FC402 (2023124)
Ragur's Speakng Noifs For Cass
\qquad

$$
\text { Vassihs } 184\left(W k 5, A_{T}\right)
$$

Plan

$$
\begin{aligned}
& \left(Q_{1}\right) \\
& \left(Q_{2}\right) \\
& \left(Q_{3}\right)
\end{aligned}
$$

(MAYBE: FWL Theorem if WE have time. otherwise SEE MY Notes on webpage)

PS 6

$$
\text { QUa) }(a) h_{i}=\beta_{0}+\sum_{j=1}^{4} \beta_{j} d_{j i}+x_{\left.(1 x k)(k x)^{\prime}\right)}^{\varepsilon_{i}} f_{0} i=1, \ldots, N
$$

Define: $Q_{N \times(k+5)}=\left[i \quad d_{1} d_{2} d_{3}^{(1 \times x)(k x x)} d_{4} X\right]$. Clearly, $i=\sum_{j=1}^{4} d_{j}$ since every individual belongs in \mid and only 1 category (by design).
\therefore Fat least I perfect lines relationship among the regressor $\Rightarrow A 1$ is violated!
Define: $\underset{(k+5) \times 1}{B}=\left[\beta_{0}, \ldots, \beta_{4}, \gamma^{\prime}\right]^{\prime}$. Then, $\hat{B}_{0, S}=\left(Q^{\prime} Q\right)^{-1} Q^{\prime} h$ cannot be estimated since rank $\left(Q^{\prime} Q\right)<(k+5)$ and $\left.Q^{\prime} Q\right)^{\prime}$ will not exist.
This is a classic instance of the "dummy variable trap".
(b) 2 possible ways to avoid the aforesaid "trap":
(i) $h_{i}=\beta_{0}+\sum_{j=2}^{L} \beta_{j} d_{j i}+x_{i}^{\prime} \gamma+\varepsilon_{i}$ for $i=I_{1} \ldots, N \rightarrow$ drop "dI"

Here, "individuals with guarabled income lear I" becomes the reference or benchmark Category.
$E[h \mid Q]=\beta_{0}+x_{\gamma}$ for this reference category, then for $j=2, \ldots, 4$,
β_{j} is the marginal/additional effect (note: not necessarily positive!) on the conditional mean of h for individuals belonging in the j th guaranteed income level group; that is, over and above that for individuals in the reference category.

Note: β_{0} is the intercept for the reference category

$$
\begin{array}{ll}
\beta_{0}+\beta_{2} & -1-\operatorname{gropp} 2 \\
\beta_{0}+\beta_{3} & -1-g r o p \\
\beta_{0}+\beta_{4} & -1-g r o p
\end{array} 4
$$

(ii) $h_{i}=\sum_{j=1}^{4} \theta_{j} d_{j i}+x_{i}^{\prime} \delta+幺$ for $i=1, \ldots, N \rightarrow$ drop the Constant

Here, we no longer have a reference category.
ie. The interests by category ard simply 0_{j} for $j=1, \ldots, 4$ respectively.
[Tip: in practice, specification (i) is more commonly used. The choice of reference category is arbitrary and usually based on the question of interest to the lesearchel.]
(iii) How are the coefficients related?

$$
\theta_{1}=\beta_{0} ; \theta_{2}=\beta_{0}+\beta_{2} ; \theta_{3}=\beta_{0}+\beta_{3} ; \theta_{4}=\beta_{0}+\beta_{4} ; \delta=\gamma
$$

The OIS residuals should be identical since $\hat{h}=\hat{Q}$ ours will be identical in both regressions.

QL) $y=s \beta_{1}+x_{2} \beta_{2}+\varepsilon$; Note: x_{2} cannot contain a constant!

$$
M_{S}:=\left[I_{T}-S\left(s^{\prime} s^{-1} s^{\prime}\right]_{\substack{\text { where }}} S=\left[\begin{array}{llll}
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right]\right.
$$

Consider $z=\delta_{1} d_{1}+\delta_{2} d_{2}+\delta_{3} d_{3}+\delta_{4} d_{4}+\eta ;\left[S^{\prime} s \int_{i j}=d_{i}^{\prime} d_{j}\right.$ for $i, j=1_{1}, \ldots 4$

- note the that $d_{i}^{\prime} d_{j}=\left\{\begin{array}{c}T_{i} \text { if } i=j \text { so that }\left(S^{\prime} S\right)=\operatorname{diag}\left\{T_{1}, \ldots, T_{4}\right\} \\ 0 \\ \text { olw }\end{array}\right\}$ and $\left(S^{\prime} S\right)^{-1}=\operatorname{dian}\left\{\frac{1}{T_{1}}, \ldots, \frac{1}{T_{4}}\right\}$
Notation:
- Further, $S_{z}^{\prime}=\left[\begin{array}{l}d_{1}^{\prime} z \\ d_{2}^{\prime} z \\ d_{3}^{\prime} z \\ d_{4}^{\prime} z\end{array}\right]=\left[\begin{array}{c}\sum_{i=1}^{T} z_{i} \mathbb{1}(Q 1)_{i} \\ \sum_{i=1}^{1} z_{i} \mathbb{1}(Q 2)_{i} \\ \sum_{i=1}^{1} z_{i} \mathbb{1}(Q 3)_{i} \\ \sum_{i=1}^{\sum} z_{i} \mathbb{1}(Q 4)_{i}\end{array}\right]=\left[\begin{array}{l}\sum_{i=1}^{T} z 1_{i} \\ \sum_{i=1}^{2} z 2_{i} \\ \sum_{i=1}^{2} z_{i} \\ \sum_{i=1}^{4} z 4_{i}\end{array}\right]$
- Thus $\hat{\delta}=\left(S S^{-1} S^{\prime} z=\left[\bar{z}_{1}, \ldots, \overline{z_{4}}\right]^{\prime}\right.$
- So, $S \hat{\delta}$ yields a $T x \mid$ matrix st. for any

- The darned structure of $M_{S} z=z-S \hat{\delta}$ follows.
(b) Consider the descafonalised vaiables regrestion:
$y^{*}=x^{*} \alpha_{2}+\varepsilon^{*}$, where * denotes pre-multiplication by M_{S}.
Then, $\hat{\alpha}_{\text {ois }}=\left(x^{+\prime} x^{-1}\right) x^{* \prime} y^{*}=\left(\left(M_{s} x\right)^{\prime} M_{s} x^{-1}\left(M_{s} x\right)^{\prime} M_{s} y=\left(x^{\prime} M_{s} x^{-1} x^{\prime} M_{s} y=\hat{\beta}_{\text {ols }}\right.\right.$ by the Ful

Dear all,
A student in one class asked me a question about the DV trap. The question was roughly as follows:

Consider $y=\alpha+\beta_{M} M+\beta_{F} F+\varepsilon$ where M and F are Male and female dummies. Obviously, this specification suffers for the DV trap since $i=M+F$ so either we drop i or M or F. The student asked that if we drop i, we still have a linear relationship in the suse that $M+F=1$. So why is this not a problem?

Math:
(1) obviously, $x:=[i M]$ is not a problem since i and M are not collinear.

The rack of x is full and $\left(x^{\prime} x\right)^{-1}$ can be computed.
(2). But this is identical to a regression of $y_{\text {an }} X:=[M F]$. To seethes:

$$
\text { consides } \begin{aligned}
y & =\delta_{M} M+\delta_{F} F+\varepsilon \\
& =\delta_{M} M+\delta_{F}(1-M)+\varepsilon \\
& =\delta_{M} M+\delta_{F}-\delta_{F} M+\varepsilon \\
& =\delta_{F}+\left(\delta_{M}-\delta_{F}\right) M+\varepsilon \\
& =\theta_{0}+\frac{\theta_{1}}{} M+\varepsilon
\end{aligned}
$$

\therefore since the two specifications are effectively the same if you are happy with (1) you must also be happy with (2).'

TUITION:
I think the best way to appooach this problem is to think directly in terms of rank $\left(x^{\prime} x\right)$ since that is the precise Condition to check for AI. When $x:=\left[\mathcal{C M F}\right.$, rank of $x^{\prime} x$ will be 2 but also when $X:=[M F)$ and when $X:=(i M)$ and when $X:=[i F]$.

Hope that helps,
Raguir

Q3. $Z \in \mathbb{R}^{n}, z \sim\left(\mu_{z}, V_{z}\right)$

- constant $q \in \mathbb{R}^{n}$
(a) Define $\omega:=q^{\prime} z$. Find $E(w) \& \operatorname{Var}(\omega)$.

$$
\begin{aligned}
& E(\omega)=q^{\prime} E(z)=q^{\prime} \mu_{z} . \\
& \operatorname{Var}(\omega)=q^{\prime} \operatorname{Var}(z) q=q^{\prime} \operatorname{V}_{z} q .
\end{aligned}
$$

(b) Suppose that for a particular choice of $q \neq 0, \operatorname{Var}(w)=0$. What does this say
(i) about the random vector z ? What does it say about the rank of the variancecovariance matrix V_{z} ?
(ii) ${ }^{1}$
(i) Since there exists a $q \neq 0$ s.t. $\operatorname{Var}(q z z)=0$, there exists a perfect linear relationship between the elements of z.

You don't reed to read this (sketch of a) proof. Last year students wanted me to give extra intuition for the second paragraph of Vassilis' Sowtion to I cane up with the reasoning below. That is all this is!
(ii) let's assume WLOG that there exists just one vector $q \neq 0$ s.t. $\operatorname{Var}\left(q^{\prime} z\right)=0$.

Men, recognise that

1. $\operatorname{Var}\left(q^{\prime} z\right)=q^{\prime} V_{z} q=0$ if $V_{z} q=0$ for $q \neq 0$;
2. $\operatorname{Null}\left(V_{z}\right):=\left\{q \in \mathbb{R}^{n}: V_{z q}=0\right\}$ and so

$$
\operatorname{Nullity}\left(V_{z}\right):=\operatorname{dim}\left\{\operatorname{Null}\left(V_{z}\right)\right\}=1 \text {; }
$$

3. By the rak-nullity theorem,

$$
\operatorname{ruk}\left(V_{z}\right)+\operatorname{Nullity}\left(V_{2}\right)=n
$$

$\therefore B y\left(1,3, \operatorname{rank}\left(v_{z}\right)=n-1\right.$.

ATTEMPT 1
Let's see if I can think of an example for you for $Q 3$:
Consider $x \sim N\left(0,0^{2}\right)$ and the vector $(x, 2 x)^{\prime}$.
Then $\binom{x}{2 x}$ has variance $\left(\begin{array}{ll}\sigma^{2} & 2 r^{2} \\ 2 \sigma^{2} & 4 \sigma^{2}\end{array}\right)$, right?
Now ask yourself what is the rate of the matrix above?!

