$\mathrm{FC}_{4} \mathrm{O}_{2}(23 / 24)$

- Common Quesion
"Fagurg, What Tife, Friselt...?"

MOSEL: $y=x \beta+\varepsilon, \varepsilon \sim N\left(0,0_{\varepsilon}^{2} I_{N}\right)$ where $0<\sigma_{\varepsilon}^{2}<\infty$.
REGRESSOR: $X=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]$ where $\left\{\begin{array}{l}x \text { is } N \times\left(k_{1}+k_{2}\right) \\ x_{1} \text { is } N \times k_{1} \\ x_{2} \text { is } N \times k_{2}\end{array}\right.$
Assumptions: $\operatorname{rak}(x)=k_{1}+k_{2} ;$ Vassilis' "A3F"
HEART'S DESIRE: To ignore X_{2} and just use $\hat{\beta}_{1, \text { slay }}=\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime} y$ to estimate β_{1}.

Problem:

$$
\begin{aligned}
& \hat{\beta}_{1, \text { slue }}=\left(x_{1}^{\prime} x_{1}^{-1} x_{1}^{\prime} y\right. \\
& \text { just pogy } r=\beta_{1}+\underset{\text { for } y}{\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime} x_{2} \beta_{2}+\left(x_{1} x_{1}\right)^{-1} x_{1}^{\prime} \varepsilon} \begin{array}{l}
\text { HEARTBREAK! }
\end{array}
\end{aligned}
$$

Solution \# 1: Well, if x_{1} and x_{2} are orthogonal i.e. $\left(x_{1}^{\prime} x_{2}\right)=0$, and /or say $\beta_{2}=0$, then $\hat{\beta}_{1}$, slay is not so silly anymore!
Note: this is not some weird special case. Ever wonder why in yore econometric life yovere never included say "Ploce Jupiter's.
 about OUB? Answer: indeed, it is likely to be quite un elated
to my earthy social science phenomena, so ignoring it doesn't create any problems for us.

$$
\text { i.e. }\left(\beta_{2}=0 \text { and or } X_{1}^{\prime} X_{2}=0\right)
$$

Solution H2 : Recognise the source of the problem; let's think about it together...
Remember the aim is to tease out the impact RURELY of X, on Y
ie. to estimate β. ie. to estimate β_{1}.
The problem:

Say we have 2 students and their exam marks over tine are denoted 4 ard x_{1}.
Say one student's grades fall from UG to $96: \begin{aligned} & \text { g }\end{aligned} x_{1}$ is 90
Say the other student's grades also fall: of y_{1} is 87

One night conclude that the first student's performance had a massive impact on the second studect's performance (y. cheatiag bylopying the first student's arsvers) but behind the scenes is $X_{2}=\left\{\begin{array}{l}1, \text { Raguir is their } \\ 0, \text { ofwer }\end{array}\right.$
i.e. both students ase failing because \&agvis started teaching them (hot becousse on is failing and the other just copied)

WOULSN'T IT BE NICE IF SOMEHOW WE COULD ELIMINATE RAGUIR, TAE SO-CALLEA" Confounder"? LET'S EXAMINE HOW WE Do THIS...

Recap Model:

$M_{x_{2}} y$ and $M_{x} x$ are the residuals in y and x once the respectively. ${ }^{2}$. x_{2} has been reno. owed from each variable respectively. By design, M $x_{2} x_{1}$ is orthogonal to x_{2} so it's pretty much exactly like taking u's back to the "solution I" scenario. That is, " it ic possible to simply regress. This is
$(\# 1)$

$$
\tilde{y}:=M_{x_{2}} y \text { on } \tilde{x}_{1}:=M_{x_{2}} x_{1} \text { to obtain } \hat{\beta}_{\text {lois. }} \begin{aligned}
& \text { the } \\
& \text { FL } \\
& \text { result }
\end{aligned}
$$

Above was an intuitive explanation. Let's see tome additional explanations below.
MATH explanation

$$
y=x_{1} \beta_{1}+x_{2} \beta_{2}+\varepsilon
$$

Pre-multiply by $M_{x_{2}}$ on both sides \Rightarrow

$$
\tilde{y}=\tilde{x}_{1} \beta_{1}+\eta \text {, where } \tilde{y}:=M_{x_{2}} y_{1}, \tilde{x}_{1}=M_{x_{2}} x_{1}
$$

and η is some error.
FWL Theorem

$$
\begin{aligned}
\hat{\beta}_{\text {lobs }} & \stackrel{\downarrow}{ } \\
& =\left(x_{1}^{\prime} \tilde{x}_{1}^{-1} \tilde{x}_{1}^{\prime} \tilde{y}_{1}^{\prime} M_{x_{2}}^{\prime} M_{x_{2}} x_{1}\right)^{-1} x_{1}^{\prime} M_{x_{2}}^{\prime} M_{x_{2}} y=\left(x_{1}^{\prime} M_{x_{2}} x_{1}^{-1} x_{1}^{\prime} M_{x_{2}} y\right.
\end{aligned}
$$

REGULA-ENGLBH explanation
if you estimate $\beta:=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}\right)^{\prime}$ using $\hat{\beta}_{\text {oils }}:=\left(x^{-1}\right)^{-1} x^{\prime} y$ and then you look at the first K_{1} elements in $\hat{\beta}_{\text {oils }}=\binom{\hat{\beta}_{1}$ aOL }{$\hat{\beta}_{2}$ oils } , then, you get exactly the sane k_{1}, estimates β_{2} as if you attempted a Lo regression of $M_{x_{2}} y$ on $M_{x_{2}} X_{1}$ and then looked at whatever (k, x)) vector of estimates you obtain.
CONCISE-ENCHSH explanation
TARE of my estimates (k_{1} of $k_{1}+k_{2}$) from a full regression will be identical to ALL of my estimates from a (suitably executed) PARTitioned regression

