic data sets are not very
large, and there is a question about the accuracy of this asymptotic approxima-
tion to the distribution. This is of particular concern in the SAR setting because
(as our results indicate), convergence to the χ2 limit distribution can be slower
than the classical parametric rate. Thus we consider tests that are based on the
LM statistic but that potentially have better size properties in finite samples.
The main contribution of the paper is to develop tests based on the Edgeworth
expansion of the distribution function of the LM statistic. This is the focus
of the following section. We next provide corresponding tests of (1.2) in linear
regression models, with SAR disturbances. In both cases theorem proofs are left
to an Appendix. In Section 4 we specify the finite sample corrections of Robin-
son (2008), so that the finite sample performance of the latter can be compared
with that of the Edgeworth-corrected tests. As is well known, a bootstrap can
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achieve an Edgeworth correction, in Section 5 we compare bootstrap-based tests
with the Edgeworth ones in a Monte Carlo study of finite sample. Section 6
compares the Edgeworth approximation with the the exact distribution of the
LM statistic.

2 Edgeworth-corrected LM tests for pure SAR

The LM statistic for testing (1.2) against (1.1) with the alternative hypoth-
esis

H1 : λ 6= 0, (2.1)

is

LM =
n2

tr(W 2 +WW ′)

(
Y ′WY

Y ′Y

)2

, (2.2)

This statistic was derived by Burridge (1980) who noted that it is equivalent to
the test statistic of Cliff and Ord (1972), which in turn is related to a statistic
of Moran (1950); see also Anselin(1988, 2001) for extensions to more general
models, and Pinkse (2004). As noted by Burridge (1980), (2.2) is also the LM
statistic for testing (1.2) against the spatial moving average model

Y = ε+ λWε

(a corresponding equivalence to that found with time series models).
The derivation of (2.2) is based on a Gaussian likelihood but as is common

the same first order limit distribution obtains more generally. Under suitable
conditions we have

P (LM ≤ η) = F (η) + o(1) (2.3)

for any η > 0, where F denotes the distribution function (df) of a χ2
1 random

variable. Thus (1.2) is rejected in favour of (2.1) if LM exceeds the appropriate
percentile of the χ2

1 distribution. We can likewise test (1.2) against a one-sided
alternative, λ > 0 or λ < 0, by comparing

√
LM with the appropriate upper

or lower percentiles of the standard normal distribution. However, except in
Section 6, we focus throughout on the two-sided tests.

We do not describe sufficient conditions for (2.3), because we wish to consider
statistics with better finite-sample properties and we can only justify these under
the precise distributional assumption.

Assumption 1 The elements of ε are independent and identically distrib-
uted normal random variables with mean zero and unknown variance σ2.

We denote by wij = wij the (i, j)-th element of W , and introduce

Assumption 2

(i) For all n, wii = 0, and Σnj=1wij = 1, i = 1, ..., n;
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(ii) For all n,

max
j

n∑
i=1

|wij |+ max
i

n∑
j=1

|wij | ≤ K,

where K is a finite generic constant;

(iii) Uniformly in i, j = 1, ..., n, wij = O(1/h), where h = hn is bounded away
from zero for all n and h/n→ 0 as n→∞;

(iv) The limits

lim
n→∞

h

n
tr(W i), i = 2, 3, 4; lim

n→∞

h

n
tr (W ′W ) (2.4)

are non-zero.

The normalization in (i) is not strictly necessary ((2.2) is invariant to mul-
tiplication of W by any scalar), but it (and the restriction |λ| < 1) plays a role
in constructing the likelihood, and it or some other normalization is commonly
employed in practice. If W is symmetric with non-negative elements, (i) implies
(ii). The sequence h in (iii) and (iv) can be bounded or divergent; a condition
governing the behaviour of the wij is commonly required in asymptotic theory
for statistics based on (1.1), and subsequently we discuss its implications in re-
lation to the particular W employed in the simulations there. The limits (2.4)
exist and are finite by Lemma 1 of Appendix C, so (iv) just requires them not
to vanish.

Throughout, the notation a ∼ b means that a/b converges to a positive,
finite limit. Moreover, f denotes the χ2 probability density function (pdf).

Theorem 1 Under (1.2) and Assumptions 1 and 2, the df of LM admits the
formal Edgeworth expansion

Pr(LM ≤ η) = F (η) +
κ

4
ηf(η)− κ

12
η2f(η) + o

(
h

n

)
(2.5)

in case h is divergent, and

Pr(LM ≤ η) = F (η) +
κ

4
ηf(η)− κ

12
η2f(η)− 2

n
η2f(η) + o

(
1
n

)
(2.6)

when h is bounded, where

κ =
3tr(W ′ +W )4

a2
∼ h

n
(2.7)

and a = tr(W 2 +W ′W ).

The proof of Theorem 1 is in Appendix A. It must be stressed that both
expansions in Theorem 1 are formal. It is beyond the scope of the paper to
establish validity .
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Clearly, (2.5) and (2.6) entail better approximations than (2.3). The leading
terms in (2.5) and (2.6) depend on known quantities, so they can be used directly
for approximating the df. The two outcomes in Theorem 1 create a dilemma for
the practitioner because it cannot be determined from a finite data set whether
to treat h as divergent or bounded. However, (2.6) is justified also when h is
divergent because the extra term in the expansion, −2η2f(η)/n, is o(h/n).

Theorem 1 can be used to derive Edgeworth-corrected critical values. Let
wα and zα be the α-quantile of LM and a standard normal variate, respectively.
By inverting either expansion, we can expand wα as an infinite series

wα = z2
(1+α)/2 + p1(z2

(1+α)/2) + ......, (2.8)

where p1(z2
(1+α)/2) is a polynomial whose coefficients have order h/n, and that

can be determined using the identity α = Pr(LM ≤ wα) and the expansions
given in Theorem 1. Specifically, when h is divergent, we have

α = Pr(LM ≤ wα) = F (wα) +
(κ

4
wα −

κ

12
w2
α

)
f(wα) + o

(
h

n

)
.

By substituting (2.8), the leading terms of the LHS are

F (z2
(1+α)/2) + p1(z2

(1+α)/2)f(z2
(1+α)/2)

+
(κ

4
z2
(1+α)/2 −

κ

12
z4
(1+α)/2

)
f(z2

(1+α)/2) + o

(
h

n

)
= α+ p1(z2

(1+α)/2)f(z2
(1+α)/2)

+
(κ

4
z2
(1+α)/2 −

κ

12
z4
(1+α)/2

)
f(z2

(1+α)/2) + o

(
h

n

)
.

The latter is α+ o(h/n) (rather than α+O(h/n)), when we take

p1(x) = −
(κ

4
x− κ

12
x2
)
∼ h

n
. (2.9)

Similarly, when h is bounded, we take

p1(x) = −
(
κ

4
x− κ

12
x2 − 2

n
x2

)
∼ 1
n
. (2.10)

If wα were known, the size of a test of H0 in (1.2) would obviously be
Pr(LM > wα|H0) = 1− α. We can compare the size of the test of H0 in (1.2)
based on the usual first order approximation, i.e.

Pr(LM > z2
(α+1)/2|H0) (2.11)

with
Pr(LM > z2

(α+1)/2 + p1(z2
(α+1)/2)|H0), (2.12)
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where p1(.) is defined according to (2.9) if h is divergent and (2.10) if h is
bounded.

Thus, the error of the approximation of (2.11) is O(h/n), while that of (2.12)
is o(h/n) when the sequence h is divergent, or o(1/n) when it is bounded.

As an alternative to using corrected critical values, we can also apply Theo-
rem 1 to construct a transformation of LM whose distribution better approxi-
mates χ2 than LM itself. Starting from the expansion in (2.5), we consider the
cubic transformation

g(x) = x+
κ

4
x− κ

12
x2 +

1
4
Q(x), Q(x) =

(κ
4

)2
(

4
27
x3 − 2

3
x2 + x

)
, (2.13)

such that

Pr(g(LM) ≤ η) = F (η) + o

(
h

n

)
.

Similarly, from (2.6), we can write

g(x) = x+
κ

4
x− κ

12
x2 − 2

n
x2 +

1
4
Q(x),

Q(x) =
(κ

4

)2

x+
1
3

(
κ

6
+

4
n

)2

x3 − κ

4

(
κ

6
+

4
n

)
x2, (2.14)

such that

Pr(g(LM) ≤ η) = F (η) + o

(
1
n

)
.

The transformations (2.13) and (2.14) were proposed in case of a standard
normal limiting distribution by Hall (1992), or, in a slightly more general setting,
Yanagihara et al. (2005). In Lemma 4 (reported in Appendix C) we show that
such result extends to χ2 limiting distributions.

Therefore, we can compare

Pr(g(LM) > z2
(α+1)/2|H0), (2.15)

where g(.) is defined according to (2.13) or (2.14) depending on h, with (2.11).
Again, (2.15) has error o(h/n) compared to the O(h/n) error of (2.11).

3 Improved LM tests in regressions where the
disturbances are spatially correlated

We can extend the results obtained in Section 2 to the more general model

Y = Xβ + u, u = λWu+ ε, (3.1)

where X is an n×k matrix of nonstochastic regressors and β is a k×1 vector of
unknown parameters. From Burridge (1980), Anselin (1988, 2001), the Lagrange
multiplier statistic for testing (1.2) is

˜LM =
n2

tr(W ′W ) + tr(W 2)

(
û′Wû

û′û

)2

=
n2

a

(
Y ′PWPY

Y ′PY

)2

, (3.2)
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where
P = I −X(X ′X)−1X ′. (3.3)

We impose the following condition on X:

Assumption 3 For all n, each element xij of X is predetermined and uni-
formly bounded in absolute value. Moreover, the smallest eigenvalue of X ′X/n
are bounded away from zero for all sufficiently large n and the limits of at least
one component of X ′WX/n, X ′W 2X/n and X ′W ′WX/n are non zero.

We have the following results:

Theorem 2 Under (1.2) and Assumptions 1-3, the df of ˜LM admits the formal
Edgeworth expansion

Pr( ˜LM ≤ η) = F (η) +
(κ

4
η − κ

12
η2 + 2ω1η

)
f(η) + o

(
h

n

)
(3.4)

with

ω1 =
tr(K3 −K2)

a
− 1

2
(tr(K1))2

a
∼ h

n
(3.5)

if h is divergent, and

Pr( ˜LM ≤ η) = F (η) +
(
κ

4
η − κ

12
η2 + 2ω2η −

2
n
η2

)
f(η) + o

(
1
n

)
(3.6)

with

ω2 =
tr(K3 −K2)

a
− 1

2
(tr(K1))2

a
− k

n
∼ 1
n

(3.7)

if h is bounded, where κ is given in (2.7),

K1 = (X ′X)−1X ′WX, (3.8)

K2 =
1
2
X ′(W +W ′)X(X ′X)−1X ′(W ′ +W )X(X ′X)−1 (3.9)

and
K3 = X ′(W +W ′)2X(X ′X)−1. (3.10)

The components of (X ′X)−1 have order 1/n by Assumption 3. On the other
hand, the components of X ′WX, X ′(W +W ′)X and X ′(W +W ′)2X are O(n)
by Lemma 2. Assumption 3 imposes that for at least one component of each
matrix the latter holds as an exact rate. It follows that tr(K1), tr(K2) and
tr(K3) are bounded and non zero. Hence ω1 and ω2 have exactly order h/n and
1/n, respectively.
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The proof of Theorem 2 is in Appendix B. Again, both the expansions are
formal.

From (3.4) and (3.6), we can obtain Edgeworth-corrected critical values.
Much as in Section 2 we can obtain improved critical values. The size based on
χ2 critical value is

Pr( ˜LM > z2
(α+1)/2|H0) (3.11)

while the Edgeworth-corrected critical value is

Pr( ˜LM > z2
(α+1)/2 + p̃1(z2

(α+1)/2)|H0), (3.12)

where
p̃1(z2

(α+1)/2) = −
(κ

4
z2
(α+1)/2 −

κ

12
z4
(α+1)/2 + 2ω1z

2
(α+1)/2

)
if h is divergent and

p̃1(z(α+1)/2) = −
(
κ

4
z2
(α+1)/2 −

κ

12
z4
(α+1)/2 + 2ω2z

2
(α+1)/2 −

2
n
z4
(α+1)/2

)
if h is bounded. As before, (3.11) has error of order h/n, while (3.12) has error
o(h/n).

As in Section 2, we can also consider Edgeworth-corrected test statistics. The
size of test of H0 in (1.2) based on the standard Lagrange multiplier statistic,
as given in (3.11) is compared with that based on a corrected statistic, i.e.

Pr(g̃( ˜LM) > z2
(α+1)/2|H0). (3.13)

The choice of the function g̃ is motivated by Lemma 4 and in this case is given
by

g̃(x) = x+
κ

4
x− κ

12
x2 + 2ω1x+

1
4
Q(x),

where

Q(x) =
((κ

4

)2

+ 4ω2
1 + κω1

)
x− 1

2

(
2
3
κω1 +

κ2

12

)
x2 +

1
3

(κ
6

)2

x3

in case h is divergent and

g̃(x) = x+
κ

4
x− κ

12
x2 + 2ω2x−

2
n
x2 +

1
4
Q(x),

with

Q(x) =
(κ

4
+ 2ω2

)2

x−
(κ

4
+ 2ω2

)(κ
6

+
4
n

)
x2 +

1
3

(
κ

6
+

4
n

)2

x3

if h is bounded. Similarly to the case of model (1.1), when the standard Lagrange
multiplier statistic is used the error of the approximation has order h/n while
it is reduced to o(h/n) when the test is based on the Edgeworth-corrected test
statistic.
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4 Alternative correction

The results derived in Sections 2 and 3 can be compared with two alter-
native corrections derived for asymptotically χ2 statistics in Robinson (2008).
In particular, Robinson (2008) proposes both mean-adjusted and mean and
variance-adjusted variants of (2.2) and (3.2), which prove to be asymptotically
distributed as a χ2 random variable with one degree of freedom. Such corrected
statistics are expected to have better finite sample properties than either (2.2)
or (3.2), even though the magnitude of the gain in accuracy is not explicitly
shown. In finite sample the corrected statistic based on mean adjustment might
have a larger variance than the non-corrected version, resulting in a partial (or
total) offset of the gain in accuracy from the mean standardisation. In such
case, a mean and variance standardisation should be performed instead.

It should be stressed that such corrected statistics might be convenient in
the present case since the ratios ε′Wε/ε′ε and ε′PWPε/ε′Pε are independent
of their own denominator and therefore the expectation of the ratio is equal
to the ratio of expectations (Pitman (1937)). If the latter condition failed, a
correction based on mean and variance standardisation would not be convenient
(or even impossible), since the evaluation of mean and variance would require
some approximation.

We suppose that (1.2) and Assumptions 1-3 hold and focus on the simpler
case first, i.e. the statistic given in (2.2). Specifically, Robinson (2008) proposes
a mean and variance-adjusted null statistic as(

2
V ar(LM)

)1/2

(LM − E(LM)) + 1, (4.1)

where V ar(LM) denotes the variance of LM . In order to compare the perfor-
mance of such corrected statistics with that based on the results presented in
Section 2, the leading terms of (4.1) have to be derived.

As presented in Robinson (2008),

E(LM) =
(

1 +
2
n

)−1

, (4.2)

while

V ar(LM) =
n4

a2

E(ε′Wε)4

E(ε′ε)4
−
(

1 +
2
n

)−2

.

By some standard formulae on expectations of quadratic forms in normal ran-
dom variables (see e.g. Ghazal (1996)), we have

V ar(LM) =
n2

a2

3a2 + 3tr((W +W ′)4)
n4
(
1 + 12

n + 44
n2 + 48

n3

) − (1 +
2
n

)−2

= 2 +
3tr((W +W ′)4)

a2
− 32

n
+ o

(
1
n

)
, (4.3)
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where the second equality follows by standard Taylor expansion.
Collecting (4.2) and (4.3), (4.1) becomes(

1 +
3tr((W +W ′)4)

2a2
− 16

n
+ o

(
1
n

))−1/2
(
LM −

(
1 +

2
n

)−1
)

+ 1

=
(

1− 3
4
tr((W +W ′)4)

a2
+

8
n

+ o

(
1
n

))(
LM − 1 +

2
n

+ o

(
1
n

))
+ 1,

where the second equality follows by Taylor expansion. Hence, when h is diver-
gent, we define

¯LM = LM − 3
4
tr((W +W ′)4)

a2
(LM − 1) (4.4)

while
¯LM = LM − 3

4
tr((W +W ′)4)

a2
(LM − 1) +

8
n
LM − 6

n
(4.5)

when h is bounded.
For both divergent and bounded h, we consider the size of the test of (1.2)

based on ¯LM , i.e.
Pr( ¯LM > z2

(α+1)/2|H0). (4.6)

We expect that when inference is based on ¯LM rather than on LM , the error
of the approximation is reduced by one order. To this extent, the finite sample
performance of ¯LM should be similar to that of g(LM), with g defined in (2.13)
or (2.14).

Finally, we consider the mean-adjusted null statistic corresponding to (3.2).
Since the algebraic burden is larger relative to the previous case, the derivation
of the mean and variance-adjusted variant is omitted. At the beginning of this
section, we stressed that mean and mean and variance adjustments might be
algebraically more convenient than Edgeworth corrections. However, the mean
and variance standardisation of (3.2) does not entail significant computational
advantage and is therefore omitted.

Given (3.2), Robinson (2008) proposes the mean-adjusted null statistic

˜LM
E( ˜LM)

. (4.7)

Using standard formulae, we specify the results of Robinson (2008) as

E( ˜LM) =
n2

a

E
(

1
2ε
′P (W +W ′)Pε

)2
E(ε′Pε)2

= 1 +
(tr(K1))2

a
+
tr(K2 −K3)

a
− 2(1− k)

n
+O

(
1
n2

)
,
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where K1, K2 and K3 are defined according to (3.8), (3.9) and (3.10), respec-
tively. The second equality follows by a standard Taylor expansion of the de-
nominator. Hence, (4.7) becomes

˜LM
(

1− (tr(K1))2

a
− tr(K2 −K3)

a

)
+ o

(
h

n

)
in case h is divergent, and

˜LM
(

1− (tr(K1))2

a
− tr(K2 −K3)

a
+

2(1− k)
n

)
+ o

(
1
n

)
if h is bounded. We define

¯̃LM = ˜LM
(

1− (tr(K1))2

a
− tr(K2 −K3)

a

)
(4.8)

in case hn is divergent, and

¯̃LM = ˜LM
(

1− (tr(K1))2

a
− tr(K2 −K3)

a
+

2(1− k)
n

)
(4.9)

when hn is bounded.
We consider the size of the test of (1.2) based on ˜̄LM , i.e.

Pr( ˜̄LM > z2
(α+1)/2|H0). (4.10)

As previously mentioned, the finite sample variance of the mean-adjusted sta-
tistic can be larger than that of the non corrected one. From (4.8) and (4.9),
it is straightforward to notice that this might be the case, depending on the
choice of W . By means of some Monte Carlo simulations we can assess whether
the mean standardisation correction is worthwhile for any particular choice of
W and its performance is therefore comparable with that based on Edgeworth
corrections.

5 Bootstrap correction and simulation results

In this section we report some Monte Carlo simulations to investigate the
finite sample performance of the refined tests derived in Sections 2, 3 and 4.
Tables are reported at the end of the paper.

In this simulation work we adopt the Case (1991) specification for W , i.e.

W = Ir ⊗Bm, Bm =
1

m− 1
(ll′ − Im), (5.1)

where r is the number of districts and m is the number of households in each
district. We denote l an m− dimensional column of ones. With this specifica-
tion, two households are neighbours if they belong to the same district and each

11



neighbour is given the same weight. Therefore, n = mr and h = m − 1. W in
(5.1) is symmetric and hence

a = 2tr(W 2), κ =
12tr(W 4)
(tr(W 2))2

In each of the 1000 replications the disturbance terms are generated from a nor-
mal distribution with mean zero and unit variance, i.e. according to Assumption
2 with σ2 = 1. We set α = 95%. Moreover, we construct X as an n × 3 ma-
trix (that is, we set k = 3) whose first column is a column of ones, while each
component of the remaining two columns are generated independently from a
uniform distribution with support [0, 1] and kept fixed at each replication.

For both models (1.1) and (3.1), the empirical sizes of the test of H0 in (1.2)
based on the usual normal approximation are compared with the same quanti-
ties obtained with both the Edgeworth-corrected critical values and Edgeworth-
corrected test statistics. Such values are compared also with the empirical size
based on the corrected statistics derived according to the procedure described
in Section 4.

In addition, we consider the simulated sizes based on bootstrap critical values
since it is well established that these achieve the first Edgeworth correction and
should then be similar to the results obtained in Sections 2 and 3 (e.g. Hall
(1992), Efron and Tibshirani (1993), DiCiccio and Romano (1995) or DiCiccio
and Efron (1996)).

Before discussing and comparing the simulation results, we outline how the
bootstrap critical values have been obtained. It must be stressed that we focus
on the implementation of the bootstrap procedure, without addressing validity
issues. Let Y ∗ be a vector of independent observations from the N(0, Y ′Y/n)
distribution. Let

LM∗ =
n2

a

(
Y ∗

′
WY ∗

Y ∗′Y ∗

)2

.

Generating B pseudo-samples Y ∗, w∗α is defined such that the proportion of
LM∗ that does not exceed w∗α is α. The bootstrap test rejects H0 when LM >
w∗α. Hence, the size of the test of (1.2) based on bootstrap is

Pr(LM > w∗α|H0). (5.2)

Regarding the procedure to obtain w∗α, a remark is needed. When interested
in testing, the bootstrap procedure when we impose H0 to generate Y ∗ gives
results at least as good as the same algorithm without imposing H0 ( Paparodi-
tis and Politis (2005)). Some numerical work actually shows that imposing H0

is convenient in the present case.

When dealing with (3.2), we modify the previous algorithm accordingly, i.e.
we define

˜LM
∗

=
n2

a

(
u∗

′
PWPu∗

u∗′Pu∗

)2

,
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where u∗ is a vector of independent observations from the N(0, Y ′PY/n) distri-
bution. In this case, we denote w̃∗α the bootstrap α−quantile. The size of the
test of (1.2) based on the bootstrap procedure is then

Pr( ˜LM > w̃∗α|H0). (5.3)

In both procedures we set B = 199.

Tables 1 and 2 display the simulated values corresponding to (2.11), (2.12),
(2.15), (4.6) and (5.2) when h (that is, m in (5.1)) is divergent and bounded, re-
spectively. Moreover, Tables 3 and 4 display the simulated values corresponding
to (3.11), (3.12), (3.13), (4.10) and (5.3) when h is either divergent or bounded,
respectively. All the values in Tables 1-4 have to be compared with the nomi-
nal 5%. For notational convenience, in the Tables we denote by “chi square”,
“Edgeworth”, “transformation”, “mean-variance correction” and “bootstrap”
the simulated values corresponding to (2.11)/(3.11),(2.12)/(3.12), (2.15)/(3.13),
(4.6)/(4.10) and (5.2)/(5.3), respectively.

(Tables 1-4 about here)

From Tables 1 and 2 we notice that the approximation entailed by the first
order asymptotic theory does not work well in practice. Indeed, the nominal 5%
is underestimated for all sample sizes and whether h is divergent or bounded,
although in the latter case the convergence to the nominal value appears to
be faster, as expected. On the other hand, all the corrections we consider
improve upon the approximation. In particular, when h is divergent (Table 1)
the corrections based on the Edgeworth corrected test statistic and bootstrap
critical values appear to outperform the others, at least for the sample sizes
considered here. The same considerations hold in case h is bounded (Table 2),
although the discrepancy among the performance of the different corrections is
less glaring. This results were expected, since, as previously mentioned, the rate
of convergence of the cdf of LM to the χ2 cdf is faster in this case.

From Tables 3 and 4 we see that the usual test based on first order asymptotic
theory performs even worse than in the previous case. However, the corrections
give very satisfactory results. In particular, when h is divergent, both the test
based on Edgeworth-corrected critical values and Edgeworth-corrected statistics
appear to perform very well, giving results that are comparable to the bootstrap-
based procedure. The simulated values corresponding to (4.6) are closer to the
nominal 5% than ones of the standard test for all sample sizes, but not as
satisfactory as the Edgeworth-based results. This might be due to the variance
inflation discussed in Section 4. Again, when the sequence h is bounded, the
pattern of the results appears to be very similar.
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6 The exact distribution

In Sections 2 and 3 we developed refined procedures for testing (1.2) based
on Lagrange Multiplier statistics, as given in (2.2) and (3.2), respectively. It
must be mentioned that, since λ is a scalar parameter, we could have focused on
the square root of the statistics in (2.2) and (3.2) and test H0 against a one-sided
alternative. We chose to develop the corrected procedure based on (2.2) and
(3.2), and compare its performance in finite samples with that derived in Robin-
son (2008), because in several circumstances we might not have any preliminary
evidence about the sign of λ and therefore the standard two-sided Lagrange
Multiplier test might be preferred instead. However, it should be stressed that
in case a test against a one-sided alternative is justified, suitable Edgeworth-
corrections can be derived by a relatively straightforward modification of the
proofs of either Theorems 1 or 2.

In this section we investigate numerically the properties of the distribution
under H0 of the square root of both (2.2) and (3.2), denoted by T and T̃ re-
spectively, by means of Imhof’s procedure and compare the results with those
obtained using Edgeworth correction terms. The numerical evaluation of the
df of T and T̃ and the corresponding quantiles, despite the obvious limitations
of numerical algorithms, provides some information about the true distribu-
tion of the statistics and, to some extent, confirms the accuracy of Edgeworth
corrections.

Since the numerical procedure is implemented using W given in (5.1), we
describe the algorithm for a symmetric weight matrix, although it can be easily
generalised to any choice of W . Moreover, we will describe the numerical pro-
cedure for evaluating the df of T , but the same argument with minor, obvious,
modifications holds for T̃ .

As discussed in the proof of Theorem 1, we can write Pr(T ≤ ζ) = Pr(ε′Cε ≤
0), where C = W − ζa1/2/nI (that is (A.2) with x = a1/2ζ).

When the df can be written in terms of a quadratic form in normal random
variables, as is the case in the last displayed expression, a procedure to evaluate
it by numerical inversion of the characteristic function has been developed by
Imhof (1961) and then improved and extended to different contexts by several
authors. For the purpose of our implementation, we rely on the work by Imhof
(1961), Davies (1973), Davies (1980), Ansley et al. (1992) and on the survey of
Lu and King (2002).

Let s be the number of the distinct eigenvalues of σ2C, which are denoted by
µj for j = 1, .., s, while nj for j = 1, ..., s is their order of algebraic multiplicity.
Staring from the inversion formula of Gil-Pelaez (1951), Imhof (1961) suggests
to evaluate the df of ε′Cε as

Pr(ε′Cε ≤ 0) =
1
2
− 1
π

∞∫
0

sinθ(u)
uγ(u)

du, (6.1)
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where

θ(u) =
s∑
j=0

(nj
2
tg−1(2uµj)

)
and γ(u) =

s∏
j=1

(1 + 4u2µ2
j )
nj/4.

The integral on the RHS of (6.1) cannot be evaluated using standard analyt-
ical methods because of the oscillatory nature of the integrand function and
numerical procedures should be employed instead.

As suggested in Lu and King (2002), we rely on the discretisation rule pro-
vided by Davies (1973), which is based on a trapezoidal approximation for the
integral on the RHS of (6.1), i.e.

Pr(ε′Cε ≤ 0) =
1
2
−

M∑
m=0

sinθ((m+ 1
2 )∆)

π(m+ 1
2 )γ((m+ 1

2 )∆)
, (6.2)

where ∆ is the step interval and M is related to the truncation point, denoted
by U henceforth, by the relationship U = (M + 1/2)∆. Both ∆ and U need to
be determined numerically.

We denote by MGF (t) the moment generating function of ε′Cε. In order to
evaluate ∆, we solve numerically the equation

MGF (t)− tMGF (1)(t)− ln(EI) = 0, (6.3)

where MGF (1)(t) = dMGF (t)/dt and EI is the maximum allowable integration
error. It can be shown (see e.g. Ansley et al.(1992)) that the last displayed equa-
tion has always two solution t1 > 0 and t2 < 0, both satisfying the constraint
(1− 2tiµj) > 0, ∀j = 1, ....s, and i = 1, 2. For i = 1, 2, we define

∆i = sign(ti)
2π

MGF (1)(t)|t = ti
.

We choose ∆ appearing in the RHS of (6.2) as the minimum value of ∆i, for
i = 1, 2.

U is derived as the numerical solution of

lnξ(U)− lnET = 0, (6.4)

where ET is the maximum allowable truncation error and

ξ(U) =
2
πn

s∏
j=1

|µj |−nj/2(2U)−n/2.

Once both ∆ and U are obtained, the df of ε′Cε using (6.2) can be evaluated.
As suggested in Davies(1973), we set tolerance E = 10−6 and we choose EI =
0.1E and ET = 0.9E.

In order to calculate the α-quantile of the cdf of T , we need to find ζ so that

Pr(T ≤ ζ) = α,
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where the LHS of the last displayed expression can be obtained, as a function of
ζ, by the algorithm described above. However, in the present case, the numerical
solution to calculate ζ is particularly troublesome since the approximated df of
T is almost flat as ζ varies.

Although Imhof’s framework to obtain the cdf and its quantiles is useful to
some extent, it obviously relies heavily on several numerical solutions of highly
non-linear equations, such as (6.3) and (6.4). Hence it cannot be preferred to
analytical procedures that improve upon the approximation given by the central
limit theorem, such as those based on Edgeworth expansions or on mean and
variance standardization. However, despite being not fully reliable, quantiles
obtained with Imhof’s procedure can be compared with Edgeworth-corrected
ones, to provide further evidence that the latter are closer to the true values
than those of the normal df.

Edgeworth-corrected quantiles of the df of T can be obtained from some
intermediate results displayed in Theorem 1 and a procedure similar to that
described in Section 2. Specifically, in Appendix A we derive the Edgeworth
expansion for the df of T as

Pr (T ≤ ζ) = Φ(ζ)− κ̄

3!
H2(ζ)φ(ζ) + o

(√
h

n

)
,

where κ̄ = tr(W ′ +W )3/a3/2 and H2 is the second Hermite polynomial. From
the last displayed expression we can derive a corresponding expansion for the
α−quantile by a straightforward modification of the argument presented in Sec-
tion 2. We denote the true α−quantile of the df of T by qα and we write

qα = zα +
κ̄

3!
H2(ζ) + o

(√
h

n

)
,

whether h is either divergent or bounded.

(Tables 5 and 6 about here)

As expected, from Tables 5 and 6 we notice that for all sample sizes and
for h being either divergent or bounded, the Edgeworth-corrected quantiles for
α = 0.95, 0.975, 0.99 are closer to those obtained by Imhof’s procedure than
ones of the standard normal df. Indeed, the standard normal quantiles are
significantly lower than Imhof’s ones for all sample sizes. To some extent, this
confirms that tests based on Edgeworth-corrected critical values should be more
reliable than those based on the standard normal approximation.

Imhof’s algorithm has also been implemented to obtain the df of T̃ . Unfor-
tunately, in this case, the numerical procedure does not work well and it appears
to be too sensitive to both the choice of the initial values for the numerical so-
lution of non-linear equations and the choice of X. This give strong motivation
to the practitioner to rely on the analytical corrections based on Edgeworth
expansions, rather than on numerical procedures to evaluate the exact df.

16



A Appendix A: Proof of Theorem 1

Under (1.2), (2.2) becomes LM = n2(ε′Wε)2/a, so we start by deriving the formal
Edgeworth expansion of the cdf of

n
ε′Wε

ε′ε
. (A.1)

The development is standard. The df of (A.1) can be written in terms of a quadratic
form in ε, i.e.

Pr(n
ε′Wε

ε′ε
≤ x) = Pr(ε′Cε ≤ 0),

where

C =
1

2
(W +W ′)− x

n
I (A.2)

and x is any real number.
Under Assumption 1, the characteristic function (cf) of ε′Cε can be derived as

E(eit(ε
′Cε)) =

1

(2π)n/2σn

∫
<n

eit(ξ
′Cξ)e

− ξ′ξ
2σ2 dξ =

1

(2π)n/2σn

∫
<n

e
− 1

2σ2 ξ
′(I−2itσ2C)ξ

dξ

= det(I − 2itσ2C)−1/2 =

n∏
j=1

(1− 2itσ2γj)
−1/2, (A.3)

where det(A) denotes the determinant of a generic square matrix A, γj are the eigen-
values of C and i =

√
−1. From (A.3) the cumulant generating function of ε′Cε

is

ψ(t) = −1

2

n∑
j=1

ln(1− 2itσ2γj) =
1

2

n∑
j=1

∞∑
s=1

(2itσ2γj)
s

s

=
1

2

∞∑
s=1

(2itσ2)s

s

n∑
j=1

γsj =
1

2

∞∑
s=1

(2itσ2)s

s
tr(Cs). (A.4)

From (A.4) the s-th cumulant, κs, of ε′Cε is given by

κ1 = σ2tr(C), (A.5)

κ2 = 2σ4tr(C2), (A.6)

κs =
σ2ss!2s−1tr(Cs)

s
, s > 2. (A.7)

Thus the cumulant generating function of fc = (ε′Cε− κ1)/κ
1/2
2 is

ψc(t) = −1

2
t2 +

∞∑
s=3

κcs(it)
s

s!
,

where
κcs =

κs

κ
s/2
2

, (A.8)
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Hence, the cf of fc is

E(eitf
c

) = e−
1
2 t

2
exp{

∞∑
s=3

κcs(it)
s

s!
} =

= e−
1
2 t

2
{1 +

∞∑
s=3

κcs(it)
s

s!
+

1

2!
(

∞∑
s=3

κcs(it)
s

s!
)2 +

1

3!
(

∞∑
s=3

κcs(it)
s

s!
)3 + .....}

= e−
1
2 t

2
{1 +

κc3(it)3

3!
+
κc4(it)4

4!
+
κc5(it)5

5!
+ {κ

c
6

6!
+

(κc3)2

(3!)2
}(it)6 + .....}.

Denote by φ(ζ) and Φ(ζ) the normal pdf and df, respectively. By the Fourier inversion
formula, we can conclude that

Pr(fc ≤ z) =

z∫
−∞

φ(z)dz +
κc3
3!

z∫
−∞

H3(z)φ(z)dz +
κc4
4!

z∫
−∞

H4(z)φ(z)dz + ....,

where Hi(z) is the i − th Hermite polynomial. Collecting the results derived above,
we have

Pr

(
n
ε′Wε

ε′ε
≤ x

)
= Pr(ε′Cε ≤ 0) = Pr(fcκ

1/2
2 + κ1 ≤ 0) = Pr(fc ≤ −κc1)

= Φ(−κc1)− κc3
3!

Φ(3)(−κc1) +
κc4
4!

Φ(4)(−κc1) + ..., (A.9)

where g(i) denotes the ith derivative of the function g.
From (A.5), (A.6) and given (A.2), we obtain

κ1 = −σ2x, κ2 = σ4

(
tr(W 2 +W ′W ) +

2

n
x2

)
and hence, from (A.8),

κc1 =
−x

a1/2
(
1 + 2

na
x2
)1/2 . (A.10)

Denote by ζ any finite real number and set

x = a1/2ζ. (A.11)

Under Assumption 2, x ∼
√
n/h. By Taylor expansion of the denominator of (A.10)

we obtain

κc1 = −ζ
(

1− 1

n
ζ2

)
+ o

(
1

n

)
.

Moreover, by Assumption 2,

κc3 =
8σ6tr(C3)

κ
3/2
2

∼ tr(W ′ +W )3

a3/2
∼
√
h

n

and

κc4 =
48σ8tr(C4)

(κ2)2
∼ 3tr(W ′ +W )4

a2
∼ h

n
. (A.12)
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By Taylor expansion we have

Φ(−κc1) = Φ(ζ) +O

(
1

n

)
= Φ(ζ) + o

(
hn
n

)
when h is divergent and

Φ(−κc1) = Φ(ζ)− 1

n
ζ3φ(ζ) + o

(
1

n

)
when h is bounded. Therefore, for x given in (A.11), when h is divergent (A.9) is

Pr

(
na−1/2 ε

′Wε

ε′ε
≤ ζ
)

= Φ(ζ)− κc3
3!

Φ(3)(ζ) +
κc4
4!

Φ(4)(ζ) + o

(
h

n

)
= Φ(ζ)− κc3

3!
H2(ζ)φ(ζ)− κc4

4!
H3(ζ)φ(ζ) + o

(
h

n

)
,

(A.13)

where the last equality follows by(
d

dx

)j
Φ(x) = −Hj−1(x)φ(x). (A.14)

Similarly when h is bounded (A.9) becomes

Pr

(
na−1/2 ε

′Wε

ε′ε
≤ ζ
)

= Φ(ζ)− ζ3

n
φ(ζ)− κc3

3!
Φ(3)(ζ) +

κc4
4!

Φ(4)(ζ) + o

(
1

n

)
= Φ(ζ)− κc3

3!
H2(ζ)φ(ζ)−

(
ζ3

n
+
κc4
4!
H3(ζ)

)
φ(ζ) + o

(
1

n

)
.

(A.15)

For notational simplicity, let T = na−1/2ε′Wε/ε′ε, so that LM = T 2. Term by
term differentiation of (A.13) and (A.15) gives the corresponding expressions for the
pdf of T , fT (ζ), i.e.

fT (ζ) = φ(ζ)− κc3
3!

(−ζ3 + 3ζ)φ(ζ)− κc4
4!

(−ζ4 + 6ζ2 − 3)φ(ζ) + o(
h

n
) (A.16)

and

fT (ζ) = φ(ζ) +
1

n
(ζ4 − 3ζ2)φ(ζ)− κc3

3!
(−ζ3 + 3ζ)φ(ζ)

− κc4
4!

(−ζ4 + 6ζ2 − 3)φ(ζ) + o(
1

n
), (A.17)

respectively.
For divergent h, using (A.16), we can derive an approximate expression for the cf

of T 2 as

1√
2π

∫
<

eitv
2
e−

v2
2 (1− κc3

3!
(−v3 + 3v)− κc4

4!
(−v4 + 6v2 − 3))dv

=
1√
2π

∫
<

e−
v2
2 (1−2it)(1− κc3

3!
(−v3 + 3v)− κc4

4!
(−v4 + 6v2 − 3))dv.

(A.18)
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We notice that the first term of the last displayed integral is

1√
2π

∫
<

e−
v2
2 (1−2it)dv = (1− 2it)−1/2,

which is the χ2 cf. By Gaussian integration, the second and third terms are, respec-
tively,

1√
2π

∫
<

e−
v2
2 (1−2it) κ

c
3

3!
v3dv = 0

and
1√
2π

∫
<

e−
v2
2 (1−2it) κ

c
3

3!
3vdv = 0,

while

1√
2π

∫
<

e−
v2
2 (1−2it)v4dv =

3

(1− 2it)5/2
,

1√
2π

∫
<

e−
v2
2 (1−2it)v2dv =

1

(1− 2it)3/2
.

Collecting the previously displayed results, (A.18) becomes

1√
1− 2it

+
κc4
8

1√
1− 2it

− κc4
4

1

(1− 2it)3/2
+
κc4
8

1

(1− 2it)5/2
. (A.19)

Term by term Fourier inversion of (A.19) gives

Pr(LM ≤ η) = F (η) +
κc4
8
F (η)− κc4

4
F3(η) +

κc4
8
F5(η) + o

(
h

n

)
= F (η) +

κc4
4
ηf(η)− κc4

12
η2f(η) + o

(
h

n

)
. (A.20)

The last displayed equality follows from the recursions (see e.g. Harris (1985))

fk+2(x) = xk−1fk(x),

Fk+2(x) = Fk(x)− 2xk−1fk(x), (A.21)

where fk and Fk denote the χ2 pdf and cdf with k degrees of freedom, respectively.
When no subscript is specified k = 1.

Similarly, for bounded h, from (A.17) we obtain

1√
1− 2it

+
κc4
8

1√
1− 2it

− κc4
4

1

(1− 2it)3/2
+
κc4
8

1

(1− 2it)5/2
+

1

n

3

(1− 2it)5/2
− 3

n

1

(1− 2it)3/2

and thus, term by term Fourier inversion gives

Pr(LM ≤ η) = F (η) +
κc4
8
F (η)− κc4

4
F3(η) +

κc4
8
F5(η) +

3

n
(−F3(η) + F5(η)) + o

(
1

n

)
= F (η) +

κc4
4
ηf(η)− κc4

12
η2f(η)− 2

n
η2f(η) + o

(
1

n

)
. (A.22)

The claim in Theorem 1 follows from (A.20) and (A.22) by letting κ = 3tr(W ′ +
W )4/a2, which is the leading term of κc4, as given in (A.12).
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B Appendix B: Proof of Theorem 2

Parts of the proof of Theorem 2 are similar to Theorem 1 and are omitted. We
derive the third order Edgeworth expansion of the df of

n
ε′PWPε

ε′Pε
, (B.1)

where P is defined according to (3.3). The cdf of (B.1) can be written in terms of a
quadratic form in ε, i.e.

Pr(
ε′PWPε

1
n
ε′Pε

≤ z) = Pr(ε′C̃ε ≤ 0),

where

C̃ =
1

2
P (W +W ′)P − 1

n
Pz (B.2)

and z is any real number.
The same argument presented in Appendix A for the evaluation of both character-

istic and cumulative generating functions holds here with C̃ instead of C. Therefore
we have

κ̃1 = σ2tr(C̃), κ̃2 = 2σ4tr(C̃2)

and

κ̃s =
σ2ss!

2s
tr((2C̃)s), s > 2.

From (B.2) we obtain

κ̃1 = σ2tr(PW )− σ2 1

n
tr(P )z = −σ2(tr((X ′X)−1X ′WX)− n− k

n
z).

Also, by straightforward algebra,

κ̃2 = σ4(tr(WPWP ) + tr(W ′PWP ) + 2
n− k
n

z2 − 4

n
tr(PW )z)

= σ4(tr((W +W ′)PWP ) + 2
n− k
n2

z2 − 4

n
tr(PW )z)

= σ4(tr(W 2) + tr(W ′W ) +
1

2
tr(X ′(W +W ′)X(X ′X)−1X ′(W ′ +W )X(X ′X)−1)

− tr(X ′(W +W ′)2X(X ′X)−1) + 2
n− k
n2

z2 +
4

n
tr((X ′X)−1X ′WX)z).

By (3.8), (3.9), and (3.10), we write

κ̃1 = −σ2tr(K1)− σ2z + σ2 k

n
z (B.3)

and

κ̃2 = σ4(a+ tr(K2 −K3) + 2
n− k
n2

z2 +
4

n
tr(K1)z). (B.4)

Similarly to the proof of Theorem 1, we define f̃c = (ε′C̃ε − κ̃1)/κ̃
1/2
2 and derive

the centred cumulants as κ̃cs = κ̃s/κ̃
s/2
2 . From (B.3) and (B.4) we have

κ̃c1 =
−σ2tr(K1)− σ2z + σ2 k

n
z

σ2a1/2
(

1 + tr(K2)
a
− tr(K3)

a
+ 2

a
n−k
n2 z2 + 4

n
tr(K1)z

a

)1/2
. (B.5)
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We choose z = a1/2ζ. Under Assumptions 2 and 3 we have a ∼ n/h and

z ∼
√
n

h
,

tr(K1)

a
∼ h

n
,

tr(K2)

a
∼ h

n
,
tr(K3)

a
∼ h

n
.

Hence, substituting the expression for z in (B.5) and performing a standard Taylor
expansion of the denominator we obtain

κ̃c1 = −
(
ζ +

tr(K1)

a1/2

)(
1 +

tr(K3 −K2)

2a
+ o

(
h

n

))
= −ζ − tr(K1)

a1/2
− tr(K3 −K2)

2a
ζ + o

(
h

n

)
in case h is divergent, and

κ̃c1 = −
(
ζ +

tr(K1)

a1/2
− k

n
ζ

)(
1 +

tr(K3 −K2)

2a
− 1

n
ζ2 + o

(
1

n

))
= −ζ − tr(K1)

a1/2
+
k

n
ζ − tr(K3 −K2)

2a
ζ +

1

n
ζ3 + o

(
1

n

)
if h is bounded.

Moreover,

κ̃c3 =
8σ6tr(C̃3)

κ
3/2
2

∼ tr(((W +W ′)P )3)

a3/2
∼
√
h

n

and

κ̃c4 =
48σ8tr(C̃4)

κ̃2
2

∼ 3tr(((W +W ′)P )4)

a2
∼ h

n
.

Therefore, proceeding as in the proof of Theorem 1 with f̃c, κ̃s and κ̃cs instead of
fc, κs and κcs, we have

Pr(na−1/2 ε
′PWPε

ε′Pε
≤ z) = Pr(ε′C̃ε ≤ 0) = Pr(f̃cκ̃

1/2
2 + κ̃1 ≤ 0) = Pr(f̃c ≤ −κ̃c1)

= Φ(−κ̃c1)− κ̃c3
3!

Φ(3)(−κ̃c1) +
κ̃c4
4!

Φ(4)(−κ̃c1) + .... (B.6)

By Taylor expansion we have

Φ(−κ̃c1) = Φ(ζ) +
tr(K1)

a1/2
φ(ζ) +

tr(K3 −K2)

a
ζφ(ζ) +

1

2

(
tr(K1)

a1/2

)2

Φ(2)(ζ) + o

(
h

n

)
when h is divergent and

Φ(−κ̃c1) = Φ(ζ) +
tr(K1)

a1/2
φ(ζ) +

tr(K3 −K2)

a
ζφ(ζ)

− k

n
ζφ(ζ)− 1

n
ζ3φ(ζ) +

1

2

(
tr(K1)

a1/2

)2

Φ(2)(ζ) + o

(
1

n

)
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when h is bounded. Therefore, (B.6) becomes

Pr(na−1/2 ε
′PWPε

ε′Pε
≤ ζ) = Φ(ζ) +

tr(K1)

a1/2
φ(ζ)− κ̃c3

3!
Φ(3)(ζ) +

tr(K3 −K2)

a
ζφ(ζ)

+
1

2

(
tr(K1)

a1/2

)2

Φ(2)(ζ) +
κ̃c4
4!

Φ(4)(ζ) + o

(
h

n

)
= Φ(ζ) +

tr(K1)

a1/2
φ(ζ)− κ̃c3

3!
H2(ζ)φ(ζ) +

tr(K3 −K2)

a
ζφ(ζ)

− 1

2

(
tr(K1)

a1/2

)2

H1(ζ)φ(ζ)− κ̃c4
4!
H3(ζ)φ(ζ) + o

(
h

n

)
,

(B.7)

where the last equality follows by (A.14). Similarly, when h is bounded,

Pr(na−1/2 ε
′PWPε

ε′Pε
≤ ζ) = Φ(ζ) +

tr(K1)

a1/2
φ(ζ)− κ̃c3

3!
Φ(3)(ζ) +

tr(K3 −K2)

a
ζφ(ζ)

+
1

2

(
tr(K1)

a1/2

)2

Φ(2)(ζ)− k

n
ζφ(ζ)− 1

n
ζ3φ(ζ) +

κ̃c4
4!

Φ(4)(ζ) + o

(
h

n

)
= Φ(ζ) +

tr(K1)

a1/2
φ(ζ)− κ̃c3

3!
H2(ζ)φ(ζ) +

tr(K3 −K2)

a
ζφ(ζ)

− 1

2

(
tr(K1)

a1/2

)2

H1(ζ)φ(ζ)− k

n
ζφ(ζ)− 1

n
ζ3φ(ζ)

− κ̃c4
4!
H3(ζ)φ(ζ) + o

(
1

n

)
.

For notational convenience, we write T̃ = na−1/2ε′PWPε/ε′Pε, so that ˜LM = T̃ 2.
Moreover, we recall that H1(ζ) = ζ, H2(ζ) = ζ2 − 1 and H3(ζ) = ζ3 − 3ζ.
As discussed in detail in Appendix A, term by term differentiation of (B.7) and

(B.8) gives

fT̃ (ζ) = φ(ζ)− tr(K1)

a1/2
ζφ(ζ)− κ̃c3

3!
(−ζ3 + 3ζ)φ(ζ)

+
tr(K3 −K2)

a
(1− ζ2)φ(ζ)− 1

2

(tr(K1))2

a
(1− ζ2)φ(ζ)

− κ̃c4
4!

(−ζ4 + 6ζ2 − 3)φ(ζ) + o

(
h

n

)
(B.8)

and

fT̃ (ζ) = φ(ζ)− tr(K1)

a1/2
ζφ(ζ)− κ̃c3

3!
(−ζ3 + 3ζ)φ(ζ)

+
tr(K3 −K2)

a
(1− ζ2)φ(ζ)− 1

2

(tr(K1))2

a
(1− ζ2)φ(ζ)

− k

n
(1− ζ2)φ(ζ)− 1

n
(3ζ2 − ζ4)φ(ζ)

− κ̃c4
4!

(−ζ4 + 6ζ2 − 3)φ(ζ) + o

(
1

n

)
, (B.9)

respectively.
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In order to simplify the notation, we write

ω1 =
tr(K3 −K2)

a
− 1

2

(tr(K1))2

a
, ω2 =

tr(K3 −K2)

a
− 1

2

(tr(K1))2

a
− k

n

and

ω3 =
tr(K1)

a1/2
+
κ̃c3
2
.

Proceeding as described in the proof of Theorem 1, when h is divergent we ap-
proximate the cf of T̃ as

1√
2π

∫
<

eitv
2
e−

v2
2 (1− ω3v +

κ̃c3
3!
v3 + ω1(1− v2)− κ̃c4

4!
(−v4 + 6v2 − 3))dv

=
1√
2π

∫
<

e−
v2
2 (1−2it)(1− ω3v +

κ̃c3
3!
v3 + ω1(1− v2)− κ̃c4

4!
(−v4 + 6v2 − 3))dv

=
1√

1− 2it

(
1 + ω1 −

ω1

1− 2it
+
κ̃c4
8

1

(1− 2it)2
− κ̃c4

4

1

1− 2it
+
κ̃c4
8

)
. (B.10)

By term by term Fourier inversion of (B.10) and some standard algebraic manip-
ulation, we obtain

Pr( ˜LM ≤ η) = F (η) +

(
κ̃c4
8

+ ω1

)
F (η)−

(
ω1 +

κ̃c4
4

)
F3(η) +

κ̃c4
8
F5(η) + o

(
h

n

)
= F (η) +

(
κ̃c4
4
η − κ̃c4

12
η2 + 2ω1η

)
f(η) + o

(
h

n

)
. (B.11)

Similarly, when h is bounded we have

Pr( ˜LM ≤ η) = F (η) +

(
κ̃c4
8

+ ω2

)
F (η)−

(
ω2 +

κ̃c4
4

+
3

n

)
F3(η)

+

(
κ̃c4
8

+
3

n

)
F5(η) + o

(
1

n

)
= F (η) +

(
κ̃c4
4
η − κ̃c4

12
η2 + 2ω2η −

2

n
η2

)
f(η) + o

(
1

n

)
.(B.12)

The claim in Theorem 2 follows from (B.11) and (B.12) by observing that the
leading term of κ̃c4 is κ = 3tr(W ′ + W )4/a2. Indeed, each term in (tr(W + W ′)4P )
other than tr((W + W ′)4) ∼ n/h is O(1) by Assumption 3 and Lemma 2, and is
therefore o(n/h).

C Appendix C

In this Appendix we state and prove some Lemmas that have been used in the
proofs of Theorems 1 and 2, as well as in the derivation of some other results in the
paper. In particular, Lemma 1 is used in the proof of both Theorems 1 and 2, while
Lemmas 2 and 3 are auxiliary results for the proof of Theorem 2. Both Lemma 1 and
2 are similar to results reported in Lee (2004). Lemma 4, instead, is used to construct
Edgeworth corrected statistics staring from the corresponding asymptotic expansion
when the limiting distribution is that of a χ2 random variable.
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Lemma 1 If wij = O(1/h), uniformly in i and j,

tr(WA) = O
(n
h

)
,

where A is an n× n matrix, uniformly bounded in row and column sums in absolute
value.

Proof Let aij be the i − jth element of A. The i−th diagonal element of WA has
absolute value given by

|(WA)ii| ≤ max
j
|wij |

n∑
j=1

|aji| = O

(
1

h

)
,

uniformly in i. Therefore:

|tr(WA)| ≤
n∑
i=1

|(WA)ii| ≤ nmax
i
|(WA)ii| = O

(n
h

)
.

Lemma 2 Suppose that the elements of the n × 1 vectors R and S are uniformly
bounded. If the matrix A is uniformly bounded in either row or column sums in ab-
solute value it follows that |R′AS| = O(n).

Proof Let ri, si and aij be the i−th element of R, i−th element of S and i − jth
element of A, respectively. Moreover, we denote K a generic constant. We suppose
that A is uniformly bounded in absolute value in column sums. The same argument
(with A′ instead of A) would hold if A were uniformly bounded in absolute value in
row sums, since |R′AS| = |S′A′R|.

By assumption, we have

max
1≤i≤n

|ri| ≤ K max
1≤i≤n

|si| ≤ K max
1≤i≤n

n∑
j=1

|aij | ≤ K.

We have

|R′AS| = |
n∑
i=1

n∑
j=1

riaijsj | ≤
n∑
i=1

n∑
j=1

|ri||aij ||sj | ≤ max
1≤i,j≤n

|ri||sj |
n∑
i=1

n∑
j=1

|aij |

≤ K
n∑
i=1

n∑
j=1

|aij | ≤ K max
1≤i≤n

n∑
j=1

|aij |
n∑
i=1

1 = O(n).

Lemma 3 Under Assumptions 3, P is uniformly bounded in row and column sums in
absolute value.

Proof We show that X(X ′X)−1X ′ is uniformly bounded in row sums in absolute
value. Let xij be the i − jth element of X and x′i the ith row of X. Moreover, we
denote C and c generic large and small constants, respectively.

Under Assumption 3

max
1≤i,j≤n

|xij | < C 0 < c < νmin

(
1

n
X ′X

)
,
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for n large enough. We have

max
1≤i≤n

n∑
j=1

|(X(X ′X)−1X ′)ij | = max
1≤<i≤n

n∑
j=1

|(x′i(X ′X)−1xj)|

≤ max
1≤i≤n

n∑
j=1

||x′i||||(X ′X)−1||||xj || ≤ max
1≤i,j≤n

||x′i||||(
1

n
X ′X)−1||||xj ||,

where ||.|| denotes the spectral norm. Now,

||( 1

n
X ′X)−1|| = νmax((

1

n
X ′X)−1) =

1

νmin( 1
n
X ′X)

≤ 1

c
,

where νmax() denotes the largest eigenvalue. Moreover,

max
0<i≤n

||x′i|| = max
0<i≤n

(x′ixi)
1/2 ≤ (kC2)1/2.

It follows that

max
0<i,j≤n

||x′i||||(
1

n
X ′X)−1||||xj || ≤

1

c
kC2 <∞.

By symmetry, we conclude that X(X ′X)−1X ′ is also bounded in column sums in ab-
solute value. Trivially, the same property holds for P = I −X(X ′X)−1X ′.

Lemma 4 Let ξ be a statistic such that its cdf admits the expansion

Pr(ξ ≤ η) = F (η) +
h

n
s(η)f(η) + o

(
h

n

)
, (C.1)

where h can be either divergent or bounded and s(η) is a polynomial in η, whose
coefficients are finite and non-zero as n→∞. We define the function g(.) as

g(x) = x+
h

n
s(x) +

(
h

n

)2

Q(x), with Q(x) =
1

4

∫ (
d

dx
s(x)

)2

dx. (C.2)

We have

Pr(g(ξ) ≤ η) = o

(
h

n

)
.

Proof It is straightforward to verify that g(x) is strictly increasing, its first derivative
being

1 +
h

n

ds(x)

dx
+

1

4

(
h

n

)2(
ds(x)

dx

)2

=

(
1 +

1

2

h

n

ds(x)

dx

)2

.

Since g(.) is monotonic

Pr(g(ξ) ≤ η) = Pr(ξ ≤ g−1(η))

= F1(g−1(η)) +
h

n
s(g−1(η))f1(g−1(η)) + o

(
h

n

)
. (C.3)

Now, by (C.2) we have

η = g−1

(
η +

h

n
s(η) +

(
h

n

)2

Q(η)

)

= g−1(η) +
h

n

dg−1(x)

dx
||x=ηs(η) + o

(
h

n

)
, (C.4)
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where the second equality follows by a standard Taylor expansion. We define q =
g−1(x). Therefore,

dg−1(x)

dx
|x=η =

(
dg(q)

dq

)−1

|x=η = 1 +O

(
h

n

)
, (C.5)

where the last equality follows by total differentiation of the function g(.) and Taylor
expansion. Collecting (C.4) and (C.5), we obtain

η = g−1(η) +
h

n
s(η) + o

(
h

n

)
and hence

g−1(η) = η − h

n
s(η) + o

(
h

n

)
. (C.6)

Finally, by substitution of (C.6) into (C.3) and using

F (g−1(η)) = F (η)− h

n
s(η)f(η) + o

(
h

n

)
,

f(g−1(η)) = f(η) +O

(
h

n

)
, s(g−1(η)) = s(η) +O

(
h

n

)
,

we obtain

Pr(g(ξ) ≤ η) = F (η)− h

n
s(η)f(η) +

h

n
s(η)f(η) + o

(
h

n

)
= F (η) + o

(
h

n

)
.
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m = 8
r = 5

m = 12
r = 8

m = 18
r = 11

m = 28
r = 14

chi square 0.0320 0.0360 0.0380 0.0370
Edgeworth 0.0400 0.0390 0.0410 0.0420
transformation 0.0450 0.0480 0.0460 0.0480
mean-variance correction 0.0350 0.0370 0.0410 0.0420
bootstrap 0.0540 0.0460 0.0470 0.0530

Table 1: Empirical sizes of the tests of H0 in (1.2) for model (1.1) when the
sequence h is divergent. The reported values have to be compared with the
nominal 0.05

.

m = 5
r = 8

m = 5
r = 20

m = 5
r = 40

m = 5
r = 80

chi square 0.0340 0.0360 0.0370 0.0370
Edgeworth 0.0410 0.0420 0.0470 0.0480
transformation 0.0340 0.0450 0.0480 0.0500
mean-variance correction 0.0410 0.0430 0.0460 0.0520
bootstrap 0.0630 0.0520 0.0510 0.0520

Table 2: Empirical sizes of the tests of H0 in (1.2) for model (1.1) when the
sequence h is bounded. The reported values have to be compared with the
nominal 0.05.
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m = 8
r = 5

m = 12
r = 8

m = 18
r = 11

m = 28
r = 14

chi square 0.0230 0.0270 0.0360 0.0270
Edgeworth 0.0440 0.0480 0.0460 0.0470
transformation 0.0550 0.0490 0.0470 0.0490
mean-variance correction 0.0300 0.0340 0.0320 0.0380
bootstrap 0.0450 0.0520 0.0560 0.0510

Table 3: Empirical sizes of the tests of H0 in (1.2) for model (3.1) when the
sequence h is divergent. The reported values have to be compared with the
nominal 0.05

.

m = 5
r = 8

m = 5
r = 20

m = 5
r = 40

m = 5
r = 80

chi square 0.0250 0.0350 0.0380 0.0360
Edgeworth 0.0310 0.0440 0.0470 0.0520
transformation 0.0330 0.0420 0.0470 0.0520
mean-variance correction 0.0270 0.0440 0.0460 0.0520
bootstrap 0.0430 0.0470 0.0480 0.0480

Table 4: Empirical sizes of the tests of H0 in (1.2) for model (3.1) when the
sequence h is bounded. The reported values have to be compared with the
nominal 0.05.

α = 95% α = 97.5% α = 99%
m = 8
r = 5

Edgeworth

Imhof

1.9334
1.8620

2.4403
2.3250

3.0715
2.9000

m = 12
r = 8

Edgeworth

Imhof

1.8925
1.8430

2.3722
2.3100

2.9658
2.8850

m = 18
r = 11

Edgeworth

Imhof

1.8668
1.8310

2.3294
2.2880

2.8994
2.8550

m = 28
r = 14

Edgeworth

Imhof

1.8482
1.8200

2.2985
2.2700

2.8514
2.8250

Table 5: Edgeworth-corrected and Imhof’s α-quantiles of the cdf of T in when
h is divergent.
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α = 95% α = 97.5% α = 99%
m = 5
r = 8

Edgeworth

Imhof

1.8357
1.7840

2.2777
2.1920

2.8191
2.6800

m = 5
r = 20

Edgeworth

Imhof

1.7656
1.7450

2.1609
2.1280

2.6379
2.5850

m = 5
r = 40

Edgeworth

Imhof

1.7303
1.7200

2.1021
2.0860

2.5465
2.5200

m = 5
r = 80

Edgeworth

Imhof

1.7053
1.7010

2.0605
2.0530

2.4819
2.4730

Table 6: Edgeworth-corrected and Imhof’s α-quantiles of the cdf of T when h
is bounded.
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