FC402 (2023124)
Ragur's Speakng Noifs For Cass
\qquad
Vassihs TS2 (Wk 3, AT)

Plan
(Q1) let's chat about it in class.
(Q2) Vassilis has provided a vary detailed explanation indeed Ill leave yon to read it.
My only additimal comment is that Daknet 3 helps demonstrate that OPS is more susceptible to outlying observations than is LAD.
Dataset helps devorstrate that both methods are equally sensitive to influential observations.
[TiP: Keep an eye out Jos the stony behind these sons of observations in empirical work.]

Qu, QL, QL SEE MY EQUATIONS BELOW
(Q3) $y_{t}=\beta_{1}+\beta_{2} x_{t}+\varepsilon_{t}, t=1_{1} \ldots i$
Given $\hat{\beta}=\left(x^{\prime} x^{-1} x^{(} y\right.$, find explicit expressions for $\hat{\beta}_{1}, \hat{\beta}_{2}$. - let $x=|i x|$ where $i=(1, \ldots,)^{\prime}$ and $x=\left(x_{1}, \ldots, x_{T}\right)^{\prime} ; y=\left(y_{1}, \ldots, y_{T}\right)^{\prime}$

$$
\begin{aligned}
& \cdot\left(x^{\prime} x\right)^{-1}=\left[\begin{array}{cc}
i^{\prime} i & i x \\
x^{\prime} i & x^{\prime} x
\end{array}\right]^{-1}=\left[\begin{array}{cc}
x^{\prime} x & -i^{\prime} x \\
-x^{\prime} i & i^{\prime} i
\end{array}\right] \frac{1}{\Delta}, \text { where } \Delta=i^{\prime} i x^{\prime} x-i^{\prime} x x^{\prime} i . \\
& \cdot\left(x^{\prime} y\right)=\left(\begin{array}{c}
i^{\prime} y \\
x^{\prime} y
\end{array} \quad \therefore \hat{\beta}=\left[\begin{array}{cc}
x^{\prime} x & -i^{\prime} x \\
-x^{\prime} i & i^{\prime} i
\end{array}\right]\left[\begin{array}{l}
i^{\prime} y \\
x^{\prime} y
\end{array}\right] \frac{1}{\Delta}\right. \\
& \Rightarrow \hat{\beta}_{2}=\left[T \sum_{t=1}^{T} x_{t} y_{t}-\sum_{t=1}^{T} x_{t} \sum_{t=1}^{T} y_{t}\right] /\left[T \sum_{t=1}^{T} x_{t}^{2}-\left(\sum_{t=1}^{T} x_{t}\right)^{2}\right] \\
& \& \hat{\beta_{1}}=\left[\sum_{t=1}^{T} x_{t}^{2} \sum_{t=1}^{T} y_{t}-\sum_{t=1}^{T} x_{t} \sum_{t=1}^{T} x_{t} y_{t}\right] /\left[T \sum_{t=1}^{T} x_{t}^{2}-\left(\sum_{t=1}^{T} x\right)^{2}\right]
\end{aligned}
$$

REWRITNG W A MORE FAMILIAR WAY:
Note that $T \sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)\left(y_{t}-\bar{y}\right)=\ldots=T\left[\sum_{t=1}^{T} x_{t} y_{t}-T \bar{x} \bar{y}\right]$
$\left[\right.$ Crease do try to derive if not obvious. The only trick is to realise $\left.\sum_{t=1}^{T}=T=T \bar{E}\right]$

$$
\text { Clearly then, } T \sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}=T\left[\sum_{t=1}^{T} x_{t}^{2}-T \bar{x}^{-2}\right]
$$

Thus, $\hat{\beta}_{2}=\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)\left(y_{t}-\bar{y}\right) / \sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}$ and $\hat{\beta}$,... on next tide.

$$
\hat{\beta}_{1}=\left[\sum_{t=1}^{T} x_{k}^{2} \sum_{t=1}^{T} y_{t}-\sum_{t=1}^{T} x_{t} \sum_{t=1}^{T} x_{t} y_{t}\right] / \Delta
$$

What if we $+1-T^{2} \bar{x}^{2} \bar{y}$ in the numerator?

$$
\text { i.e. } \begin{aligned}
\Delta \hat{\beta}_{1} & =\sum_{t=1}^{T} x_{t}^{2} \sum_{t=1}^{T} y_{t}-T^{2} \bar{x}^{2} \bar{y}+T^{2} \bar{x}^{2} \bar{y}-\sum_{t=1}^{T} x_{t} \sum_{t=1}^{T} x_{t} y_{t} \\
& =\bar{y}\left[T \sum_{t=1}^{T} x_{t}^{2}-T^{2} \bar{x}^{2}\right]-\bar{x}\left|T \sum_{t=1}^{T} x_{t} y_{t}-T^{2} \bar{x} \bar{y}\right| \\
\therefore \hat{\beta}_{1} & =\bar{y}-\hat{\beta}_{2}
\end{aligned}
$$

$(Q 4)-$ Given $y=x \beta+\varepsilon$ we know that $\hat{\beta}=\left(x^{\prime} x\right)^{-1} x^{\prime} y$, where $\left\{\begin{array}{l}y \text { is } T x \mid \\ x \text { is } T_{x k}, \\ \operatorname{rar}(x)=k\end{array}\right.$ and
-The usual convention is to define associated (symmetric and idempotent) $T_{X} T$ matrices:
$T_{x}:=x\left(x^{\prime} x\right)^{-1} x^{\prime}$, referred to as a projection (or prediction) Matrix, and $M_{X}:=I_{T}-x\left(x^{\prime} x\right)^{-1} x^{\prime}$, referred to as a residual-maker matrix.

- We define $\hat{y}:=R_{x} y$ as sous predicted /fitted y 's, and $\hat{\varepsilon}:=M_{x} y$ as the residual from the fitting operation.
In other words, $y=\hat{y}+\hat{\varepsilon}$, represents our decomposition of y into two (orthogonal) additive components, the first representing moveruents in y explained by x, and the second represents whatever remains.
- In this question, we have $X=11$ where 1 is a T-dimensional vector of ones.

$$
\begin{aligned}
-S_{0} \hat{\beta} & =\left(x^{\prime} x\right)^{-1} x^{\prime} y \\
& =\left(\mathbb{1}^{\prime} \mathbb{1}^{-1} \mathbb{1}^{\prime} y\right. \\
& =\left(T^{-1} \backslash \sum_{t=1}^{T} y_{t}\right. \\
& =\bar{y}
\end{aligned}
$$

$$
\begin{aligned}
-?_{x} & :=x\left(x^{\prime} x\right)^{-1} x^{\prime} \\
& =\mathbb{1}^{\left(\mathbb{1}^{\prime} \mathbb{1}\right)^{-1}} \mathbb{1}^{\prime} \\
& =\left[\begin{array}{cccc}
I_{T} & I_{T} & \ldots & I_{T} \\
Y_{T} & Y_{T} & \cdots & V_{T} \\
\vdots & \vdots & \ddots & \vdots \\
1 / T & V_{T} & \cdots & I_{T}
\end{array}\right]
\end{aligned}
$$

- a TXT matrix where every element is (IIT)

$$
\begin{aligned}
-M_{X} & :=I_{T}-x\left(x^{\prime} x\right)^{-1} x \\
& =I_{T}-P_{x}^{\prime} \\
& =\left[\begin{array}{cccc}
1-(11 T) & -11 T & \cdots & -1 / T \\
-1 / T & 1-(1 / T) & \cdots & -11_{T} \\
\vdots & \vdots & \ddots & \vdots \\
-1 / T & -1 / T & \cdots & 1-1 T_{T}
\end{array}\right]
\end{aligned}
$$

of course, $T_{x} y=1 \hat{\beta}_{\text {onus }}=\mathbb{1} \bar{y}=(\bar{y}, \ldots, \bar{y})^{\prime}$, a Tx I vector with every elem.
and $\quad M_{x} y=y-1 \bar{y}_{\bar{y}}=\left(y_{1}-\bar{y}, y_{2}-\bar{y}, \ldots, y_{T}-\bar{y}\right)^{\prime}$ a $T x \mid$ vector containing

Q5 (a) We have $y=x \hat{\beta}+\hat{\varepsilon}=\hat{y}+\hat{\varepsilon}$. Show that TSS $=E S S+$ RSS.
Step : $y^{\prime} y=\left(\hat{y}+\hat{\varepsilon}^{\prime}\right)^{\prime}(\hat{y}+\hat{\varepsilon})=\hat{y}^{\prime} \hat{y}+\hat{\varepsilon}^{\prime} \hat{y}+\hat{y}^{\prime} \hat{\varepsilon}+\hat{\varepsilon}^{\prime} \hat{\varepsilon}$.
Note that $\hat{y}^{\prime} \hat{\varepsilon}=$ why? $\hat{\varepsilon}^{\prime} \hat{y}=\varepsilon^{\prime} M_{x} \times \hat{\beta} \stackrel{\text { nh? }}{=} 0$,

$$
\therefore y^{\prime} y=\hat{y}^{\prime} \hat{y}+\hat{\varepsilon}^{\prime} \hat{\varepsilon} .
$$

Step 2: Note that $i^{\prime} \hat{\varepsilon}=i^{\prime} M_{x} \varepsilon=\left(M_{x} i\right)^{\prime} \varepsilon=0$ if x contains a constant. Further, if $\frac{i^{\hat{\varepsilon}}}{\bar{T}}=0$, then $\frac{i^{\prime} y}{T}=\frac{i}{T} \hat{y}$ so $\bar{y}=\hat{y}$.
Step 3: $y^{\prime} y-T \bar{y}^{2}=\hat{y}^{\prime} \hat{y}-T \bar{y}^{2}+\hat{\varepsilon}^{\prime} \hat{\varepsilon}$

$$
\begin{aligned}
\Rightarrow \sum_{t=1}^{T} y_{t}^{2}-2 \sum_{t=1}^{T} y_{t} \bar{y}+T \bar{y}^{2}= & \sum_{t=1}^{T} \hat{y}_{t}^{2}-2 \sum_{t=1}^{T} \hat{y}_{t} \overline{\hat{y}}^{T}+T \hat{y}^{2} \\
& +\sum_{t=1}^{T} \sum_{t}^{2}
\end{aligned} \quad \begin{aligned}
\Rightarrow & \sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)^{2}=\sum_{t=1}^{T}\left(\hat{y}_{t}-\bar{y}\right)^{2}+\sum_{t=1}^{T} \hat{\varepsilon}_{t}^{2} \text { or TSS }=\text { ElS }+ \text { RSI. }
\end{aligned}
$$

Q5(b) Show: $R^{2}=\left[\operatorname{Cor}\left(y_{t}, \hat{y}_{t}\right)\right]^{2}$
let $y^{*}:=(y-\bar{y})$, and $\hat{y}^{*}:=(\hat{y}-\bar{y})$, still assuming x contains a constant.
Stepl. $R^{2}:=\frac{\text { ESS }}{\text { TSS }}=\frac{\hat{y}^{* /} \hat{y}^{*}}{y^{* /} y^{*}}=\frac{\hat{y}^{*} \hat{y} \hat{y}^{*}}{\hat{y}^{* \prime} \hat{y}^{*}} \frac{\hat{y}^{*} \hat{y}^{*}}{\hat{y}^{* /} y^{*}}$.
Step2. $\left.\hat{y}^{\prime} \hat{y}^{*}=\hat{y}^{*} / \hat{y}-\bar{y}\right]=\hat{y}^{* /}[y-\hat{\varepsilon}-\bar{y}]=\hat{y}^{* /}\left[\hat{y}^{*}-\hat{\varepsilon}\right]$
Step3. $\quad \hat{y}^{* / \prime} \hat{\varepsilon}=\left[x\left(x^{\prime} x^{-1} x^{\prime} y^{*}\right]^{\prime} M_{x} \varepsilon=y^{*} x\left(x^{\prime} x^{-1}\right)^{-1} x^{\prime}\left(I_{\tau}-x\left(x^{\prime} x\right)^{-1} x^{\prime}\right) \varepsilon=0\right.$.

$$
\begin{gathered}
\operatorname{Steps} 1,2,3 \Rightarrow R^{2}=\frac{\left(\hat{y}^{* /} y^{*}\right)^{2}}{}=\operatorname{cor}\left(y_{k}, \hat{y}_{t}\right)^{2} . \\
\left(\hat{y}^{* /} \hat{y}^{*}\right)\left(y^{* /} y^{*}\right)
\end{gathered}
$$

