EC402 (2023/24) RAGUR'S SPEAKING NOTES FOR CLASS

Vasihs 784 (WK5, AT)

MAMBE: FWL THEOREM IF WE HAVE TIME. OTHERWIJE SEE MY NOTES ON WEBPADE

Note:
$$\beta_{0}$$
 is the intercept for the reference category
 $\beta_{0} + \beta_{2} = -n - group Z$
 $\beta_{0} + \beta_{2} = -n - group Z$
 $\beta_{0} + \beta_{2+} = -n - group Z$
 $\beta_{0} + \beta_{2+} = -n - group H$
(ii) $h_{i} = \sum_{i=1}^{14} \theta_{i} d_{ii} + z_{i} S + z_{i}$ for $i = 1, ..., N \rightarrow drop$ the constant
Here, we no longer have a reference category
i.e. The intercept by category and simply θ_{i} for $j = 1, ..., k$ respectively.
[Tip: Ingreatice, specification (i) is noise commonly used. The choice of reference category is
arbitrary and usually based on the question of interest to the researdner.]
(ii) How are the beflicietly related?
 $\theta_{1} = \beta_{0}$; $\theta_{2} = \beta_{0} + \beta_{2}$; $\theta_{3} = \beta_{0} + \beta_{3}$; $\theta_{w} = \beta_{0} + \beta_{1}$; $S = \gamma$
The OLS residurals through be identical since $h = Q\hat{B}_{0,3}$ will be identical in both
requessions.

$$\begin{aligned} & \text{2018} \\ \text{an} \quad y = S\beta_1 + x_2 f_2 + \varepsilon \quad ; \text{ Nole: } X_2 \text{ cannot contain a constant !} \\ & \text{M}_{S^2} = \begin{bmatrix} I_T - S[xS]S'] \text{ where } S = \begin{bmatrix} d_1 & d_2 & d_3 & d_4 \end{bmatrix} \\ & \text{Tryy} \quad \\ & \text{Implies the set of the set$$

$$y^* = X \chi_2 + 2'$$
, Where "denotes pre-nulliplication by Mg.
Then, $\chi' = (x^*'x^*)x^*'y^* = ((M_s x)'M_s x)(M_s x)M_s y = (x'M_s x)x'M_s y = \beta_2$ by the Fiel
ous theorem.

APPENDIX A

Dear all

A student in one class asked me a question about the DV trap. The question was roughly as follows:

Consider $y = k + \beta_m M + \beta_F F + \Xi$ where M and F are Male and female dummies. Obviously, this specification suffers from the DV trap since i= M+F so either we drop i or M or F. The student asked that if we drop i we still have a linear relationship in the suse that M+F=1. So why is this not a groblem?

: since the two specifications are effectively the same if you are happy with () you must also be happy with ().

INTUITION :

I think the best way to approach this problem is to think directly in terms of rank (X|X) since that is the precise condition to check for Al. When $X := \{i \ MF\}$, tank of X|X will be 2 but also when $X := \{MF\}$ and when $X := \{i \ M\}$ and when $X := \{i \ F\}$.

Hope that helps, Raquir

Q3.
$$ZER^{n}$$
, $Z \sim (\mu_{2}, V_{2})$
 \cdot constant $q \in R^{n}$
(h) Define $w := q'Z$. Find $E(w)$ & $Var(w)$.
 $E(w) = q'E(Z) = q'\mu_{Z}$.
 $Var(w) = q' Var(Z)q = q'VZQ$.

(b) Suppose that for a particular choice of $q \neq 0$, Var(w) = 0. What does this say about the random vector z? What does it say about the rank of the variance-covariance matrix V_z ?

(i) Since there exists a q=0 S.t. Var(q12) = 0, there exists a perfect linear relationship between the elements of Z.

ATTEMPT 1
Let's see if I can think of an example for yon for QS:
Consider XNN(Q, 5^t) and the vector
$$(X, \lambda n)^{t}$$
.
Then $\begin{pmatrix} X \\ \partial X \end{pmatrix}$ has variance $\begin{pmatrix} \overline{\sigma} & 2\sigma^{2} \\ 2\sigma^{2} & 4\sigma^{2} \end{pmatrix}$, right?
Now ask yrariself what is the state of the matrix above?!
ATTEMPT 2 $\begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} \sim N(\begin{pmatrix} 0 \\ 0 \end{pmatrix} | \begin{pmatrix} 0 \\ 0 \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} \sim N(\begin{pmatrix} 0 \\ 0 \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma_{1} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} \sim N(\begin{pmatrix} 0 \\ 0 \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma_{1} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} \sim N(\begin{pmatrix} 0 \\ 0 \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma_{1} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} \sim N(\begin{pmatrix} 0 \\ 0 \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma_{1} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} \sim N(\begin{pmatrix} 0 \\ 0 \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma_{1} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} \sim N(\begin{pmatrix} 0 \\ 0 \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} \sim N(\begin{pmatrix} 0 \\ 0 \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{1} \\ X_{2} \end{pmatrix} \sim N(\begin{pmatrix} 0 \\ 0 \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{1} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{1} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} X_{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \end{pmatrix} | \begin{pmatrix} \sigma^{2} \\ \sigma^{2} \\ \sigma^{2} \\ \sigma^{$