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Abstract

This paper develops more accurate tests for lack of spatial correlation than ones
based on the usual central limit theorem. We test nullity of the lag parameter in a
pure spatial autoregression based on least squares and Gaussian maximum likelihood
estimates. In each case, depending on assumptions on the spatial weight matrix, the
rate of convergence of the estimate can be slower than

√
n, where n is sample size.

Correspondingly, the error in the normal approximation can be larger than the usual
parametric order. This provides particularly strong motivation for employing instead
refined statistics which entail closer approximations. These are based on (formal)
Edgeworth expansions. In Monte Carlo simulations we demonstrate that the new
tests (and one based on a bootstrap, which is expected to have similar properties)
outperform one based on the usual normal approximation in small and moderate sam-
ples. The new tests are also applied in two empirical examples.
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1 Introduction

Spatial autoregressive (SAR) models offer a useful framework for describing
observations that are recorded on irregularly-spaced points. In SAR models
the notion of irregular spacing is embodied in an n× n weight matrix, denoted
Wn henceforth, which needs to be chosen by the practitioner. In most of the
applications, the i−jth component of Wn is defined in terms of the inverse of an
economic distance between units i and j. An economic distance is a very broad
concept which includes the usual geographic distance as a very special case. A
common example of distance which does not have a geographic interpretation
is the difference in household income. Since SAR models proved to be a simple
yet flexible specification, they are extensively used in empirical applications (see
e.g. Arbia (2006)).

In this paper we assume that for some scalar λ ∈ (−1, 1) the data follow the
pure SAR model, i.e.

Yn = λWnYn + εn, (1.1)

where Yn is an n × 1 vector of observations. We denote εn an n × 1 vector of
unobservable random variables that are assumed to be normal and independent
and identically distributed (i.i.d.).

A major branch of the spatial literature has focused on testing for spatial
independence in SAR models when also a set of exogenous regressors is present,
i.e. when the data follow the so called mixed SAR. The asymptotic properties
of the estimates and related test statistics for mixed SAR models have been
widely considered, see e.g. Anselin (2001), Kelejian and Prucha (2001), Lee
(2002), Lee (2004). For sake of clarity, we should mention that often in the
spatial econometric literature “spatial independence” is used as a synonym for
“lack of spatial correlation”, though these concepts are in general identical only
under Gaussianity.

However, the problem of testing for the lack of spatial correlation in model
(1.1) has received relatively little attention. Although it may appear to be only
a particular case of the mixed SAR when none of the exogenous regressors is
relevant, making inference on λ in model (1.1) can pose particular difficulties.
The rate of convergence of the estimate of λ can be slower than the usual√
n, depending on the choice of Wn (see, e.g. Lee (2004)). Consequently, the

error when the approximation for the distribution is based on the central limit
theorem can be larger than the usual 1/

√
n and therefore, the finite sample

performance of standard tests based on the normal approximation can be poor.
Procedures based on Gaussian maximum likelihood estimate (MLE) for test-

ing the nullity of λ in model (1.1) have been developed by Cliff and Ord (1972)
and have been broadly considered. For a survey we refer to Anselin (1988). In
addition, Lagrange multiplier tests have received extensive interest due to their
computational simplicity, starting from the early work by Moran (1950) (see e.g.
Anselin (2001) for a comprehensive survey). However, little attention has been
dedicated to the relatively poor finite sample performances of such tests and the
consequent need for small sample corrections when the data follow model (1.1).
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An exception can be found in Robinson (2008), where finite sample corrections
are derived for a general class of statistics which includes as a special case the
Lagrange multiplier test for spatial independence in model (1.1).

In this paper we derive new tests for spatial independence which prove to be
more accurate than those based on the usual central limit theorem. More specif-
ically, we are interested in testing the null hypothesis H0 against the alternative
H1, where those are defined as

H0 : λ = 0 H1 : λ > 0 (λ < 0), (1.2)

when λ in model (1.1) is estimated either by ordinary least squares (OLS) or
by the MLE.

It is known (Lee (2002)) that the OLS estimate of λ in model (1.1) is incon-
sistent when λ 6= 0, but it converges to zero in probability under H0. Although
this case is very limited when the interest is estimation, it becomes crucial when
one focuses on testing. However, under H0, the rate of convergence of the OLS
estimate of λ might be slower that the parametric

√
n, depending on assump-

tions on Wn. On the other hand, the MLE of λ is consistent for every value
of λ, although, again, the rate of convergence might be slower than

√
n (Lee

(2004)).
As previously mentioned, when the rate of convergence of the estimate is

slower than
√
n, the error when the normal approximation is used can be larger

than the usual 1/
√
n. Our new tests are based on refined t-statistics, whose

cumulative distribution functions (cdf) are closer to the normal than those of the
standard statistics and therefore entail better approximations. Alternatively, we
show that inference based on standard statistics can be improved by considering
more accurate approximations for critical values than ones of the normal cdf.

The corrected testing procedures are derived from formal Edgeworth expan-
sions of the cdf of the standard OLS and MLE t-statistics under H0. Edgeworth
expansion of the cdf is a well known means of improving the accuracy of the nor-
mal approximation. Specifically, the first term of the expansion corresponds to
the standard normal cdf while later terms are of increasingly smaller order and
improve on the approximation when only a small/moderate sample is available.
If the rate of convergence of the estimate is slower than the parametric

√
n,

as can be the case with (1.1), the inclusion of higher order terms is even more
crucial, such terms being larger than those appearing in the expansion when
the rate of convergence is

√
n. As common in the literature on higher-order

expansions, Gaussianity is assumed in our derivation. For a comprehensive re-
view of derivations of formal Edgeworth expansions, we refer to Hall (1992).
Moreover, the work by Taniguchi (1991) is a very useful reference when dealing
with expansion of the cdf of implicitly defined estimates such as MLE.

We investigate the finite sample performance of the new tests by means of
Monte Carlo simulations. Our results confirm that the inclusion of the second
order term of the Edgeworth expansion in the approximation of the cdf of the
null statistics leads to substantial improvements. Moreover, the performance
of the new tests is compared with one based on a bootstrap. Theoretically, it
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is established (e.g. Hall (1992)) that a bootstrap procedure may achieve the
first Edgeworth correction and hence the results should be comparable. In our
simulation study we show that this is indeed the case.

Finally, the new tests are applied in two small empirical examples. Although
both examples are intended for illustrative purposes only and do not aim to
provide any definite conclusions regarding the empirical issues involved, they do
provide further evidence that the refined tests should be preferable to standard
ones when the sample is small/moderate.

The paper is organised as follows. In Sections 2 and 3 we develop the refined
tests when λ is estimated by OLS and MLE, respectively. The proofs relative to
both Sections 2 and 3 are left to appendices. In Section 4 we report and discuss
the results of the Monte Carlo simulations, while in Section 5 we apply the new
tests in two empirical examples.

2 OLS estimation: Edgeworth-corrected critical
values and corrected statistics

We suppose that model (1.1) holds and we are interested in testing H0 in
(1.2). In order to avoid cumbersome notation, we drop reference to the sample
size in Yn, εn and Wn, i.e. we write Y = Yn, ε = εn and Wn = W . The OLS
estimate of λ in model (1.1) is defined as

λ̂ =
Y ′W ′Y

Y ′W ′WY
,

where the prime denotes transposition. As previously mentioned, λ̂ converges
in probability to zero under H0.

We introduce the following assumptions:

Assumption 1 λ = 0, i.e. H0 is true.

Assumption 2 The elements of ε are i.i.d., normally distributed with mean
zero and variance σ2.

Assumption 3 For all n, wii = 0 i = 1, ..., n, where wij is the i− jth element
of W .

Assumption 4 W is row-normalized, so that the elements of each row sum to
one.

Assumption 5 a Uniformly in i and j, wij = O(1/hn), where {hn} is a positive
sequence that can be divergent or bounded and such that hn/n→ 0 as n→∞.
Moreover, W is uniformly bounded in row and column sums in absolute value.
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5 b The limits

lim
n→∞

hn
n
tr(W ′W ), lim

n→∞

hn
n
tr(WW ′W ), lim

n→∞

hn
n
tr((W ′W )2),

lim
n→∞

hn
n
tr(W 2), lim

n→∞

hn
n
tr(W 3) (2.1)

are non-zero.

Assumptions 3 and 4 provide the main features of the weight matrix (Lee
(2002), Lee (2004)). Under Assumptions 3-4 and Assumption 5a, the limits
displayed in (2.1) exist and are finite by Lemma 1, reported in Appendix C.1.
Thus, the content of Assumption 5b is that such limits are also non-zero.

Let Φ(z) and φ(z) be the cdf and the probability density function (pdf) of
a standard normal random variable, respectively, while g(i) denotes the ith de-
rivative of the function g. Let ζ be any finite real number.

Theorem 1 Let Assumptions 1-5 hold. The cdf of λ̂ admits the formal third
order Edgeworth expansion

Pr(aλ̂ ≤ ζ) = Φ(ζ) + 2a−1b1ζ
2φ(ζ)− κc3

3!
Φ(3)(ζ)

− (a−2b2 − 6a−2b21)ζ3φ(ζ) + 2a−2b21ζ
4Φ(2)(ζ)

− κc3
3
a−1b1ζ

2Φ(4)(ζ) +
κc4
4!

Φ(4)(ζ) +O

(
hn
n

)3/2

, (2.2)

where

a =
tr[W ′W ]

(tr[W ′W +W 2])1/2
, b1 =

tr[WW ′W ]
tr[W ′W +W 2]

, b2 =
tr[(W ′W )2]

tr[W ′W +W 2]
.

Moreover

κc3 ∼
2tr(W 3) + 6tr(W ′W 2)
(tr(W ′W +W 2))3/2

and

κc4 ∼
6tr(W 4) + 24tr(W ′W 3) + 12tr((WW ′)2) + 6tr(W 2W

′2)
(tr(W ′W +W 2))2

,

where ∼ denotes a rate.

The proof of Theorem 1 is in Appendix A.
Under Assumption 5 we have

a−1b1 ∼
(
hn
n

)1/2

, a−2b2 ∼
hn
n
, κc3 ∼

(
hn
n

)1/2

, κc4 ∼
hn
n
,
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and therefore

2a−1b1ζ
2φ(ζ)− κc3

3!
Φ(3)(ζ) ∼

(
hn
n

)1/2

,

−(a−2b2−6a−2b21)ζ3φ(ζ)+2a−2b21ζ
4Φ(2)(ζ)−κ

c
3

3
a−1b1ζ

2Φ(4)(ζ)+
κc4
4!

Φ(4)(ζ) ∼ hn
n
.

Since a ∼ (n/hn)1/2 from Assumption 5, obviously when the sequence hn is
divergent the rate of convergence of Pr(aλ̂ ≤ ζ) to the standard normal cdf is
slower than the usual

√
n.

It must be stressed that the expansion in (2.2) is formal and hence the order
of the remainder can only be conjectured by the rate of the coefficients.

From the expansion (2.2) we can obtain Edgeworth-corrected critical values.
We denote wα and zα the α−quantiles of the null statistic aλ̂ and the standard
normal cdf, respectively. By inversion of (2.2) we can obtain an asymptotic
series for wα, i.e.

wα = zα + p1(zα) + p2(zα) + ....., (2.3)

where p1(zα) and p2(zα) are polynomials of orders (hn/n)1/2 and hn/n, re-
spectively. Both p1(zα) and p2(zα) can be determined using the identity α =
Pr(aλ̂ ≤ wα|H0) and the asymptotic expansion given in Theorem 1. Even
though the procedure can be extended to higher orders, for algebraic simplic-
ity we focus on the first order Edgeworth correction and therefore only p1(zα)
has to be determined. For convenience, we report the second order Edgeworth
expansion

Pr(aλ̂ ≤ ζ) = Φ(ζ) + 2a−1b1ζ
2φ(ζ)− κc3

3!
Φ(3)(ζ) +O

(
hn
n

)
. (2.4)

Let Hj(x) be the j−th Hermite polynomial. From (2.4) and the property
(−d/dx)jΦ(x) = −Hj−1(x)φ(x), we have

α = Pr(aλ̂ ≤ wα|H0)

= Φ(wα)− (
κc3
3!
H2(wα)− 2a−1w2

αb1)φ(wα) +O

(
hn
n

)
.

Moreover, expanding wα according to (2.3) and dropping negligible terms, we
write

α = Pr(aλ̂ ≤ wα|H0)

= Φ(zα) + p1(zα)φ(zα)− (
κc3
3!
H2(zα)− 2a−1z2

αb1)φ(zα) +O

(
hn
n

)
= α+ p1(zα)φ(zα)− (

κc3
3!
H2(zα)− 2a−1z2

αb1)φ(zα) +O

(
hn
n

)
, (2.5)

where the second equality follows by the Taylor expansion of Φ(wα) around zα.
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For the identity displayed in (2.5) to hold, we require

p1(zα) =
κc3
3!
H2(zα)− a−1b1z

2
α

and hence the expansion for wα becomes

wα = zα +
κc3
3!
H2(zα)− 2a−1b1z

2
α +O

(
hn
n

)
. (2.6)

The size of the test of H0 in (1.2) obtained with the usual approximation of
wα by zα, that is

Pr(aλ̂ > zα|H0), (2.7)

can be compared with the one obtained using the Edgeworth correction as given
in (2.6), i.e.

Pr(aλ̂ > zα +
κc3
3!
H2(zα)− 2a−1b1z

2
α|H0). (2.8)

We notice that when zα is used to approximate wα, the error has order (hn/n)1/2,
while it is reduced to (hn/n) when the Edgeworth-corrected critical value is used.

Rather than corrected critical values, we can consider the Edgeworth-corrected
test statistic. Since

Φ(3)(ζ) = H2(ζ)φ(ζ) = (ζ2 − 1)φ(ζ),

the two equivalent representation of (2.4) can be written

Pr(aλ̂ ≤ ζ) = Φ(ζ) + (2a−1b1ζ
2 − κc3

3!
(ζ2 − 1))φ(ζ) +O

(
hn
n

)
= Φ(ζ + 2a−1b1ζ

2 − κc3
3!

(ζ2 − 1)) +O

(
hn
n

)
.

When the transformation

v(ζ) = ζ + 2a−1b1ζ
2 − κc3

3!
(ζ2 − 1) = ζ + (2a−1b1 −

κc3
3!

)ζ2 +
κc3
3!

is monotonic, we can write

Pr(aλ̂+ (2a−1b1 −
κc3
3!

)(aλ̂)2 +
κc3
3!
≤ ζ) = Φ(ζ) +O

(
hn
n

)
and make inference on λ based on the corrected statistic v(aλ̂). The function
v(ζ) is increasing when ζ ≥ −1/(2(2a−1b1 − κc3/3!)) and some numerical work
shows that the latter is verified for ζ close to zero. Hence, when the sample size
is large enough so that aλ̂ is close to zero, the transformation v(aλ̂) is strictly
(locally) increasing. However this does not hold in general and therefore a cubic
transormation that does not affect the remainder but such that the resulting
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function is strictly increasing over the whole domain should be considered. A
suitable transformation is in Hall (1992) or, in a more general case, Yanagihara
et al (2005):

g(ζ) = v(ζ) +Q(ζ), with Q(ζ) =
1
3

(
2a−1b1 −

κc3
3!

)2

ζ3.

Indeed, it can be shown (Yanagihara et al (2005)) that for a statistic T that
admits the general expansion

Pr(T ≤ x) = Φ(x) + p1(x)φ(x) +O

(
hn
n

)
,

where p1(x) ∼
√
hn/n, the transformation

g(T ) = T + p1(T ) +
1
4
Q(T ) with Q(x) =

∫ (
d

dx
p1(x)

)2

dx

is strictly increasing and does not affect higher order terms, i.e.

Pr(g(T ) ≤ x) = Φ(x) +O

(
hn
n

)
.

It is straightforward to verify that in the present case the function g(ζ) is strictly
increasing for every ζ, its first derivative being (1 + (2a−1b1 − (κc3/3!)ζ))2.

We can therefore compare the size of the test of H0 in (1.2) based on such
corrected statistic, i.e.

Pr(g(aλ̂) > zα|H0) (2.9)

with the standard (2.7). As previously mentioned, the error when the standard
statistic is used has order

√
hn/n, while it is reduced to hn/n when considering

the corrected variant.

3 MLE estimation: Edgeworth-corrected criti-
cal values and corrected statistics

In Section 2 we focused on the test of H0 in (1.2) and derived Edgeworth-
corrected critical values and corrected test statistics when λ is estimated by
OLS. However, as outlined, λ̂ is inconsistent when λ 6= 0. In this section we
focus on the test of H0 in (1.2) using the MLE for λ, denoted λ̃ henceforth.
Since λ̃ is consistent for every value of λ in model (1.1), in principle we could
extend the results presented in this section to test the more general hypothesis

H0 : λ = λ0
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against the alternative
H1 : λ > λ0 (< λ0),

for any fixed λ0. Although the procedure would be identical, when λ0 6= 0 the
algebraic burden would increase dramatically. In addition, λ = 0 is probably
the most interesting value one wishes to test for. Therefore, it seems reasonable
to focus only on the test of H0 as specified in (1.2).

We define S(λ) = I − λW , where I denotes the n × n identity matrix.
Henceforth, when the dimension of the identity matrix is other than n, we will
specify it with a subscript, i.e. I..

The Gaussian log-likelihood function for model (1.1) is given by

l(λ, σ2) = −n
2
ln(2π)− n

2
lnσ2 + ln|S(λ)| − 1

2σ2
Y ′S(λ)′S(λ)Y. (3.1)

It is known that, given λ, the MLE of σ2 is

σ̃2(λ) =
1
n
Y ′S(λ)′S(λ)Y. (3.2)

Hence
λ̃ = arg max

λ∈Λ
l(λ, σ̃2(λ)),

where Λ denotes a suitable closed and bounded subset of < that includes the
true value λ = 0.

A brief remark regarding Λ is necessary. Under Assumption 4 the Jacobian
|S(λ)| in (3.1) is positive for every value of λ in the set (−1, 1). Hence, Λ can
be chosen as any closed subset of (−1, 1). Moreover, existence of S−1(λ) can
be easily established when W is row normalized and Λ is any closed subset of
(−1, 1), since

S−1(λ) =
∞∑
i=0

(λW )i. (3.3)

For details about the latter result we refer e.g. to Horn and Johnson (1985), pp
296-301.
We have the following result

Theorem 2 Let Assumptions 1-5 hold. The cdf of λ̃ admits the formal second
order Edgeworth expansion

Pr(

√
n

hn
ãλ̃ ≤ ζ) = Φ(ζ) +

(
2

(
hn
n

)3/2
tr(WW ′W )

ã3
+

(
hn
n

)3/2
tr(W 3)

ã3

)
φ(ζ)

− κ̃c3
3!

Φ(3)(ζ) + o

(√
hn
n

)
,
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or equivalently

Pr(

√
n

hn
ãλ̃ ≤ ζ) = = Φ(ζ) +

(
2

(
hn
n

)3/2
tr(WW ′W )

ã3
+

(
hn
n

)3/2
tr(W 3)

ã3

)
φ(ζ)

− κ̃c3
3!
H2(ζ)φ(ζ) + o

(√
hn
n

)
, (3.4)

where

ã =

√
hn
n

√
tr(W 2) + tr(W ′W )

and

κ̃c3 ∼
−4
(
hn
n

)3/2
tr(W 3)− 6

(
hn
n

)3/2
tr(WW ′W )(

hn
n

)3/2
(tr(W 2) + tr(W ′W ))3/2

= −
(
hn
n

)3/2 4tr(W 3) + 6tr(WW ′W )
ã3

∼
√
hn
n
.

The proof of Theorem 2 is in Appendix B.
Under Assumption 5, we have(
2
(
hn
n

)3/2
tr(WW ′W )

ã3
+
(
hn
n

)3/2
tr(W 3)
ã3

)
φ(ζ)− κ̃c3

3!
Φ(3)(ζ) ∼

√
hn
n
.

It should again be stressed that the expansion in (3.4) is formal and hence
the order of the remainder can only be conjectured by the rate of the coeffi-
cients. Without considering validity issues, the error order o(

√
hn/n) is the

best one can conjecture. As reported in detail in Appendix B, several approx-
imations are used to obtain the expansion (3.4), such as the Taylor expansion
of the integrand function in the evaluation of the characteristic function and
E(A/B) ∼ E(A)/E(B) in the derivation of the cumulants. Therefore, the order
o(
√
hn/n) is the sharpest we can conclude.

Since under Assumption 5 ã is finite and strictly positive for large n, as
expected the rate of convergence of Pr(

√
n/hnãλ̃ ≤ ζ) to the standard normal

cdf is slower than the usual
√
n when the sequence hn is divergent.

From expansion (3.4), Edgeworth-corrected critical values and the corrected
null statistic can be obtained. The derivation is very similar to that reported
in Section 2 for the cdf of aλ̂ and is omitted here. The size of the test of H0 in
(1.2) obtained with the usual standard normal approximation

Pr(
√

n

hn
ãλ̃ > zα|H0) (3.5)

can be compared with the one obtained when the Edgeworth-corrected critical
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value is used, that is

Pr(
√

n

hn
ãλ̃ > t̃Ed|H0), (3.6)

where

t̃Ed = zα −

(
2
(
hn
n

)3/2
tr(WW ′W )

ã3
+
(
hn
n

)3/2
tr(W 3)
ã3

)
+
κ̃c3
3!
H2(zα).

As discussed in Section 2, when zα is used to approximate the true quantile, we
have an error of order

√
hn/n, while the error is decreased to o(

√
hn/n) when

the Edgeworth-corrected critical value is used.
Finally, (3.5) can be compared with the size based on the corrected statistic,

i.e.
Pr(g̃(ãλ̃) > zα|H0), (3.7)

where

g̃(x) = x+ 2
(
hn
n

)3/2
tr(WW ′W )

ã3
+
(
hn
n

)3/2
tr(W 3)
ã3

− κ̃c3
3!
H2(x) + Q̃(x),

and

Q̃(x) =
(
κ̃c3
3!

)2
x3

3
.

As discussed in detail in Section 2, Q̃(x) is a cubic term so that g̃(x) is strictly
increasing over the whole domain, but that does not affect the order of the re-
mainder.

4 Bootstrap correction and simulation results

In this section we report and discuss some Monte Carlo simulations to in-
vestigate the finite sample performance of the tests derived in Sections 2 and 3.
Tables and Figures are reported at the end of the paper.

In this simulation work, we adopt the Case (1991) specification for W , i.e.

W = Ir ⊗Bm, Bm =
1

m− 1
(lml′m − Im), (4.1)

where r is the number of districts and m is the number of households in each
district. We denote lm an m− dimensional column of ones. With this specifi-
cation, two households are neighbours if they belong to the same district and
each neighbour is given the same weight. Therefore, n = mr and hn = m − 1.
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W in (4.1) is symmetric and hence

a =

√
tr(W 2)√

2
, b1 =

tr(W 3)
2tr(W 2)

, κc3 =
2
√

2tr(W 3)
(tr(W 2))3/2

,

ã =

√
hn
n

√
2tr(W 2), κ̃c3 = − 5tr(W 3)√

2(tr(W 2))3/2
.

In each of the 1000 replications, the disturbance terms are generated from a nor-
mal distribution with mean zero and unit variance, i.e. according to Assumption
2 with σ2 = 1. We set α = 95%.

A brief remark on W defined in (4.1) is necessary. It is straightforward to
verify that Assumptions 3-4 are satisfied for this choice of W , whether hn is
bounded or divergent (that is, whether the number of households in each unit
diverges or is bounded as n increases). Assumption 5a holds provided that
r → ∞, m being either divergent or bounded. Moreover we can verify that
Assumption 5b holds, i.e.

lim
n→∞

hn
n
tr(W i) 6= 0 for i = 2, 3, 4,

by observing that

hn
n
tr((Ir ⊗Bm)i) =

hn
n
tr(Ir)tr(Bim) =

hn
n
rtr(Bim).

By standard linear algebra, Bm has one eigenvalue equal to 1 and the other
m− 1 equal to −1/(m− 1). Therefore

tr(Bim) = 1 + (m− 1)
(
−1

m− 1

)i
and hence

hn
n
tr((Ir ⊗Bm)i) =

hn
n
rtr(Bim) =

m− 1
rm

r

(
1 +

(−1)i

(m− 1)i−1

)
=

m− 1
m

(
1 +

(−1)i

(m− 1)i−1

)
,

which is non-zero in the limit whether m is divergent or bounded for i = 2, 4.
When i = 3 and m is bounded, we require m > 2 (at least for large n) for the
latter quantity to be non-zero.

The empirical sizes of the test of (1.2) based on the usual normal approxima-
tion are compared with the same quantities obtained with both the Edgeworth-
corrected critical values and corrected test statistics. In addition, we consider
the simulated sizes based on bootstrap critical values since it is well established
that these may achieve the first Edgeworth correction and should then be com-
parable with the results obtained in Sections 2 and 3 (see e.g. Hall (1992) or
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DiCiccio and Efron (1996)).
Before discussing and comparing the simulation results, we outline how the

bootstrap critical values have been obtained. It must be stressed that we focus
on the implementation of the bootstrap procedure, without addressing validity
issues. When λ is estimated by OLS, the bootstrap critical values are obtained
by the following algorithm:

Step 1 Given model (1.1), under H0 we have Y = ε, i.e. ε is observable.

Step 2 Under Assumption 2 we can use a parametric bootstrap, i.e. we construct
B n−dimensional vectors whose components are independently generated from
the empirical distribution N(0, σ̂2), where σ̂2 = ε′ε/n = Y ′Y/n. We denote ε∗j ,
for j = 1, ....B, each of these vectors. Hence, we generate B pseudo-samples as
Y ∗j = ε∗j for j = 1, ....B. When the distribution of the disturbances is known,
the parametric bootstrap proved to be more efficient than the usual procedure
based on resampling the residuals with replacement (see e.g Hall (1992)).

Step 3 We obtain B bootstrap OLS null statistics as

Zj = a
Y ∗

′

j W ′Y ∗j
Y ∗

′
j W ′WY ∗j

, j = 1, .....B.

Step 4 The α−percentile is computed as the value w∗α which solves

1
B

B∑
j=1

1(Zj ≤ w∗α) = α,

where 1(.) denotes the indicator function.

Step 5 The size of the test of (1.2) when the bootstrap critical value is used is
then

Pr(aλ̂ > w∗α|H0). (4.2)

Regarding Step 1, a remark is needed. When interested in testing, the
bootstrap procedure when we impose H0 to obtain the residuals (and then to
generate the pseudo-data) gives results at least as good as the same algorithm
without imposing H0 (see Paparoditis and Politis (2005)). Some numerical work
actually shows that, in the present case, the procedure where H0 is imposed
outperforms the other.

When λ is estimated by the MLE, the first two steps of the algorithm above
are unchanged while Step 3-Step 5 are modified accordingly:
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Step 3 We obtain B bootstrap MLE null statistics

Z̃j = ãλ̃∗j , j = 1, .....B,

where
λ̃∗j = arg max

λ∈Λ
l∗j (λ)

and
l∗j (λ) = −n

2
(ln(2π) + 1)− n

2
ln(

1
n
Y ∗

′

j S(λ)′S(λ)Y ∗j ) + ln|S(λ)|.

Step 4 The α−percentile is computed as the value w̃∗α which solves

1
B

B∑
j=1

1(Z̃j ≤ w̃∗α) = α.

Step 5 The size of the test of (1.2) when the bootstrap critical value is used is
then

Pr(
√

n

hn
ãλ̃ > w̃∗α|H0). (4.3)

In both procedures we set B = 199.

Table 1 displays the simulated values corresponding to (2.7), (2.8), (2.9) and
(4.2) when hn (that is, m in (4.1)) is divergent, while in Table 2 we report
the simulated values corresponding to the same quantities when hn is bounded.
Moreover, Tables 3 and 4 display the simulated values corresponding to (3.5),
(3.6), (3.7) and (4.3) when hn is either divergent or bounded, respectively. All
the values in Tables 1-4 have to be compared with the nominal 5%. For nota-
tional convenience, we denote

tEd = zα +
κc3
3!
H2(zα)− 2a−1b1z

2
α

and

t̃Ed = zα −

(
2
(
hn
n

)3/2
tr(WW ′W )

ã3
+
(
hn
n

)3/2
tr(W 3)
ã3

)
+
κ̃c3
3!
H2(zα),

as already defined in Section 3.

(Tables 1-4 about here)

For both divergent and bounded hn and both estimation methods, it is clear
that the usual normal approximation does not work well in practice, since the
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simulated values for the size underestimate the nominal 5% for all sample sizes.
On the other hand, the Edgeworth-corrected results seem to perform reasonably
well. In particular, when λ is estimated by either OLS or MLE and for divergent
hn, the results obtained with the Edgeworth-corrected critical values exceed the
target 0.05 for very small sample sizes, but the convergence to the nominal
value appears to be fast. Indeed, such correction performs already quite well
for small/moderate sample sizes such as m = 18, r = 14. When hn is bounded
the results exhibit the same pattern, but with the advantage of a faster rate
of convergence to the nominal 5%. The simulated sizes based on the corrected
statistics, instead, are very satisfactory also for very small sample sizes, whether
hn is divergent or bounded and λ is estimated by either OLS or MLE.

As expected, the results are similar whether λ is estimated by OLS or MLE.
However, for divergent hn and when considering the Edgeworth-corrected criti-
cal values, the results obtained when λ is estimated by MLE slightly outperform
those based on the OLS estimate. Other than this case, the values appear to
be comparable.

As previously mentioned, Edgeworth-corrected and bootstrap-based tests
should have similar properties. From Tables 1-4 we see that this is indeed the
case. Specifically, for all cases the bootstrap results outperform ones based on
Edgeworth-corrected critical values when the sample is very small, but become
comparable as the sample size increases. In case hn is divergent and λ is esti-
mated by OLS, the bootstrap results seem to outperform those obtained using
Edgeworth-corrected critical values for all sample sizes, but the discrepancy is
increasingly smaller as n increases. On the other hand, for all sample sizes
and both estimation methods the bootstrap results appear to be very similar
to ones based on the Edgeworth-corrected statistics, whether hn is divergent or
bounded.

In Figures 1 and 2 we plot the pdf obtained from the Monte Carlo simula-
tion of the non-corrected OLS null statistic aλ̂ and its corrected version g(aλ̂),
respectively, while in Figures 3 and 4 we plot the non-corrected and corrected
pdf for the MLE null statistics, i.e.

√
n/hnãλ̃ and g̃(

√
n/hnãλ̃), respectively.

We notice that both non-corrected statistics are skewed to the left but most of
this skewness is removed when we consider the corrected versions.

(Figures 1-4 about here)

Finally, we investigate with a Monte Carlo simulation the power of both
standard and corrected tests of

H0 : λ = 0 H1 : λ = λ̄, (4.4)

where λ̄ is a fixed finite, positive, alternative value. Obviously, the same argu-
ment can be carried on with very minor modifications in case of a fixed, negative,
alternative value. In Tables 5 and 6 we report the simulated quantities corre-
sponding to Pr(aλ̂ > zα|H1), Pr(aλ̂ > tEd|H1) and Pr(aλ̂ > w∗α|H1), while in
Tables 7 and 8 we report the same quantities in case λ is estimated by MLE,
i.e. the empirical values of Pr(

√
n/hnãλ̃ > zα|H1), P r(

√
n/hnãλ̃ > t̃Ed|H1)
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and Pr(
√
n/hnãλ̃ > w̃∗α|H1). We choose three different values of λ̄, specifically

λ̄ = 0.1, 0.5, 0.8.
The pattern of the results when λ is estimated either by OLS or MLE appears

quite similar and the values are consistent with the empirical sizes reported in
Tables 1-4.

(Tables 5-8 about here)

A further remark about testing of H0 in (4.4) when λ is estimated by OLS is
necessary at this stage. As previously mentioned, λ̂ is inconsistent when λ 6= 0.
Therefore, in case plimλ̂− λ < 0 as n→∞, for some finite, strictly positive λ,
we might have that, under H1, plimλ̂ = 0 as n → ∞ (obviously, for λ strictly
negative the argument would be modified as: in case plim(λ̂−λ) > 0 as n→∞
we might have that.....). In this case, the standard test of H0 in (4.4) would
be inconsistent. Clearly, if this were the case, the MLE would be preferable
over the OLS estimation, but given the computational simplicity of the latter,
it should not be dismissed before some further investigation.

It is quite straightforward to evaluate the sign of the probability limit of
λ̂−λ for any particular choice of W . By Lemma 5 (reported in Appendix C.1),
under Assumption 2 and for W given in (4.1), we have that the probability
limit of λ̂− λ is finite and has the same sign of λ. It is worth mentioning that
such limit can be computed similarly for any other choices of W . Moreover,
for sake of generality, Lemma 5 can be proved without imposing Assumption 2.
However, Assumption 2 has been assumed throughout the paper and is retained
here for algebraic simplicity.

By Lemma 5, it is straightforward to show that, as n → ∞, Pr(aλ̂ >

zα|H1)→ 1, P r(aλ̂ > tEd|H1)→ 1 and Pr(g(aλ̂) > zα|H1)→ 1.

5 Empirical examples

In this section we consider two small empirical examples where the correc-
tions developed in Sections 2 and 3 are relevant. It should be stressed that
these examples are intended for illustration only and do not aim to be exhaus-
tive analyses of the issues involved. The main purpose of this section is to show
how, in some empirical investigation, the conclusion of a test might be different
if the small sample correction is taken into account.

5.1 The geography of happiness (Stanca (2009))

The main goal of the empirical work in Stanca (2009) is to investigate the
spatial distribution of the effects of both income and unemployment on well-
being for a sample of 81 countries. For the purpose of our example we focus on
the income effects. Several specifications are considered, the three main ones
being

P = λWP +Xγ + ε, (5.1)
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P = λWP + ε, (5.2)

P = Xγ + ε, (5.3)

where ε ∼ N(0, σ2I). P is the n− dimensional vector of sensitivities of well-
being to income in each country, X is a set of exogenous macroeconomic condi-
tions, including GDP per capita, unemployment rate, government size and trade
openness. W is the usual matrix of spatial weights and more details about the
choice of W will be given below.

The components of P are clearly unobservable. A good proxy for each com-
ponent of P is given by the estimate of a country-specific, micro-level linear
model where well-being (denoted WB, henceforth) is regressed on income (de-
noted In, henceforth) as well as unemployment status, demographic factors,
social conditions, personality traits and environmental characteristics. For no-
tational convenience we denote Z the matrix of all the regressors other than
income. Specifically, for each country we estimate the parameters of

WB = β1In+ β2Z + u. (5.4)

For each individual in the sample, WB (intended as life satisfaction) is a self
reported number from 1 to 10 while income is measured by self reported deciles
in the national distribution of income. The vector P contains the estimated
values β̂1 of each country-specific regression. More details about the choice of
variables, data sources, sample size for each country and estimation methods are
in Stanca (2009) and a discussion about the specification of the micro analysis
is beyond the scope of this example.

The results in Stanca (2009) indicate that by estimating λ in model (5.2) we
detect the presence of spatial correlation. However, when the macroeconomic
conditions are included among the regressors, such as in specification (5.1), the
estimate of λ becomes insignificant, suggesting that the geographical correla-
tion is mainly explained by similar underlying macroeconomics conditions in
neighbouring countries. Therefore, either specification (5.2) or (5.3) can be ap-
propriate, as the estimate of λ in model (5.2) should reflect the macroeconomics
similarities among countries.

However, we notice that the estimates of the relevant components of γ in
(5.3) are strongly significant (1% or 0.5% level), while the estimate for λ in
specification (5.2) is barely significant at 5%. Given that specifications (5.2) and
(5.3) should both be appropriate, in principle we would expect the estimates
of the coefficients of the two specifications to be equally significant (at least
roughly). Therefore, it can be useful to investigate whether an Edgeworth-
corrected test gives a different result.

We start by considering only a sub-sample of 43 European countries. Since
P in specification (5.2) is a vector of estimates and not actual data, some het-
erogeneity issues might be eliminated by considering only European countries.
Indeed, we expect that the micro level analysis to obtain β̂1 does not exhibit
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strong structural differences across a sample of 43 European countries. On the
other hand, when considering a broader sample, some systematic differences in
the relationship among the country-specific variables might occur. In practice,
a model as (5.4) might not be the correct specification for all countries, when
such countries are very heterogeneous. In turn, when such differences occur,
the reliability of β̂1 as proxies for the components of P is not clear. This prob-
lem might be reduced by considering only a sub-sample of less heterogeneous
countries.

Since the dependent variable in (5.2) is a vector of proxies and not actual
data, we acknowledge that the corrections derived in Sections 2 and 3 might not
fully hold. In principle, we might be neglecting some relevant term arising from
the approximation of the components of P by the estimates β̂1 in the Edgeworth
expansions of the cdf of the null OLS and MLE statistics. However, at least
for illustrative purpose, we think that a preliminary investigation of the effects
of the inclusion of the small sample corrections derived in Sections 2 and 3 is
worthwhile.

We construct W based on a contiguity criterion, i.e. wij = 1 if country i
and country j share a border and wij = 0 otherwise.

(Tables 9-10 about here)

In Tables 9 and 10, we report the outcome of the tests of H0 in (1.2) when λ is
estimated with OLS and MLE, respectively. The actual values of statistics and
critical values are reported in brackets. When λ is estimated by OLS, λ̂ is only
(barely) significant at 5%, while it becomes significant at 1% when corrected
critical values are used. We notice that in case λ is estimated by MLE, the
outcome of the test does not change when corrected critical values are used.
This is a result that could be expected, to some extent. From the simulation
work, the non-corrected results for the MLE appear to be slightly better than
OLS in very small samples.

5.2 Crime rate and social capital (Buonanno et al. (2009))

The last example we present is based on a paper by Buonanno et al. (2009)
and deals with crime rates in Italian provinces. In particular, this paper aims
to investigate whether social capital, intended as civic norms and associational
networks, affects the property crime rate at a provincial level. The 103 Italian
provinces are especially suitable for this purpose since Italy displays significant
provincial disparities despite being politically, ethically and religiously quite
homogeneous. The literature about the influence of social capital on crime rate
is broad and a survey is beyond the scope of this example. Similarly, for a
discussion about the peculiar contribution of Buonanno et al. (2009), we refer
to the paper.

For the purpose of our investigation, we consider the three following models

Y = λWY + ε, (5.5)
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Y = λWY + β1SC + β2X + δD + ε, (5.6)

and
Y = β1SC + β2X + δD + ε, (5.7)

where ε ∼ N(0, σ2I). Y is the n−dimensional vector of crime rates in each
province. Each component of Y is obtained by dividing the reported crime rate
at provincial level by the corresponding overall report rate at regional level.
The dataset contains three sets of observations, regarding car thefts, robberies
and general thefts rates. SC is the vector of social capital observations. The
paper proposes four different measures of social capital, which are used sepa-
rately, namely the number of recreational associations, voluntary associations,
referenda turnout and blood donation. X is a matrix of exogenous regressors
containing deterrence (such as the average length of judicial process and the
crime specific clear up rate), demographic and socio-economic variables. In ad-
dition, X contains a measure of criminal association at provincial level. Finally,
D is a matrix of geographical dummies to control for heterogeneity among the
north, centre and south of the country. Our analysis is conducted with and
without the inclusion of the geographical dummies and the results do not ap-
pear to vary significantly. The data pertain to 2002 or, when an average is
considered, to the period 2000-2002.

In Buonanno et al. the parameters in model (5.6) are estimated for each
crime type, with different variants of W and measures of social capital. The
results of each estimation are reported in the paper. For our discussion, we
observe that the estimate of λ in model (5.6) is insignificant in each of the
regressions considered (or only barely significant at 10%, in few cases). However,
when we estimate λ in model (5.5), we detect spatial correlation, suggesting
that the effect of geographical contiguity is mostly taken into account by the
regressors included in model (5.6). Hence, both models (5.5) and (5.7) seem
to be appropriate and we expect the estimate of λ in model (5.5) to reflect the
overall similarities across neighbouring provinces.

To investigate more specifically which are the main determinants of Y , we
perform an OLS estimation of the parameters in model (5.7) and we observe
that Y is strongly affected by the measure of criminal association (denoted
CA, henceforth). Indeed, the estimate of the coefficient of CA is significant at
0.5% level. In turn, we expect that CA displays significant correlation across
provinces and to confirm our conjecture we estimate the spatial parameter of
the additional model

CA = µWCA+ ε, (5.8)

where µ is a scalar parameter. As expected, the estimate of µ is strongly signif-
icant (0.5% level).

When the regressors are not included, such as when we consider model (5.5),
we would expect to detect a similarly strong spatial correlation in the dependent
variable. However, the estimate of λ in model (5.5) is only significant at 5%
level.

As discussed for the previous example, we investigate whether we obtain
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a different outcome of the test of H0 in (1.2) by including the small sample
corrections derived in Sections 2 and 3. We report the results obtained for the
robberies rates, W defined by a contiguity criterion and blood donation as a
measure of social capital, although similar results can be derived for the other
crime rates and alternative measures of social capital.

(Tables 11-12 about here)

The outcomes of the tests of H0 in (1.2) when λ is estimated by OLS and
MLE are reported in Tables 11 and 12, respectively. We notice that when the
usual normal approximation is adopted, we are able to reject H0 only at 5%
level, λ being estimated by either OLS or MLE. Instead, when the Edgeworth
correction is included, we are able to reject H0 at 1% level when λ is estimated
by OLS and at 0.5% level when λ is estimated by MLE. As is the case in the
previous example, these results confirm those of the simulation work, i.e. for
small/moderate sample sizes, the results obtained when λ is estimated by MLE
slightly outperform those obtained by OLS estimation.

6 Conclusions

With the goal of improving normal-based inference, we have derived refined test
statistics for lack of spatial correlation in a pure SAR model based on OLS and
MLE estimates of the spatial parameter. The new tests are derived from the
formal Edgeworth expansions of the cdf of the standard t-statistics under the
null hypothesis.

We have motivated our analysis by observing that in a pure SAR model the
rate of convergence of the estimate of the spatial parameter can be slower than
the parametric

√
n, depending on assumptions on the weight matrix, entailing

an error in the normal approximation which might be larger than the usual
1/
√
n.

Monte Carlo simulations confirm that in finite samples the new tests outper-
form those based on the usual standard normal approximation and are compa-
rable to one based on a bootstrap, which is expected to have similar properties.
Moreover, we have applied the refined tests in two empirical examples. In such
examples, we have shown that the inclusion of correction terms change the out-
come of standard tests for spatial independence.

The framework presented in this paper could be extended along several di-
rections. It should be stressed that our focus on t-tests was motivated by their
relative simplicity, but we acknowledge that small sample refinements could be
developed also for other statistics, e.g. likelihood ratio. Moreover, a similar, yet
algebraically more complicated, derivation could be developed in case the depen-
dent variable in model (1.1) is a vector of residuals. Such an extension might be
useful, for instance, when we are interested in testing for spatial independence
in the model

Y = Xβ + u with u = λWu+ ε, ε ∼ N(0, σ2I),
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where X is a set of regressors, possibly stochastic. Finally, we should mention
that the assumption of Gaussianity might be relaxed, at the expense of consider-
able extra complication in the derivation of the formal Edgeworth expansions.

A Appendix A: Proof of Theorem 1

The OLS estimate of λ is defined as

λ̂− λ =
Y ′W ′ε

Y ′W ′WY

and therefore, under Assumption 1,

λ̂ =
ε′W ′ε

ε′W ′Wε
.

The cdf of λ̂ under Assumption 1 can be written in terms of a quadratic form in ε, i.e.

Pr(λ̂ ≤ x) = Pr(f ≤ 0),

where

f =
1

2
ε′(C + C′)ε,

C = W ′ − xW ′W (A.1)

and x is any real number.
Under Assumption 2, the characteristic function of f can be derived as

E(eit(
1
2 (ε′(C+C′)ε)) =

1

(2π)n/2σn

∫
<n

eit(
1
2 (ε′(C+C′)ε)e

− ε′ε
2σ2 dε

=
1

(2π)n/2σn

∫
<n

e
− 1

2σ2 ε
′(I−itσ2(C+C′))ε

dε

= det(I − itσ2(C + C′))−1/2 =

n∏
j=1

(1− itσ2ηj)
−1/2,

where det(A) denotes the determinant of a generic square matrix A, ηj are the eigen-
values of (C + C′) and i =

√
−1. From (A.2) the cumulant generating function of f

is

ψ(t) = −1

2

n∑
j=1

ln(1− itσ2ηj) =
1

2

n∑
j=1

∞∑
s=1

(itσ2ηj)
s

s

=
1

2

∞∑
s=1

(itσ2)s

s

n∑
j=1

ηsj =
1

2

∞∑
s=1

(itσ2)s

s
tr((C + C′)s). (A.2)

From (A.2) the s-th cumulant can be derived as

κ1 = σ2tr(C), (A.3)

κ2 =
σ4

2
tr((C + C′)2), (A.4)
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κs =
σ2ss!

2

tr((C + C′)s)

s
, s > 2. (A.5)

Let

fc =
f − κ1

κ
1/2
2

,

i.e. the centred and scaled version of f . The cumulant generating function of fc can
be written as

ψc(t) = −1

2
t2 +

∞∑
s=3

κcs(it)
s

s!
,

where
κcs =

κs

κ
s/2
2

, (A.6)

while the characteristic function of fc is

E(eitf
c

) = e−
1
2 t

2
exp{

∞∑
s=3

κcs(it)
s

s!
} =

= e−
1
2 t

2
{1 +

∞∑
s=3

κcs(it)
s

s!
+

1

2!
(

∞∑
s=3

κcs(it)
s

s!
)2 +

1

3!
(

∞∑
s=3

κcs(it)
s

s!
)3 + .....}

= e−
1
2 t

2
{1 +

κc3(it)3

3!
+
κc4(it)4

4!
+
κc5(it)5

5!
+ {κ

c
6

6!
+

(κc3)2

(3!)2
}(it)6 + .....}.

Thus, by the Fourier inversion formula, we can conclude that

Pr(fc ≤ z) =

z∫
−∞

φ(z)dz +
κc3
3!

z∫
−∞

H3(z)φ(z)dz +
κc4
4!

z∫
−∞

H4(z)φ(z)dz + ....,

where Hi(z) is the i − th Hermite polynomial. Collecting the results derived above,
we have

Pr(λ̂ ≤ x) = Pr(f ≤ 0) = Pr(fcκ
1/2
2 + κ1 ≤ 0) = Pr(fc ≤ −κc1)

= Φ(−κc1)− κc3
3!

Φ(3)(−κc1) +
κc4
4!

Φ(4)(−κ′1) + ... (A.7)

From (A.3), (A.4) and (A.6) we have

κc1 =
σ2tr(C)

σ2( 1
2
tr[(C + C′)2])1/2

,

where C is defined according to (A.1). The numerator of κc1 is

σ2tr(W )− σ2xtr(W ′W ) = −σ2xtr(W ′W ),

while the denominator of κc1 is σ2 times

(
1

2
tr(C + C′)2)1/2 = (tr(W 2) + tr(WW ′)− 4xtr(WW ′W ) + 2x2tr[(W ′W )2])1/2.
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Thus

κc1 =
−xtr(W ′W )

(tr(W 2) + tr(WW ′)− 4xtr(WW ′W ) + 2x2tr[(W ′W )2])1/2

=
−xtr(W ′W )

(tr(W 2) + tr(WW ′))1/2(1− 4xtr(WW ′W )+2x2tr[(W ′W )2]

(tr(W2)+tr(WW ′)) )1/2
.

We choose x = a−1ζ, where

a =
tr(W ′W )

(tr(W ′W +W 2))1/2
∼
(
n

hn

)1/2

. (A.8)

Moreover, we write

b1 =
tr[WW ′W ]

tr[W ′W +W 2]
(A.9)

and

b2 =
tr[(W ′W )2]

tr[W ′W +W 2]
. (A.10)

Now,

κc1 =
−xtr[W ′W ]

(tr[W ′W +W 2])1/2(1− 4xb1 + 2x2b2)1/2
=

−ζ
(1− 4xb1 + 2x2b2)1/2

= −ζ

(
1 + 2a−1ζb1 − a−2ζ2b2 + 6a−2ζ2b21 +O

(
hn
n

)3/2
)

= −ζ − 2a−1ζ2b1 + a−2ζ3b2 − 6a−2b21ζ
3 +O

(
hn
n

)3/2

,

where the third equality follows by performing a standard Taylor expansion of the
term (1− 4xb1 + 2x2b2)−1/2, i.e.

(1− 4xb1 + 2x2b2)−1/2 = 1 + 2xb1 − x2b2 + 6x2b21 +O

(
hn
n

)3/2

.

From (A.8), (A.9), (A.10) and under Assumption 5 we have

2a−1ζ2b1 ∼
(
hn
n

)1/2

, a−2ζ3b2 ∼
hn
n
, 6a−2b21ζ

3 ∼ hn
n
.

Moreover, by Taylor expansion we obtain

Φ(−κc1) = Φ

(
ζ + 2a−1ζ2b1 − a−2ζ3b2 + 6a−2ζ3b21 +O

(
hn
n

)3/2
)

= Φ(ζ) + (2a−1ζ2b1 − a−2ζ3b2 + 6a−2ζ3b21)φ(ζ)

+ 2a−2ζ4b21Φ(2)(ζ) +O

(
hn
n

)3/2

(A.11)
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and

Φ(3)(−κc1) = Φ(3)(ζ) + 2a−1ζ2b1Φ(4)(ζ) +O

(
hn
n

)
. (A.12)

Collecting (A.7), (A.11) and (A.12), the third order Edgeworth expansion of the
cdf of aλ̂ under Assumptions 1-5, becomes

Pr(aλ̂ ≤ ζ) = Φ(ζ) + 2a−1b1ζ
2φ(ζ)− κc3

3!
Φ(3)(ζ)

− (a−2b2 − 6a−2b21)ζ3φ(ζ) + 2a−2b21ζ
4Φ(2)(ζ)

− κc3
3
a−1b1ζ

2Φ(4)(ζ) +
κc4
4!

Φ(4)(ζ) +O

(
hn
n

)3/2

,

where, from (A.4), (A.5) and (A.6),

κc3 =
σ6tr[(C + C′)3]

σ6( 1
2
tr[(C + C′)2])3/2

∼ 2tr(W 3) + 6tr(W ′W 2)

(tr(W ′W +W 2))3/2

and

κc4 =
3σ8tr[(C + C′)4]

σ8( 1
2
tr[(C + C′)2])2

∼ 6tr(W 4) + 24tr(W ′W 3) + 12tr((WW ′)2) + 6tr(W 2W
′2)

(tr(W ′W +W 2))2
.

B Appendix B: Proof of Theorem 2

We first introduce some notation that will be used throughout the proof. We write

l(λ) = l(λ, σ̃2(λ)),

where l(λ, σ2) and σ̃2(λ) are defined in (3.1) and (3.2), respectively. Moreover,

Z(1)(λ) =

√
hn
n

∂l(λ)

∂λ
, Z(2)(λ) =

√
hn
n

(
∂2l(λ)

∂λ2
− E

(
∂2l(λ)

∂λ2

))
,

J(λ) =
hn
n

∂3l(λ)

∂λ3
, K(λ) = −hn

n
E

(
∂2l(λ)

∂λ2

)
,

∂l(0)

∂λ
=
∂l(λ)

∂λ
|λ=0.

Finally, we denote Oe(.) an exact rate (in probability).
By (3.1) we have

∂l(λ)

∂λ
= n

(Y ′WY − λY ′W ′WY )

Y ′S(λ)′S(λ)Y
− tr(S−1(λ)W ) (B.1)

and

∂2l(λ)

∂λ2
= −n Y ′W ′WY

Y ′S(λ)′S(λ)Y
+ 2n

(λY ′W ′WY − Y ′WY )2

(Y ′S(λ)′S(λ)Y )2
− tr(S−1(λ)WS−1(λ)W ).

(B.2)
Therefore, under Assumption 1,

Z(1)(0) =
√
hnn

ε′Wε

ε′ε
(B.3)

24



and

Z(2)(0) =

√
hn
n
{−nε

′W ′Wε

ε′ε
+ 2n

(
ε′Wε

ε′ε

)2

− tr(W 2)

+ nE

(
ε′W ′Wε

ε′ε

)
− 2nE

(
ε′Wε

ε′ε

)2

+ tr(W 2)}

=

√
hn
n
{−nε

′W ′Wε

ε′ε
+ 2n

(
ε′Wε

ε′ε

)2

− tr(W 2)

+ n
E(ε′W ′Wε)

E(ε′ε)
− 2n

E
(

1
2
ε′(W +W ′)ε

)2
E(ε′ε)2

+ tr(W 2)}

=

√
hn
n
{−nε

′W ′Wε

ε′ε
+ 2n

(ε′Wε)2

(ε′ε)2
+ tr(W ′W )

− 1

n
tr((W +W ′)2)(1 +

2

n
)−1}, (B.4)

since
E(ε′W ′Wε) = σ2tr(W ′W ), (B.5)

E((ε′(W +W ′)ε)2) = 2σ4tr((W +W ′)2) (B.6)

and
E((ε′ε)2) = σ4(n2 + 2n). (B.7)

The second equality in (B.4) follows because both the ratios

ε′Wε

ε′ε
=

1
2
ε′(W +W ′)ε

ε′ε
and

ε′W ′Wε

ε′ε

are independent of their own denominator and therefore the expectation of the ratio
is equal to the ratio of the expectations (see e.g. Jones (1987), who attributed the
result to E.J.G. Pitman). Similarly, we have

J(0) =
hn
n

(
−6nε′Wεε′W ′Wε

(ε′ε)2
+

8n(ε′Wε)3

(ε′ε)3
− 2tr(W 3)

)
(B.8)

and, using (B.5),(B.6), (B.7),

K(0) = −hn
n

(
−nE(ε′W ′Wε)

E(ε′ε)
+ 2n

E
(
ε′ 1

2
(W +W ′)ε

)2
E(ε′ε)2

)
+
hn
n
tr(W 2)

=
hn
n
tr(W 2) +

hn
n
tr(W ′W )− hn

n2
tr((W +W ′)2)

(
1 +

2

n

)−1

. (B.9)

By Lemma 2, Lemma 3 and Lemma 4 (reported in Appendix C.1) Z(1)(0) = Oe(1),
Z(2)(0) = Op(1) and J(0) = Op(1), respectively. In addition, under Assumption 5,
K(0) is finite and positive for large n.

By the Mean Value Theorem we have

0 =
hn
n

∂l(λ̃)

∂λ
=
hn
n

∂l(0)

∂λ
+
hn
n

∂2l(0)

∂λ2
λ̃+

1

2

hn
n

∂3l(0)

∂λ3
λ̃2 +

hn
6n

∂4l(
−
λ)

∂λ2
λ̃3,
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where
−
λ is an intermediate point between λ̃ and 0. Therefore,

0 =

√
hn
n
Z(1)(0) +

√
hn
n
Z(2)(0)λ̃−K(0)λ̃+

1

2
J(0)λ̃2 +

hn
6n

∂4l(
−
λ)

∂λ4
λ̃3

and rearranging we obtain

√
n

hn
λ̃ =

Z(1)(0)

K(0)
+
Z(2)(0)

K(0)
λ̃+

1

2

√
n

hn

J(0)

K(0)
λ̃2 +

1

6

√
hn
n

∂4l(
−
λ)

∂λ4
λ̃3. (B.10)

The first term of the RHS of (B.10) is Oe(1), the second and the third are Op(
√
hn/n),

since it is known that λ̃ = Oe(
√
hn/n) (see Lee (2004)) while Z(2)(0) and J(0) are

Op(1), by Lemma 3 and Lemma 4, respectively. The last term is op(
√
hn/n) since

−
λ

p→ 0 and ∂4l(0)/∂λ4 ∼ tr(W 4) ∼ (n/hn). Hence√
n

hn
λ̃ =

Z1(0)

K(0)
+

√
hn
n

Z(2)(0)Z(1)(0)

K(0)2
+

1

2

√
hn
n

J(0)(Z(1)(0))2

K(0)3
+ op

(√
hn
n

)
,

where the last displayed expression has been obtained by substituting into (B.10) the
approximation for λ̃ implicit in (B.10), i.e.

λ̃ ∼
√
hn
n

Z(1)(0)

K(0)
.

Let x be any finite real number. We have

Pr(

√
n

hn
λ̃ ≤ x)

= Pr(
Z1(0)

K(0)
+

√
hn
n

Z(2)(0)Z(1)(0)

K(0)2
+

1

2

√
hn
n

J(0)(Z(1)(0))2

K(0)3
+ op

(√
hn
n

)
≤ x)

= Pr(
1

K(0)

√
hn
n

ε′Wε
1
n
ε′ε

+

√
hn
n

Z(2)(0)Z(1)(0)

K(0)2
+

1

2

√
hn
n

J(0)(Z(1)(0))2

K(0)3
+ op

(√
hn
n

)
≤ x),

where the last equality is obtained by substituting (B.3) and multiplying both numer-
ator and denominator of the first term by 1/n. We write

f̃ =

√
hn
n
ε′Wε− xK(0)

n
ε′ε+

√
hn
n

Z(2)(0)Z(1)(0)

K(0)

1

n
ε′ε

+
1

2

√
hn
n

J(0)(Z(1)(0))2

K(0)2
1

n
ε′ε+ op

(√
hn
n

)

=
1

2
ε′(C̃ + C̃′)ε+

√
hn
n

Z(2)(0)Z(1)(0)

K(0)

1

n
ε′ε

+
1

2

√
hn
n

J(0)(Z(1)(0))2

K(0)2
1

n
ε′ε+ op

(√
hn
n

)
, (B.11)
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where

C̃ =

√
hn
n
W − xK(0)

n
I. (B.12)

Therefore, by standard algebraical manipulation,

Pr(

√
n

hn
λ̃ ≤ x) = Pr(f̃ ≤ 0).

Under Assumption 5 and by a slight modification of the argument in Lemma 2 the
first term of the RHS of (B.11) is Oe(1). The second and the third terms are both
Op(

√
hn/n) by Lemma 3 and Lemma 4, respectively, and since K(0) is finite and

positive in the limit.
Under Assumption 2 the characteristic function of f̃ can be written as

E(eitf̃ ) =
1√

2πσ2

∫
<n

eitf̃e
− ε′ε

2σ2 dε

=
1√

2πσ2

∫
<n

e
1
2 itε

′(C̃+C̃′)ε{1 + it

√
hn
n

Z(2)(0)Z(1)(0)

K(0)

1

n
ε′ε

+
1

2
it

√
hn
n

J(0)(Z(1)(0))2

K(0)2
1

n
ε′ε+ op

(√
hn
n

)
} × e−

ε′ε
2σ2 dε.

We denote η̃j , j = 1....n, the eigenvalues of (C̃ + C̃′). Next,

E(eitf̃ ) =
1√

2πσ2

∫
<n

e
− 1

2σ2 ε
′(I−itσ2(C̃+C̃′))ε

dε

+ it

√
hn
n

1√
2πσ2

1

K(0)

∫
<n

e
− 1

2σ2 ε
′(I−itσ2(C̃+C̃′))εZ

(1)(0)Z(2)(0)ε′ε

n
dε

+
1

2
it

√
hn
n

1√
2πσ2

1

K(0)2

∫
<n

e
− 1

2σ2 ε
′(I−itσ2(C̃+C̃′)ε (Z(1)(0))2J(0)ε′ε

n
dε+ o

(√
hn
n

)

=

n∏
j=1

(1− itσ2η̃j)
−1/2(1 + it

√
hn
n

1

K(0)
E(

Z(1)(0)Z(2)(0)ε′ε

n
)

+
1

2
it

√
hn
n

1

K(0)2
E(

(Z(1)(0))2J(0)ε′ε

n
)) + o

(√
hn
n

)
, (B.13)

where the expectations in the last displayed expression are intended with respect to
ε ∼ N(0,Σ), with

Σ =
σ2

(I − itσ2(C̃ + C̃′))
= σ2(

∞∑
s=0

(itσ2(C̃ + C̃′))s). (B.14)

A brief digression on the existence of the moments appearing in (B.13) is necessary.
The algebraical details of each term are in Appendix C.2, but for convenience the
general form of the expectations of interest are reported here, after substituting the
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expressions for Z(1)(0), Z(2)(0) and J(0):

E

(
(ε′Wε)p

(ε′ε)p−1

)
, p = 2, 3, 5 (B.15)

and

E

(
(ε′Wε)pε′W ′Wε

(ε′ε)p

)
, p = 1, p = 3. (B.16)

Regarding existence of (B.15), we have

E

(
(ε′Wε)p

(ε′ε)p−1

)
= E

((
ε′Wε

ε′ε

)p
ε′ε

)
= E

(
ε′Wε

ε′ε

)p
E(ε′ε) =

E(ε′Wε)p

E(ε′ε)p
E(ε′ε),

since ε′Wε/ε′ε is independent of ε′ε. When ε ∼ N(0, σ2) the three expectations in the
latter expression can be easily computed by standard statistical formulae. However,
the expectations appearing in (B.13) are intended with respect to ε ∼ N(0,Σ), with
Σ given in (B.14). Since the derivation is intended to be formal, validity issues of the
series representation given in (B.14) are not taken into consideration and, at least for
establishing existence, we rely on the approximation Σ ∼ σ2. Regarding existence of
(B.16), by the CauchySchwarz inequality we have∣∣∣∣E ( (ε′Wε)pε′W ′Wε

(ε′ε)p

)∣∣∣∣ ≤
{
E

(
ε′Wε

ε′ε

)2p

E(ε′W ′Wε)2
}1/2

.

By the same argument presented above, the first factor on the RHS is finite and by
Gaussianity the second is finite. The latter argument holds when W is symmetric, but
it can be immediately extended to non symmetric W by replacing W with (W+W ′)/2.

For notational simplicity, we write

Q = Q1 +Q2 + o

(√
hn
n

)
,

where

Q1 = it

√
hn
n

1

K(0)
E

(
Z(1)(0)Z(2)(0)ε′ε

n

)
and

Q2 =
1

2
it

√
hn
n

1

K(0)2
E

(
(Z(1)(0))2J(0)ε′ε

n

)
.

From (B.13) the cumulant generating function for f̃ , denoted ψ̃(t), can be written
as

ψ̃(t) = −1

2

n∑
j=1

ln(1− itσ2η̃j) + ln(1 +Q)

=
1

2

∞∑
s=1

(itσ2)s

s
tr((C̃ + C̃′)s) +

∞∑
s=1

(−1)s+1

s
Qs. (B.17)

Let κ̃s be the sth cumulant of f . Since we are interested in the second order Edge-
worth correction, we need to evaluate κ̃1, κ̃2 and κ̃3 up to order O(

√
hn/n). The
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contributions of the first term of the RHS of (B.17) to κ̃1, κ̃2 and κ̃3 are given by

σ2tr(C̃) = −σ2xK(0), (B.18)

σ4

2
tr((C̃ + C̃′)2)) =

hn
n
σ4(tr(W 2) + tr(W ′W )) +O

(
1

n

)
(B.19)

and

σ6tr(C̃ + C̃′)3 = σ6

(
hn
n

)3/2 (
2tr(W 3) + 6tr(W 2W ′)

)
+ o

(√
hn
n

)
, (B.20)

respectively. The contribution to κ̃1, κ̃2 and κ̃3 of the second term of the RHS of (B.17)
are evaluated in Appendix C.2. Collecting (B.18), (B.19), (B.20) and the results in
Appendix C.2 we have

κ̃1 = −σ2xK(0)− 2σ2

(
hn
n

)3/2
tr(WW ′W )

K(0)

− σ2

(
hn
n

)3/2
tr(W 3)

K(0)
+ o

(√
hn
n

)
, (B.21)

κ̃2 = σ4 hn
n

(tr(W 2) + tr(W ′W )) + o

(√
hn
n

)
(B.22)

and

κ̃3 = −4σ6

(
hn
n

)3/2

tr(W 3)− 6σ6

(
hn
n

)3/2

tr(WW ′W ) + o

(√
hn
n

)
. (B.23)

We centres and scale the statistic f̃ , as

f̃c =
f̃ − κ̃1

κ̃
1/2
2

.

The cumulant generating function of f̃c can be written as:

ψ̃c(t) = −1

2
t2 +

∞∑
s=3

κ̃cs(it)
s

s!
, (B.24)

where κ̃cs = κ̃s/κ̃
s/2
2 . From (B.24), the characteristic function of f̃c is

E(eitf̃
c

) = e−
1
2 t

2
exp{

∞∑
s=3

κ̃cs(it)
s

s!
} =

= e−
1
2 t

2
{1 +

∞∑
s=3

κ̃cs(it)
s

s!
+

1

2!
(

∞∑
s=3

κ̃cs(it)
s

s!
)2 +

1

3!
(

∞∑
s=3

κ̃cs(it)
s

s!
)3 + .....}

= e−
1
2 t

2
{1 +

κ̃c3(it)3

3!
+
κ̃c4(it)4

4!
+
κ̃c5(it)5

5!
+ { κ̃

c
6

6!
+

(κ̃c3)2

(3!)2
}(it)6 + .....}.
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Thus, by the Fourier inversion formula, we can conclude that

Pr(f̃c ≤ z) =

z∫
−∞

φ(z)dz +
κ̃c3
3!

z∫
−∞

H3(z)φ(z)dz +
κ̃c4
4!

z∫
−∞

H4(z)φ(z)dz + ....

Collecting the results derived above, we have

Pr(

√
n

hn
λ̃ ≤ x) = Pr(f̃ ≤ 0) = Pr(f̃cκ̃

1/2
2 + κ̃1 ≤ 0) = Pr(f̃c ≤ −κ̃c1)

= Φ(−κ̃c1)− κ̃c3
3!

Φ(3)(−κ̃c1) +
κ̃c4
4!

Φ(4)(−κ̃c1) + ... (B.25)

Now, from (B.21) and (B.22)

κ̃c1 =
−σ2xK(0)− 2σ2

(
hn
n

)3/2 tr(WW ′W )
K(0)

− σ2
(
hn
n

)3/2 tr(W3)
K(0)

σ2(hn
n

(tr(W 2) + tr(W ′W )))1/2
+ o

(√
hn
n

)

=
−xhn

n
(tr(W 2) + tr(W ′W ))− 2

√
hn
n

tr(WW ′W )

(tr(W2)+tr(W ′W ))
−
√

hn
n

tr(W3)

(tr(W2)+tr(W ′W ))

(hn
n

(tr(W 2) + tr(W ′W )))1/2

+ o

(√
hn
n

)
,

where the second equality has been obtained by substituting

K(0) =
hn
n

(tr(W 2) + tr(W ′W )) +O

(
1

n

)
,

according to (B.9). We choose x = ã−1ζ, where

ã =

√
hn
n

√
tr(W 2) + tr(W ′W ).

Therefore

κ̃c1 = −ζ − 2

(
hn
n

)3/2
tr(WW ′W )

ã3
−
(
hn
n

)3/2
tr(W 3)

ã3
+ o

(√
hn
n

)

and, from (B.22) and (B.23),

κ̃c3 ∼
−4
(
hn
n

)3/2
tr(W 3)− 6

(
hn
n

)3/2
tr(WW ′W )(

hn
n

)3/2
(tr(W 2) + tr(W ′W ))3/2

= −
(
hn
n

)3/2
4tr(W 3) + 6tr(WW ′W )

ã3
∼
√
hn
n
.
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By Taylor expansion of the function Φ(−κ̃c1) in (B.25), we conclude

Pr(

√
n

hn
ãλ̃ ≤ ζ) = Φ(ζ) +

(
2

(
hn
n

)3/2
tr(WW ′W )

ã3
+

(
hn
n

)3/2
tr(W 3)

ã3

)
φ(ζ)

− κ̃c3
3!

Φ(3)(ζ) + o

(√
hn
n

)
.

C Appendix C

C.1 Some useful Lemmas

In this Appendix we will present and prove some of the auxiliary results used
in the proofs of Theorem 1 and Theorem 2. As already stressed, the expansions in
Theorem 1 and Theorem 2 are formal, so we do not deal with convergence issues in
some of the results that follow. Moreover, it must be mentioned that for notational
simplicity, we prove Lemmas 2, 3 and 4 for a symmetric W . When W is not symmetric
the same results hold simply by substituting (W+W ′)/2 instead of W where necessary.

Lemma 1 If wij = O(1/hn), uniformly in i and j,

tr(WA) = O

(
n

hn

)
,

where A is an n× n matrix, uniformly bounded in row and column sums in absolute
value.

Proof Let aij be the i − jth element of A. The i−th diagonal element of WA has
absolute value given by

|(WA)ii| ≤ max
j
|wij |

n∑
j=1

|aji| = O

(
1

hn

)
,

uniformly in i. Therefore:

|tr(WA)| ≤
n∑
i=1

|(WA)ii| ≤ nmax
i
|(WA)ii| = O

(
n

hn

)
.

Lemma 2 Under Assumptions 2-5

Z(1)(0) =
√
hnn

ε′Wε

ε′ε
= Oe(1).

Proof We have

E

(
ε′Wε

ε′ε

)2

=
E(ε′Wε)2

E(ε′ε)2
=

2tr(W 2)

n2 + 2n
∼ 1

nhn
,
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under Assumptions 2-5. Hence, by Markov’s inequality

√
hnn

ε′Wε

ε′ε
= Oe(1).

Lemma 3 Under Assumptions 2-5

Z(2)(0) = Op(1),

where Z(2)(.) is defined according to (B.4).

Proof By rearranging terms in the first two lines of (B.4) we have

Z(2)(0) = −
√
hn
n

(
n
ε′W ′Wε

ε′ε
− nE

(
ε′W ′Wε

ε′ε

))
+

√
hn
n

(
2n

(
ε′Wε

ε′ε

)2

− 2nE

(
ε′Wε

ε′ε

)2
)
.

By the Cr moment inequality

E(Z(2)(0))2 ≤ 2
hn
n
E

(
n
ε′W ′Wε

ε′ε
− nE

(
ε′W ′Wε

ε′ε

))2

+ 2
hn
n
E

(
2n

(
ε′Wε

ε′ε

)2

− 2nE

(
ε′Wε

ε′ε

)2
)2

. (C.1)

Now,

E

(
n
ε′W ′Wε

ε′ε
− nE

(
ε′W ′Wε

ε′ε

))2

= E

(
n
ε′W ′Wε

ε′ε
− tr(W ′W )

)2

= n2E(ε′W ′Wε)2

E(ε′ε)2
+ (tr(W ′W ))2 − 2ntr(W ′W )

E(ε′W ′Wε)

E(ε′ε)

= ((tr(W ′W ))2 + 2tr((W ′W )2))

(
1 +

2

n

)−1

+ (tr(W ′W ))2 − 2(tr(W ′W ))2

= ((tr(W ′W ))2 + 2tr((W ′W )2))

(
1− 2

n
+O

(
1

n2

))
− (tr(W ′W ))2

= 2tr((W ′W )2)

(
1− 2

n
+O

(
1

n2

))
− (tr(W ′W ))2

(
2

n
+O

(
1

n2

))
(C.2)

and hence

E

(
n
ε′W ′Wε

ε′ε
− nE

(
ε′W ′Wε

ε′ε

))2

∼ 2tr((W ′W )2) ∼ n

hn
, (C.3)

under Assumption 5. In case the sequence hn is bounded, the latter result would be
modified as

E

(
n
ε′W ′Wε

ε′ε
− nE

(
ε′W ′Wε

ε′ε

))2

∼ 2tr((W ′W )2)− 2

n
(tr(W ′W ))2 ∼ n.
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It is worth stressing that, despite we are not attempting to provide an exact rate, we
could not use the inequality

E (X − E(X))2 ≤ E(X2)

instead of (C.2), as it would neglect relevant terms. Moreover,

4n2E

((
ε′Wε

ε′ε

)2

− E
(
ε′Wε

ε′ε

)2
)2

≤ 4n2E

(
ε′Wε

ε′ε

)4

= 4n2E(ε′Wε)4

E(ε′ε)4
∼ 4n2 12(tr(W 2))2 + 48tr(W 4)

n4
∼ 1

h2
n

. (C.4)

Collecting (C.1), (C.3), (C.4) and by Markov’s inequality, we conclude Z(2)(0) =
Op(1).

Lemma 4 Under Assumptions 1-5

J(0) = Op(1),

where J(0) is defined according to (B.8).

Proof By the Cr moment inequality (applied twice), we have

E(J(0))2 ≤ 2
h2
n

n2

(
E

(
6nε′Wεε′W ′Wε

(ε′ε)2

)2

+ E

(
8n(ε′Wε)3

(ε′ε)3
− 2tr(W 3)

)2
)

≤ 2
h2
n

n2
E

(
6nε′Wεε′W ′Wε

(ε′ε)2

)2

+ 4
h2
n

n2
E

(
8n(ε′Wε)3

(ε′ε)3

)2

+ 4
h2
n

n2
(2tr(W 3))2. (C.5)

In order to evaluate the rate of the first term in (C.5), we use the approximation
E(A/B) ∼ E(A)/E(B), without deriving the exact order of the remainder. Some
comments about the existence of the expectations in (C.5) are provided in Appendix
B. Using also standard results on the expectations of quadratic forms, we have

E

(
6nε′Wεε′W ′Wε

(ε′ε)2

)2

∼ 36n2E(ε′Wεε′W ′Wε)2

E(ε′ε)4

∼ 36n2 2tr(W 2)(tr(W ′W ))2

n4
∼ n

h3
n

. (C.6)

Moreover, by a recursive formula (Ghazal (1996))

E(ε′Wε)n =

n−1∑
i=0

giE(ε′Wε)n−1−i, (C.7)

where

gi =

(
n− 1
i

)
i!2iσ2i+2tr((W )i+1),
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we have

E

(
8n(ε′Wε)3

(ε′ε)3

)2

=
64n2E(ε′Wε)6

E(ε′ε)6
∼ 64n2 120(tr(W 2))3

n6
∼ 1

nh3
n

. (C.8)

Hence, the term

4(tr(W 3)2) ∼ n2

h2
n

in (C.5) dominates both (C.6) and (C.8), whether hn is divergent or bounded. There-
fore

E(J(0))2 = O(
h2
n

n2

n2

h2
n

) = O(1),

implying J(0) = Op(1).

Lemma 5 Under Assumption 2 and for W given by (4.1), plim
n→∞

(λ̂ − λ) is finite and

has the same sign of λ.

Proof The OLS estimate of λ is

λ̂− λ =
hn
n
Y ′Wε

hn
n
Y ′W 2Y

=
hn
n
ε′S−1(λ)Wε

hn
n
ε′S−1(λ)W 2S−1(λ)ε

, (C.9)

since W in (4.1) is symmetric and Y = S−1(λ)ε.
Regarding the limit of the numerator of the RHS of (C.9), we have(

hn
n

)2

E(ε′S−1(λ)Wε− σ2tr(S−1(λ)W ))2

=

(
hn
n

)2

E(ε′S−1(λ)Wε)2 − σ4(tr(S−1(λ)W ))2

= 2σ4

(
hn
n

)2

tr((S−1(λ)W )2)→ 0

as n→∞, since tr((S−1(λ)W )2) = O(n/hn) by Lemma 1. Hence

hn
n

(ε′S−1(λ)Wε− σ2tr(S−1(λ)W ))→ 0

in second mean, implying

plim
n→∞

hn
n
ε′S−1(λ)Wε = lim

n→∞
σ2 hn

n
tr(S−1(λ)W ). (C.10)

Similarly,

plim
n→∞

hn
n
ε′S−1(λ)W 2S−1(λ)ε = lim

n→∞
σ2 hn

n
tr((S−1(λ)W )2). (C.11)

From (C.10) and (C.11), we have

λ̂− λ p→ lim
n→∞

hn
n
tr(S−1(λ)W )

hn
n
tr((S−1(λ)W )2)

. (C.12)
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First, we show that the RHS of (C.12) is finite. Lemma 1 implies

hn
n
tr(S−1(λ)W ) = O(1).

The denominator in the RHS of (C.12) is non-negative and by (3.3) we have

hn
n
tr((S−1(λ)W )2) ∼ hn

n
tr(W 2),

which is non-zero for W given in (4.1), as shown in section 4. Hence, the RHS of
(C.12) is finite and its sign depends on its numerator.

From (4.1) and the series representation in (3.3), we have

tr(S−1(λ)W ) = tr(

∞∑
i=0

λitr(W i+1)) = r

∞∑
i=0

λitr(Bi+1
m ).

Since Bm has one eigenvalue equal to 1 and the other (m − 1) equal to −1/(m − 1),
we have

tr(Bi+1
m ) = 1 + (m− 1)

(
−1

m− 1

)i+1

and hence, since |λ| < 1,

tr(S−1(λ)W ) = r

∞∑
i=0

λi
(

1−
(
−1

m− 1

)i)

=
r

1− λ −
r

1 + λ
m−1

=
λ

1− λ
rm

m− 1 + λ
. (C.13)

By substituting hn = m− 1 and n = mr into (C.13), we obtain

hn
n
tr(S−1(λ)W ) =

m− 1

mr

λ

1− λ
rm

m− 1 + λ
=

λ

1− λ
m− 1

m− 1 + λ
,

which has the same sign of λ, whether m is divergent or bounded, provided that m > 1.

C.2 Evaluation of cumulants

In this section we evaluate the contribution to κ̃1, κ̃2 and κ̃3 of the term

Q1 = it

√
hn
n

1

K(0)

1

n
E(Z(1)(0)Z(2)(0)ε′ε)

appearing in (B.13). Since the expansion in Theorem 2 is formal, the approximation
E(A/B) ∼ E(A)/E(B) is used without proving the exact order of the remainder
terms. Substituting (B.3) and (B.4), we write

Q1 = Q11 +Q12 +Q13,

where:

Q11 = −it
√
hn
n

1

K(0)
hnE

(
ε′Wεε′W ′Wε

ε′ε

)
,
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Q12 = 2it

√
hn
n

1

K(0)
hnE

(
(ε′Wε)3

(ε′ε)2

)
and

Q13 = it

√
hn
n

1

K(0)

hn
n

(
tr(W ′W )− 1

n
tr((W +W ′)2)

(
1 +

2

n

)−1
)
E(ε′Wε).

Contribution from term Q11

Using also some standard results on the expectations of quadratic forms in normal
random variables, we have

Q11 ∼ −it
√
hn
n

1

K(0)
hn
E
(

1
2
ε′(W +W ′)εε′W ′Wε

)
E(ε′ε)

= −it
√
hn
n

1

K(0)
hn

1
2
tr((W +W ′)Σ)tr(W ′WΣ) + tr(Σ(W +W ′)ΣW ′W )

tr(Σ)
,

where Σ is defined according to (B.14). It is straightforward to show that tr(Σ) ∼ σ2n.
The contribution from Q11 to κ̃1 is then

−2

√
hn
n

1

K(0)

hn
n
σ2tr(WW ′W ) + o

(√
hn
n

)

= −2σ2

√
hn
n

tr(WW ′W )

tr(W 2) + tr(W ′W )
+ o

(√
hn
n

)
, (C.14)

since

K(0) =
hn
n

(trW 2 + tr(W ′W )) +O(
1

n
),

according to (B.9).
The contribution to κ̃2 comes from the term

−(it)2σ4(
hn
n

)3/2
1

K(0)
[
1

2
tr((W +W ′)(C̃ + C̃′))tr(W ′W )

+ tr((C̃ + C̃′)(W +W ′)W ′W ) + tr((W +W ′)(C̃ + C̃′)W ′W )],

with C̃ given by (B.12). The contribution to κ̃2 is given by

−σ4(
hn
n

)2
1

K(0)
(tr((W +W ′)2)tr(W ′W ) + op

(√
hn
n

)
, (C.15)

since

tr((W +W ′)(C̃ + C̃′)) = (tr(W +W ′)2)

√
hn
n
∼
(√

n

hn

)
, (C.16)

tr((C̃ + C̃′)(W +W ′)W ′W ) ∼
(√

n

hn

)
(C.17)

and

tr((W +W ′)(C̃ + C̃′)W ′W ) ∼
(√

n

hn

)
. (C.18)
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Similarly, the contribution to κ̃3 comes from the term

−(it)3(
hn
n

)3/2
1

K(0)

1

σ2
σ8(

1

2
tr((W +W ′)(C̃ + C̃′))tr(W ′W (C̃ + C̃′))

+
1

2
tr((W +W ′)(C̃ + C̃′)2)tr(W ′W ) + tr((C̃ + C̃′)2(W +W ′)W ′W )

+ tr((W +W ′)(C̃ + C̃′)2W ′W ) + tr((C̃ + C̃′)(W +W ′)(C̃ + C̃′)W ′W )).

Now,

tr(W ′W (C̃ + C̃′)) ∼
√
hn
n

2tr(WW ′W ), (C.19)

tr(W (C̃ + C̃′)2) ∼ hn
n
tr((W +W ′)3), (C.20)

tr((C̃ + C̃′)2(W +W ′)W ′W ) = o

(√
n

hn

)
, (C.21)

tr((W +W ′)(C̃ + C̃′)2W ′W ) = o

(√
n

hn

)
(C.22)

and

tr((C̃ + C̃′)(W +W ′)(C̃ + C̃′)W ′W ) = o

(√
n

hn

)
. (C.23)

Using (C.16), (C.17), (C.19)-(C.23), and after some tedious but straightforward alge-
bra we conclude that the contribution to κ̃3 is

−6

(
hn
n

)5/2
1

K(0)
σ6(2tr(W 2)tr(WW ′W ) + 5tr(W ′W )tr(WW ′W )

+ tr(W ′W )tr(W 3)) + o

(√
hn
n

)
. (C.24)

When W is symmetric (e.g. W given in (4.1)), the latter expression simplifies to

−24

(
hn
n

)3/2

σ6tr(W 3) + o

(√
hn
n

)
,

as

K(0) = 2
hn
n
trW 2 +O

(
1

n

)
,

according to (B.9).
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Contribution from term Q12

By independence between the ratio ε′Wε/ε′ε and ε′ε, we have

Q12 = 2it

√
hn
n

1

K(0)
hnE

((
ε′Wε

ε′ε

)3

ε′ε

)
= 2it

√
hn
n

1

K(0)
hnE

(
ε′Wε

ε′ε

)3

E(ε′ε)

= 2it

√
hn
n

1

K(0)
hn
E
(

1
2
ε′(W +W ′)ε

)3
E(ε′ε)3

E(ε′ε)

= 2it

√
hn
n

1

K(0)
hn{(

1

2
tr((W +W ′)Σ))3 + 6tr

(
1

2
(W +W ′)Σ

)
tr

((
1

2
(W +W ′)Σ

)2
)

+ 8tr

((
1

2
Σ(W +W ′)

)3
)
} tr(Σ)

(trΣ)3 + 6tr(Σ)tr(Σ2) + 8tr(Σ3)
,

where Σ is defined according to (B.14). We have

(trΣ)3 + 6tr(Σ)tr(Σ2) + 8tr(Σ3) ∼ σ6n3

and tr(Σ) ∼ σ2n.
The contribution from Q12 to κ̃1 is then

2σ2

√
hn
n

1

K(0)

hn
n2
tr((W +W ′)3) = o

(√
hn
n

)
, (C.25)

A similar argument holds also for the contribution from Q12 to both κ̃2 and κ̃3.

Contribution from term Q13

We have

Q13 = it

(
hn
n

)3/2
1

K(0)
(tr(W ′W )− 1

n
tr((W +W ′)2)(1 +

2

n
)−1)tr(

1

2
(W +W ′)Σ).

It is straightforward to see that there are no contributions to κ̃1, since

σ2

(
hn
n

)3/2
1

K(0)
(tr(W ′W )− 1

n
tr(W 2)(1 +

2

n
)−1)tr(W ) = 0. (C.26)

The contribution to κ̃2 comes from

(it)2σ4

(
hn
n

)3/2
1

K(0)
(tr(W ′W )− 4

n
tr(W 2)(1 +

2

n
)−1)

1

2
tr((W +W ′)(C̃ + C̃′))

and by (C.16) we conclude that Q13 contributes to κ2 with the term

σ4

(
hn
n

)2
1

K(0)
tr((W +W ′)2)tr(W ′W ) + op

(√
hn
n

)
. (C.27)
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The contribution to κ̃3 comes from

(it)3σ6

(
hn
n

)3/2
1

K(0)
(tr(W ′W )− 1

n
tr(W 2)(1 +

2

n
)−1)

1

2
tr((W +W ′)(C̃ + C̃′)2)

and hence, from (C.20), we conclude that Q13 contributes to κ3 with the term

6σ6

(
hn
n

)5/2
1

K(0)
tr(W ′W )(tr(W 3) + 3tr(W (W ′)2)) + o

(√
hn
n

)
. (C.28)

When W is symmetric, the latter simplifies to

12σ6(
hn
n

)3/2tr(W 3) + o

(√
hn
n

)
.

From (C.14), (C.25) and (C.26) we conclude that Q1 contributes to κ̃1 with the
term

−2σ2

(
hn
n

)3/2
1

K(0)
tr(WW ′W ) + o

(√
hn
n

)
. (C.29)

From (C.15) and (C.27) we conclude that any contribution to κ̃2 from Q1 is neglegible,
while collecting (C.24) and (C.28) we have that the contribution to κ̃3 from Q1 is

−12σ6

(
hn
n

)5/2
1

K(0)
tr(WW ′W )(tr(W 2) + tr(W ′W )) + o

(√
hn
n

)

= −12σ6

(
hn
n

)3/2

tr(WW ′W ) + o

(√
hn
n

)
, (C.30)

where the last equality follows by substituting

K(0) =
hn
n

(trW 2 + tr(W ′W )) +O(
1

n
),

according to (B.9).

Finally, we report the main steps for the evaluation of the contribution to κ̃1, κ̃2

and κ̃3 from

Q2 =
1

2
it

√
hn
n

1

K(0)2
1

n
E((Z(1)(0))2J(0)ε′ε).

Substituting (B.3) and (B.8), we write

Q2 = Q21 +Q22 +Q23,

where

Q21 ∼ −3it

√
hn
n

1

K(0)2
h2
n
E((ε′Wε)3ε′W ′Wε)

E(ε′ε)3
,
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Q22 = 4it

√
hn
n

1

K(0)2
h2
nE

((
ε′Wε

ε′ε

)5

ε′ε

)

= 4it

√
hn
n

1

K(0)2
h2
n
E(ε′Wε)5

E(ε′ε)5
E(ε′ε)

and

Q23 = −it
√
hn
n

1

K(0)2
h2
n

n
tr(W 3)E

((
ε′Wε

ε′ε

)2

ε′ε

)

= −it
√
hn
n

1

K(0)2
h2
n

n
tr(W 3)

E(ε′Wε)2

E(ε′ε)2
E(ε′ε).

Contribution from term Q21

Using some standard results on the expectations of quadratic forms in normal
random variables, we have

E((
1

2
ε′(W +W ′)ε)3ε′W ′Wε) = (tr(Σ

1

2
(W +W ′)))3tr(ΣW ′W )

+ 6(tr(Σ
1

2
(W +W ′)))2tr(Σ

1

2
(W +W ′)ΣW ′W )

+ 6tr((Σ
1

2
(W +W ′))2)tr(Σ

1

2
(W +W ′))tr(ΣW ′W )

+ 8tr(Σ
1

2
(W +W ′))tr((Σ

1

2
(W +W ′))2ΣW ′W )

+ 12tr(Σ
1

2
(W +W ′)ΣW ′W )tr((Σ

1

2
(W +W ′))2)

+ 48tr((Σ
1

2
(W +W ′))3ΣW ′W )

and E(ε′ε)3 ∼ n3σ6. Therefore, the contribution to κ̃1 is

−3σ2

√
hn
n

1

(K(0))2
h2
n

n3
(
3

2
tr((W +W ′)2)tr((W +W ′)WW ′)

+ 6tr((W +W ′)3W ′W )) = o

(√
hn
n

)
.

A similar argument holds for the contribution to both κ̃2 and κ̃3.

Contribution from term Q22

We have
E(ε′ε)

E(ε′ε)5
∼ σ2n

σ10n5
=

1

σ8n4
.

Also, we can evaluate the fifth moment of ε′Wε by the recursive formula given in (C.7).
By tedious, but straightforward algebra, it is possible to show that the contribution
to κ̃1, κ̃2 and κ̃3 are o(

√
hn/n). Intuitively, this is because no term in E((ε′Wε)5) is

large enough to offset the factor h2
n/n

4.
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Contribution from term Q23

We have

E((ε′Wε)2) =
1

4
E(ε′(W +W ′)ε)2 =

1

4
(tr(Σ(W +W ′)))2 +

1

2
tr((Σ(W +W ′))2)

and
E(ε′ε)

E(ε′ε)2
∼ nσ2

n2σ4
=

1

nσ2
.

Therefore, the contribution to κ̃1 is

−σ2

√
hn
n

1

K(0)2
h2
n

n2
(tr(W 2) + tr(W ′W ))tr(W 3)

= −σ2

√
hn
n

tr(W 3)

(tr(W 2) + tr(W ′W ))
+ o

(√
hn
n

)
, (C.31)

where the last equality follows since

K(0) =
hn
n

(trW 2 + tr(W ′W )) +O(
1

n
).

Similarly, the contribution to κ̃2 comes from the term

−(it)2σ4

√
hn
n

1

K(0)2
h2
n

n2
tr(W 3)tr((W +W ′)2(C̃ + C̃′))

and, by (C.17), is o(
√
hn/n).

Finally, the contribution to κ̃3 comes from the term

−1

4
(it)3σ6

(
hn
n

)7/2
1

K(0)2
tr(W 3)(tr((W +W ′)2))2

and hence the actual contribution to κ̃3 is

− 6σ6

(
hn
n

)7/2
1

K(0)2
tr(W 3)(tr(W 2) + tr(W ′W ))2 + o

(√
hn
n

)

= −6σ6

(
hn
n

)3/2

tr(W 3) + o

(√
hn
n

)
, (C.32)

since

K(0) =
hn
n

(trW 2 + tr(W ′W )) +O(
1

n
).

Collecting (C.29) and (C.31), we conclude that the contribution to κ̃1 from Q1+Q2

is

−2σ2

(
hn
n

)3/2
tr(WW ′W )

K(0)
− σ2

(
hn
n

)3/2
tr(W 3)

K(0)
+ o(

√
hn
n

).
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The overall contribution to κ̃2 from Q1 +Q2 is neglegible, while that to κ̃3 is

−12σ6

(
hn
n

)3/2

tr(WW ′W )− 6σ6

(
hn
n

)3/2

tr(W 3) + o

(√
hn
n

)
,

by collecting (C.30) and (C.32).
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m = 8
r = 5

m = 12
r = 8

m = 18
r = 11

m = 28
r = 14

Pr(aλ̂ > zα|H0) 0 0 0.001 0.001
Pr(aλ̂ > tEd|H0) 0.1250 0.1170 0.1100 0.0990
Pr(g(aλ̂) > zα|H0) 0.0560 0.0550 0.0520 0.0480
Pr(aλ̂ > w∗α|H0) 0.0390 0.0610 0.0530 0.0540

Table 1: Empirical sizes of the tests of H0 in (1.2) when λ is estimated by OLS
and the sequence hn is divergent. The reported values have to be compared
with the nominal 0.05.

m = 5
r = 8

m = 5
r = 20

m = 5
r = 40

m = 5
r = 80

Pr(aλ̂ > zα|H0) 0.0010 0.0010 0.0010 0.0110
Pr(aλ̂ > tEd|H0) 0.0960 0.0700 0.0570 0.0520
Pr(g(aλ̂) > zα|H0) 0.0550 0.0570 0.0550 0.0510
Pr(aλ̂ > w∗α|H0) 0.0430 0.0400 0.057 0.055

Table 2: Empirical sizes of the tests of H0 in (1.2) when λ is estimated by OLS
and the sequence hn is bounded. The reported values have to be compared with
the nominal 0.05.
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m = 8
r = 5

m = 12
r = 8

m = 18
r = 11

m = 28
r = 14

Pr
(√

n
hn
ãλ̃ > zα|H0

)
0.0050 0.0060 0.0040 0.0130

Pr
(√

n
hn
ãλ̃ > t̃Ed|H0

)
0.1180 0.0910 0.0740 0.0600

Pr
(
g̃(
√

n
hn
ãλ̃) > zα)|H0

)
0.0560 0.0520 0.0520 0.0450

Pr
(√

n
hn
ãλ̃ > w̃∗α|H0

)
0.0580 0.0520 0.0540 0.0460

Table 3: Empirical sizes of the tests of H0 in (1.2) when λ is estimated by MLE
and the sequence hn is divergent. The reported values have to be compared
with the nominal 0.05

.

m = 5
r = 8

m = 5
r = 20

m = 5
r = 40

m = 5
r = 80

Pr
(√

n
hn
ãλ̃ > zα|H0

)
0.0120 0.0250 0.0320 0.0380

Pr
(√

n
hn
ãλ̃ > t̃Ed|H0

)
0.0900 0.0750 0.0680 0.0490

Pr
(
g̃(
√

n
hn
ãλ̃) > zα)|H0

)
0.0570 0.0550 0.0490 0.0510

Pr
(√

n
hn
ãλ̃ > w̃∗α|H0

)
0.0620 0.0561 0.0582 0.0523

Table 4: Empirical sizes of the tests of H0 in (1.2) when λ is estimated by MLE
and the sequence hn is bounded. The reported values have to be compared with
the nominal 0.05.

m = 8
r = 5

m = 12
r = 8

m = 18
r = 11

m = 28
r = 14

Pr(aλ̂ > zα|H1)

λ̄
0.1 0
0.5 0
0.8 0.2570

λ̄
0.1 0
0.5 0.3350
0.8 0.9940

λ̄
0.1 0.0050
0.5 0.6730
0.8 1

λ̄
0.1 0.0090
0.5 0.8540
0.8 1

Pr(aλ̂ > tEd|H1)

λ̄
0.1 0.5610
0.5 0.9520
0.8 1

λ̄
0.1 0.6100
0.5 0.9860
0.8 1

λ̄
0.1 0.6630
0.5 0.9930
0.8 1

λ̄
0.1 0.6930
0.5 1
0.8 1

Pr(aλ̂ > w∗α|H1)

λ̄
0.1 0.1110
0.5 0.7250
0.8 0.9960

λ̄
0.1 0.1190
0.5 0.8730
0.8 1

λ̄
0.1 0.1550
0.5 0.9380
0.8 1

λ̄
0.1 0.1640
0.5 0.9660
0.8 1

Table 5: Empirical powers of the tests of H0 in (4.4) with λ̄ = 0.1, 0.5, 0.8 when
λ is estimated by OLS and the sequence hn is divergent. α is set to 0.95.
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m = 5
r = 8

m = 5
r = 20

m = 5
r = 40

m = 5
r = 80

Pr(aλ̂ > zα|H1)

λ̄
0.1 0.0100
0.5 0.5510
0.8 0.9990

λ̄
0.1 0.0830
0.5 0.9880
0.8 1

λ̄
0.1 0.1870
0.5 1
0.8 1

λ̄
0.1 0.3630
0.5 1
0.8 1

Pr(aλ̂ > tEd|H1)

λ̄
0.1 0.6400
0.5 0.9910
0.8 1

λ̄
0.1 0.7390
0.5 1
0.8 1

λ̄
0.1 0.8520
0.5 1
0.8 1

λ̄
0.1 0.6930
0.5 1
0.8 1

Pr(aλ̂ > w∗α|H1)

λ̄
0.1 0.1390
0.5 0.8880
0.8 1

λ̄
0.1 0.2030
0.5 0.9920
0.8 1

λ̄
0.1 0.2960
0.5 1
0.8 1

λ̄
0.1 0.4510
0.5 1
0.8 1

Table 6: Empirical powers of the tests of H0 in (4.4) with λ̄ = 0.1, 0.5, 0.8 when
λ is estimated by OLS and the sequence hn is bounded. α is set to 0.95.

m = 8
r = 5

m = 12
r = 8

m = 18
r = 11

m = 28
r = 14

Pr(
√

n
hn
ãλ̃ > zα|H1)

λ̄
0.1 0.0100
0.5 0.4740
0.8 0.9850

λ̄
0.1 0.0370
0.5 0.7270
0.8 0.9990

λ̄
0.1 0.0380
0.5 0.8640
0.8 1

λ̄
0.1 0.0560
0.5 0.8930
0.8 1

Pr(
√

n
hn
ãλ̃ > t̃Ed|H1)

λ̄
0.1 0.1270
0.5 0.7600
0.8 0.9900

λ̄
0.1 0.1300
0.5 0.8710
0.8 1

λ̄
0.1 0.1410
0.5 0.9270
0.8 1

λ̄
0.1 0.1740
0.5 0.9750
0.8 1

Pr(
√

n
hn
ãλ̃ > w̃∗α|H1)

λ̄
0.1 0.0940
0.5 0.7480
0.8 0.9980

λ̄
0.1 0.1220
0.5 0.8560
0.8 1

λ̄
0.1 0.1300
0.5 0.9180
0.8 1

λ̄
0.1 0.1450
0.5 0.9990
0.8 1

Table 7: Empirical powers of the tests of H0 in (4.4) with λ̄ = 0.1, 0.5, 0.8 when
λ is estimated by MLE and the sequence hn is divergent. α is set to 0.95.
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m = 5
r = 8

m = 5
r = 20

m = 5
r = 40

m = 5
r = 80

Pr(
√

n
hn
ãλ̃ > zα|H1)

λ̄
0.1 0.0510
0.5 0.7910
0.8 1

λ̄
0.1 0.1260
0.5 0.9890
0.8 1

λ̄
0.1 0.2070
0.5 0.9980
0.8 1

λ̄
0.1 0.4000
0.5 1
0.8 1

Pr(
√

n
hn
ãλ̃ > t̃Ed|H1)

λ̄
0.1 0.1260
0.5 0.8820
0.8 1

λ̄
0.1 0.1920
0.5 0.9950
0.8 1

λ̄
0.1 0.2720
0.5 1
0.8 1

λ̄
0.1 0.4530
0.5 1
0.8 1

Pr(
√

n
hn
ãλ̃ > w̃∗α|H1)

λ̄
0.1 0.1140
0.5 0.8920
0.8 .

λ̄
0.1 0.1940
0.5 1
0.8 1

λ̄
0.1 0.3020
0.5 1
0.8 1

λ̄
0.1 0.5220
0.5 1
0.8 1

Table 8: Empirical powers of the tests of H0 in (4.4) with λ̄ = 0.1, 0.5, 0.8 when
λ is estimated by MLE and the sequence hn is bounded. α is set to 0.95.

Rejection rule α = 0.95 α = 0.99
aλ̂ > zα reject H0 (1.713 > 1.645) fail to reject H0 (1.713 < 2.326)
aλ̂ > tEd reject H0 (1.713 > 1.287) reject H0 (1.713 > 1.666)

Table 9: Outcomes of the tests of H0 in (1.2) when λ in model (5.2) is estimated
by OLS

Rejection rule α = 0.95 α = 0.99√
n
hn
ãλ̃ > zα reject H0 (2.869 > 1.645) reject H0 (2.869 > 2.326)√

n
hn
ãλ̃ > t̃Ed reject H0 (2.869 > 1.429) reject H0 (2.869 > 1.922)

Table 10: Outcomes of the tests of H0 in (1.2) when λ in model (5.2) is estimated
by MLE

Rejection rule α = 0.95 α = 0.99 α = 0.995

aλ̂ > zα reject H0 (1.9998 > 1.645) fail to reject H0 (1.9998 < 2.326) fail to reject H0 (1.9998 < 2.5776)

aλ̂ > tEd reject H0 (1.9998 > 1.4042) reject H0 (1.9998 > 1.8821) fail to reject H0 (1.9998 < 2.0410)

Table 11: Outcomes of the tests of H0 in (1.2) when λ in model (5.5) is estimated
by OLS

Rejection rule α = 0.95 α = 0.99 α = 0.995√
n
hn

ãλ̃ > zα reject H0 (2.2934 > 1.645) fail to reject H0 (2.2934 < 2.326) fail to reject H0 (2.2934 < 2.5776)√
n
hn

ãλ̃ > t̃ed reject H0 (2.2934 > 1.5227) reject H0 (2.2934 > 2.0767) reject H0 (2.2934 > 2.2704)

Table 12: Outcomes of the tests of H0 in (1.2) when λ in model (5.5) is estimated
by MLE
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Figure 1: Empirical pdf of aλ̂ under H0

Figure 2: Empirical pdf of g(aλ̂) under H0

49



Figure 3: Empirical pdf of
√

n
hn
ãλ̃ under H0

Figure 4: Empirical pdf of g̃(
√

n
hn
ãλ̃) under H0
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