

EC402 (2023/24)

RAGVIR'S SPEAKING NOTES FOR CLASS

Vassilis PS1 (wk 2, AT)

(Q1)

Transformations of RWS : $y = g(x)$ where $g(\cdot)$ is a deterministic function of x .

(a) "Manual" method :

$$\text{Say } P(x=n) = \begin{cases} 1/3, & n = -1, 0, 1 \\ 0, & \text{otherwise} \end{cases}$$

and $y = x^2 + 2$, what is $P(y=y)$ for all $y \in \mathbb{R}$?

x	-1	0	1
$P(Y=y)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
y	3	2	3

$$\cdot P(Y=2) = P(X=0) = \frac{1}{3}$$

$$\begin{aligned} \cdot P(Y=3) &\stackrel{CE}{=} P((X=-1) \cup (X=1)) \\ &\stackrel{ME}{=} P(X=-1) + P(X=1) \\ &= \frac{1}{3} + \frac{1}{3} \end{aligned}$$

$$= \frac{2}{3}$$

$$\cdot P((Y=2) \cup (Y=3))^c = 0$$

$$\Rightarrow P(Y=y) = \begin{cases} \frac{1}{3}, & y=2 \\ \frac{2}{3}, & y=3 \\ 0, & \text{o/w} \end{cases}$$

====

(b) "First principles" method:

Say $f_x(x) = \begin{cases} 1/2, & x \in (-1, 1) \\ 0, & \text{otherwise} \end{cases}$ and $y := x^2 + 2$.

Anyone feel like making a table? Exactly! So we need to think.

$$\begin{aligned} P(Y \leq y) &= P(X^2 + 2 \leq y) \\ &= P(X^2 \leq y-2) \\ &= P(|X| \leq \sqrt{y-2}) \\ &= P(-\sqrt{y-2} \leq X \leq \sqrt{y-2}) \\ &= P(X \leq \sqrt{y-2}) - P(X \leq -\sqrt{y-2}) \\ &= F_X(\sqrt{y-2}) - F_X(-\sqrt{y-2}) \quad \text{--- (1)} \end{aligned}$$

Brilliant! Let's work out $F_X(x)$:

$$\int_{-1}^x 1/2 dt = t/2 \Big|_{-1}^x = \frac{x}{2} + \frac{1}{2} = \frac{x+1}{2}$$

$$\therefore F_X(x) = \begin{cases} 0, & x < -1 \\ \frac{x+1}{2}, & -1 \leq x < 1 \\ 1, & 0 \leq x \end{cases} \quad \text{--- (2)}$$

Notice also if $x \in (-1, 1)$, $y \in (2, 3)$ --- (3)

(1) & (2) & (3) \Rightarrow

$$F_Y(y) = \begin{cases} 0, & y < 2 \\ \frac{\sqrt{y-2}}{2} + 1 - \left(\frac{\sqrt{y-2}}{2} + 1 \right), & 2 \leq y < 3 \\ 1, & 0 \leq y \end{cases}$$

$$= \begin{cases} 0 & , y < 2 \\ \sqrt{y-2} & , 2 \leq y < 3 \\ 1 & , \text{o/w} \end{cases}$$

$$\therefore f_y(y) = \begin{cases} 1/2(y-2)^{-1/2} & , 2 \leq y < 3 \\ 0 & , \text{o/w} \end{cases}$$

==

(Test yourself: Would "method(b)" work for the example in "method(a)"?)

Q: But, Ragbir, isn't there some sort of formula?

A: Well, fine.... but be careful... it is only valid in specific settings...

TRANSFORMATION FORMULA :

Theorem : $x \sim f_x(x)$; $Y := g(X)$ where $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$

Suppose $g(\cdot)$ is a **monotone** function and that $\bar{g}'(\cdot)$ is continuously **differentiable** on \mathcal{Y}

$$f_Y(y) = \begin{cases} f_X(\bar{g}(y)) \left| \frac{\partial}{\partial y} \bar{g}'(y) \right|, & y \in \mathcal{Y} \\ 0, & \text{else} \end{cases}$$

Proof : let $\bar{g}'(\cdot)$ be **increasing**: $Y := e^X$

$$F_Y(y) = P(Y \leq y) = P(\bar{g}'(Y) \leq \bar{g}'(y)) = P(X \leq \bar{g}'(y)) = F_X(\bar{g}'(y))$$

$$\text{So, } f_Y(y) = f_X(\bar{g}'(y)) \frac{d}{dy} \bar{g}'(y)$$

let $\bar{g}'(\cdot)$ be decreasing :

$$F_Y(y) = P(Y \leq y) = P(\bar{g}'(Y) \geq \bar{g}'(y)) = P(X \geq \bar{g}'(y)) = 1 - F_X(\bar{g}'(y))$$

$$\text{So } f_Y(y) = f_X(\bar{g}'(y)) \cdot -\frac{d}{dy} \bar{g}'(y)$$

Putting both cases together, the result follows for any monotone $\bar{g}'(\cdot)$.

(C) "Formula" method:

Given $X \sim \text{Unif}(-1, 1)$,

ASSUME $x \in [0, 1]$

Transformation: $y := x^2 + 2$

Inverse trans.: $x = \sqrt{y-2}$

Range of transformed var.: $x \in (-1, 1) \Rightarrow y \in (2, 3)$

• |Jacobeans|: $\left| \frac{1}{2}(y-2)^{-1/2} \right| \rightarrow (|.| \text{ is "absolute value" here.})$

Now, for $x \in [-1, 0)$, by symmetry, the analysis will be the same

$$\therefore f_y(y) = \begin{cases} 2 \frac{1}{2}(y-2)^{-1/2}, & 2 < y < 3 \\ 0, & \text{otherwise} \end{cases}$$

(Q2)

$$\begin{aligned} E(ax+by) &:= \iint_{\mathbb{R}^2} (ax+by) \cdot f_{x,y}(x,y) \, dx \, dy \\ &= a \iint_{\mathbb{R}^2} x f_{x,y}(x,y) \, dx \, dy + b \iint_{\mathbb{R}^2} y f_{x,y}(x,y) \, dx \, dy \\ &= a \int_{\mathbb{R}} x \int_{\mathbb{R}} f_{x,y}(x,y) \, dy \, dx + b \int_{\mathbb{R}} y \int_{\mathbb{R}} f_{x,y}(x,y) \, dx \, dy \\ &= a \int_{\mathbb{R}} x f_x(x) \, dx + b \int_{\mathbb{R}} y \cdot f_y(y) \, dy \\ &= a E(x) + b E(y) \end{aligned}$$

Q3(a)

ASSUME $X \perp\!\!\!\perp Y$

THEN...

$$E[x|y] := \int_x x \cdot f_{x|y=y} \, dx$$

$$Def = \int_x x \cdot f_{x,y}(x,y) / f_y(y) \, dx$$

$$x \perp\!\!\!\perp y = \int_x x \cdot f_x(x) \, dx$$

$$= E[x]$$

KEY POINT: FULL INDEP. \Rightarrow MEAN INDEP

(b)

Assume $E[x|y] = E[x]$ — (1)

THEN ...

$$E[(x - E(x))(y - E(y))] = \iint_{y \in \mathbb{R}, x \in \mathbb{R}} xy f_{x,y}(x,y) dx dy - \int_x f_x(x) dx \int_y y f_y(y) dy$$

eg: Can you prove that
 $\text{Var}(x) = \dots = E(x^2) - [E(x)]^2$?

$$\begin{aligned} &= \iint_{y \in \mathbb{R}, x \in \mathbb{R}} xy f_{x|y=y}(x) f_y(y) dx dy - E(x) E(y) \\ &= \int_y y f_y(y) \int_x x f_{x|y=y}(x) dx dy - E(x) E(y) \\ &= \int_y y f_y(y) E[x|y=y] dy - E(x) E(y) \end{aligned}$$

Assum. (1)

=

$$E(x) E(y) - E(x) E(y) = 0$$

Again, the reverse is not true.

(Q4)

Step 1 : let's recall the univariate case ...

Say $z \sim N(0, 1)$ and $x = \mu + \sigma z$

Then $M_x(t) := E[e^{tz}]$

$$= \int_{-\infty}^{\infty} e^{tz} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz$$
$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}[z^2 - 2tz]} dz$$
$$\therefore (z-t)^2 = z^2 - 2tz + t^2$$
$$\therefore (z-t)^2 - t^2 = z^2 - 2tz$$
$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}[(z-t)^2 - t^2]} dz$$

$$= e^{1/2 t^2} \left[\text{times } \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z-t)^2} dz \right]$$

which is 1 since it's the integral of a $N(t, 1)$ PDF.

$$\begin{aligned}
 \text{i.e. } M_X(t) &= E[e^{tx}] = E[e^{t(\mu + \sigma Z)}] \\
 &= e^{t\mu} E[e^{t\sigma Z}] \\
 &= e^{t\mu} M_Z(t\sigma) \\
 &= e^{t\mu} e^{1/2 t^2 \sigma^2} \\
 &= e^{t\mu + \frac{1}{2} t^2 \sigma^2}
 \end{aligned}$$

Brilliant! Let's extend to the multivariate case

(w/o proof because that adds no extra intuition)

ELEMENTARY MULTIVARIATE RESULTS USED IN PS 1 :

(A) Remember in EC400, we did $E\{ \cdot \}$ and $\text{Var}\{ \cdot \}$ rules?

eg. $E[ax] = aE[x]$ and $\text{Var}[ax] = a^2\text{Var}[x]$, for $a \in \mathbb{R}$ and X a scalar RV.

(B) Well, vectors work the same way:

eg: let X be an $n \times 1$ vector-valued RV. Let $a \in \mathbb{R}^n$.

Then, $E[a'X] = a' E[X]$, and

$\text{Var}[a'X] = a' \text{Var}[X] a$

Note 1: $\Sigma := \text{Var}[X] = E[(X - E[X])(X - E[X])']$, an $n \times n$ matrix s.t. $\lambda_n\{\Sigma\} > 0$ and $\Sigma = \Sigma'$.

Note 2: $X \sim N(\mu, \Sigma) \iff f_X(x) = (2\pi)^{-n/2} \det\{\Sigma\}^{-1/2} \exp\left[-\frac{1}{2}(x - \mu)' \Sigma^{-1} (x - \mu)\right]$
for any $x \in \mathbb{R}^n$.

If additionally $\Sigma = \sigma^2 I_n$ and say $\mu_i = \mu_j = \mu$ for $i, j = 1, \dots, n$ then also

$X_i \stackrel{\text{IID}}{\sim} N(\mu, \sigma^2)$ for $i = 1, \dots, n$.

Step 2 : Say $X_{n \times 1} \sim N(\mu_{n \times 1}, \Sigma_{n \times n})$.

Analogous to the univariate case, we have that for some $t \in \mathbb{R}^n$,

$$M_X(t) = \exp \left\{ t' \mu + \frac{1}{2} t' \Sigma t \right\}.$$

Step 3: Define $Y := a' X$ for some $a \in \mathbb{R}^n$

(usual stuff from Q1, RS1 - i.e. we have X and $F_X(x)$. We also have a transformation Y . Find $F_Y(y)$.)

let's see how...

$$M_Y(t) \stackrel{\text{Defn.}}{=} E[e^{t'Y}] \stackrel{\text{Defn.}}{=} E[e^{t'a'X}] = E[e^{(at)'X}]$$

$$\stackrel{\text{Defn.}}{=} M_X(at) \stackrel{\text{Step 2}}{=} \exp \left[t'a'\mu + \frac{1}{2} t'a' \sum a a' \right]$$

Job done. **3 proofs in one shot!** Why? Because...

By the uniqueness property of MGFs, we recognise that

$$Y \sim N\left(a'\mu, a' \sum a\right).$$

(5) DEFINITION. An $n \times n$ (square) matrix A is said to be non-singular when $Ax = 0$ if and only if $x = 0$.

PROPOSITION 5.a. If A is positive definite, then A is non-singular.

PROOF.

• let us recall that a positive definite $n \times n$ matrix A is s.t.

$$x'Ax \begin{cases} = 0, & \text{if } x = 0 \\ > 0, & \text{o/w} \end{cases} \text{ for any } x \in \mathbb{R}^n.$$

• Looking at the above definition,

(i) given A is positive definite, for any $x \neq 0$, $x'Ax > 0$;
but then, clearly, for any $x \neq 0$, $Ax \neq 0$.

(ii) Moreover, for $x=0$, it is clear that $Ax=0$.

It follows that A is non-singular. This completes the proof.

Vassilis' solution is as above but

here's an alternative very useful way to think about it:

• A is P.D. $\Rightarrow \lambda_n\{A\} > 0$, where $\lambda_i\{\cdot\}$ denotes the i^{th} largest eigenvalue
for $i=1, \dots, n$.

• But clearly then,

$$\det\{A\} = \prod_{i=1}^n \lambda_i\{A\} > 0. \text{ The result follows.}$$

PROPOSITION 5 b. If X is an $n \times k$ matrix ($n > k$) s.t. $\text{rank}(X) = k$, then $(X'X)$ is positive definite and non-singular.

PROOF.

Let us recall that if $\text{rank}(X) = k$, we have that for any $y \in \mathbb{R}^k$,

it's just a "matrix way" of giving the lin. indep. condition among columns of X .

$$xy \begin{cases} = 0, & \text{if } y = 0 \\ \neq 0, & \text{if } y \neq 0. \end{cases}$$

Then, for any $y \in \mathbb{R}^k$ s.t. $y \neq 0$,

$$\begin{aligned} y'(X'X)y &= (xy)'(xy) \\ &= \|xy\|_2^2 > 0. \end{aligned}$$

Moreover, for $y = 0$, it is trivial that $xy = 0$.

[Above, the notation " $\|\cdot\|_2$ " denotes the ℓ_2 -norm.]

Given (i) the definition of positive definiteness as recapitulated in the proof of Proposition 5a ; and subsequently, (ii) Proposition 5a itself, the required results follow.
This completes the proof.

(Q6) See official solutions. I don't have much to add.

(Q7) PROPOSITION 7.a. For $n \times n$ non-singular matrices A and B , it holds that:

$$(AB)^{-1} = B^{-1}A^{-1}$$

PROOF.

- Since A and B are square and non-singular, there exist matrices A^{-1} and B^{-1} s.t.

$$AA^{-1} = A^{-1}A = BB^{-1} = B^{-1}B = I_n.$$

• Next, by non-singularity of A , we have that for any $v \in \mathbb{R}^n$,

$$Av = 0 \text{ if and only if } v = 0.$$

• It must then be true that the previous statement holds for choice of $v = Bx$ for any $x \in \mathbb{R}^n$. In other words,

$$A(Bx) = 0 \text{ if and only if } Bx = 0.$$

- But by Non-singularity of B , we know that

$Bx=0$ if and only if $x=0$.

- We thus have that $(AB)x=0$ if and only if $x=0$, proving that square matrix AB is non-singular so that there exists a matrix $(AB)^{-1}$ s.t.

$$(AB)(AB)^{-1} = (AB)^{-1}(AB) = I_n.$$

- Given $(AB)(AB)^{-1} = I_n$, we have that

$$B^{-1}A^{-1}(AB)(AB)^{-1} = B^{-1}A^{-1}$$
$$\therefore (AB)^{-1} = B^{-1}A^{-1}.$$

This completes the proof.

PROPOSITION 7.b. For $n \times n$ non-singular matrix A , it holds that

$$(A')^{-1} = (A^{-1})'$$

PROOF. Given square non-singular matrix A , we know that there exists a matrix A^{-1} st.

$$AA^{-1} = A^{-1}A = I_n$$

$$\text{Then, } (AA^{-1})' = (A^{-1})' A' = I_n' = I_n$$

- Further, we know that since A^{-1} exists, $(A')^{-1}$ also exists (because $\det\{A\} = \det\{A'\} \neq 0$)
- Post multiplying $(A^{-1})' A' = I_n$ on both sides by $(A')^{-1}$, the required result follows.
- This completes the proof.

(8) PROPOSITION 8.a. (let's also add "real" to keep things easier)
For P.D. Symmetric Matrix A , there exists a square N.S. Matrix P s.t. $A = PP'$.

PROOF OF 8.a.

(i) LEMMA 8.a.1.

Since A is a real symmetric matrix, there exists a representation

$$A = V\Lambda V'$$

where $\Lambda := \text{diag} \{ \lambda_1 \{ A \}, \dots, \lambda_n \{ A \} \}$ is a diagonal matrix of ordered eigenvalues of A , and

where $V := [v_1, \dots, v_n]$ is an orthogonal matrix of corresponding eigenvectors.

Note: $v_i^T v_j = \begin{cases} 0, & \text{for } i \neq j \\ 1, & \text{o/w} \end{cases}$
for $i, j = 1, \dots, n$.

this is called
"orthonormality",
of vectors

Proof of 8.a.1.

The stated result is exactly
the spectral theorem for Hermitian matrices.

(ii) Lemma 8.a.2. $\lambda_i\{A\} > 0$, for $i=1, \dots, n$.

Proof of 8.a.2. The stated result is just the
definition of positive definiteness.

→ I've defined this in Q5 already.
(iii) Lemma 8.a.3 $\lambda_i\{A\}$ for $i=1, \dots, n$ are all real.

Proof of 8.a.3 • By definition, $Av_i = \lambda_i\{A\}v_i$,
where v_i denotes the
 i^{th} eigenvector of A for $i=1, \dots, n$.

• Then, $v_i^* A' = \bar{\lambda}_i\{A\} v_i^*$, for
 $i=1, \dots, n$, where \bar{M} denotes the
Complex Conjugate of some matrix
 M and $M^* = \bar{M}'$.

• Since $A' = A$, $v_i^* A = \bar{\lambda}_i\{A\} v_i^*$ for
 $i=1, \dots, n$.

• If we post-multiply both sides by v_i ,

We have $v_i^* A v_i = \overline{\lambda_i \{A\}} v_i^* v_i$, or
 $\lambda_i \{A\} v_i^* v_i = \overline{\lambda_i \{A\}} v_i^* v_i$,
for $i=1, \dots, n$.

This ensures that $\lambda_i \{A\} = \overline{\lambda_i \{A\}}$
for $i=1, \dots, n$, which completes the
proof of Lemma 8.a.3.

(iv) Finally, given lemmas 8.a.1, 8.a.2, and 8.a.3, there clearly
exists a 'diagonal' matrix'

$$\Lambda^{1/2} := \text{diag}\{\sqrt{\lambda_1 \{A\}}, \sqrt{\lambda_2 \{A\}}, \dots, \sqrt{\lambda_n \{A\}}\} \quad \text{s.t.}$$

$$A = V \Lambda V' = V \Lambda^{1/2} \Lambda^{1/2} V'$$

Defining $\mathcal{V} = V \Lambda^{1/2}$, the result follows, and this
completes (a sketch of) the proof for Proposition 8.a.

PROPOSITION 8.b. For $n \times 1$ random vector

$$X \sim N(0, \Sigma) \text{ s.t. } \text{rank}(X) = n,$$

we have that $Z := X' \Sigma^{-1} X \sim \chi^2_n$ and $\lambda_1(\Sigma) < \infty$,

PROOF

• Σ has to be a P.D. Symmetric matrix because... [you tell me]

• So by lemma 8.a.1., there exist matrices P and D s.t.

$$\Sigma = P D P'$$
 where $D = \text{diag}\{\lambda_1(\Sigma), \dots, \lambda_n(\Sigma)\}$ and

P is the orthogonal matrix of corresponding eigenvectors of Λ .

• Clearly, (i) Σ^{-1} exists, by Proposition 5.a. ;

(ii) Σ^{-1} is symmetric, since

$$\Sigma^{-1} = (P D P')^{-1} = P' D^{-1} P = P D^{-1} P'$$

$$\text{and } (\Sigma^{-1})' = (P D^{-1} P')' = P D^{-1} P' = \Sigma^{-1} ;$$

(iii) Σ^{-1} is P.D. since $\lambda_i \{ \Sigma^{-1} \} = \frac{1}{\lambda_{n+1-i} \{ \Sigma \}}$
 for $i = 1, \dots, n$.

- It then follows from Proposition 8.a. that there exist matrices $\Sigma^{-1/2} := P \Delta^{-1/2}$ s.t. $\Sigma^{-1} = \Sigma^{-1/2} \Sigma^{-1/2}$.
- Consider the vector $y := \Sigma^{-1/2} x$.
 Clearly, $E[y] = \Sigma^{-1/2} E[x] = 0$, and
 $\text{Var}[y] = \Sigma^{-1/2} \text{Var}[x] \Sigma^{-1/2} = I_n$.
 See slide titled "ELEMENTARY..."
- Combining the above with the distributional result in Q4,
 $y \sim N(0, I_n)$.
- It also follows that the typical element of Y ,
 $y_i \stackrel{\text{IID}}{\sim} N(0, 1)$ for $i = 1, \dots, n$.

- This means that $\mathbf{y}'\mathbf{y} = \sum_{i=1}^n y_i^2 \sim \chi_n^2$
you may need to review basic sampling distributions (N, t, χ^2, F) to understand this.

- The proof is completed by noting that

$$\mathbf{y}'\mathbf{y} = \mathbf{x}' \bar{\Sigma}^{-1} \bar{\Sigma} \mathbf{x}$$

$$= \mathbf{x}' \bar{\Sigma}^{-1} \mathbf{x}$$

which means that $\mathbf{x}' \bar{\Sigma}^{-1} \mathbf{x} \sim \chi_n^2$.

(9) PROPOSITION 9

Suppose M is an $n \times n$ symmetric, idempotent matrix with rank J . Further suppose x is an $n \times 1$ random vector of i.i.d. standard Gaussian random variates, i.e., $x \sim N(0, I_n)$. ~~Then~~ the quadratic form $z \equiv x'Mx$ is distributed χ^2 with J degrees of freedom.

PROOF

LEMMA 9.1 M has eigenvalues either 0 or 1.

Proof of 9.1 . By definition, $Mv_i = \lambda_i \{M\} v_i$ for $i=1, \dots, n$.

. Pre-multiplying both sides by M ,

$$MMv_i = M\lambda_i \{M\} v_i \text{ or } Mv_i = \lambda_i^2 \{M\} v_i$$

so that $\lambda_i \{M\} v_i = \lambda_i^2 \{M\} v_i$ for $i=1, \dots, n$.

. The result follows.

- Given lemma 9.1 and lemma 8.a.1, there exist matrices Δ , a diagonal matrix of 0's and 1's, ie eigenvalues of M ; and C' , an orthogonal matrix of corresponding eigenvectors s.t.

$$M = C\Delta C'$$

- Since $\text{rank}\{M\} = J$, it must be the case that M has J 1's and $(n-J)$ 0's as its eigenvalues.

- Then, $x'Mx = x'C\Delta C'x = (C'x)'\Delta(C'x)$.

- Defining $y := C'x$, we have that $y \sim N(0, I_n)$

and $y_i \stackrel{iid}{\sim} N(0, 1)$ for $i=1, \dots, n$,

where y_i is the i^{th} element of y for $i=1, \dots, n$.

Thus, $x'Mx = y'\Delta y = \sum_{i=1}^n y_i^2 \lambda_i \{M\} \sim \chi_J^2$, which completes the proof of Proposition 9.