EC402 (2023/24) RAGVIR'S SPEAKING NOTES FOR CLASS

Varihs 785 (WKG, AT)

QUESTION

Q1. (A) -
(b) under AUGN:
$$E[26!] = \mathcal{E} I_T$$

So, $Var(\hat{f}_{USE}) = E\left[(\hat{f}_{USE} - E[\hat{f}_{USE}))(\hat{f}_{USE} - E[\hat{f}_{USE}))\right] dwe to ..., 1
where $\hat{f}_{USE} := (X|X)X'_{T};$
 $= E\left[(X|X)X'_{T} \in \mathcal{E} \times [X'X)^{-1}\right] dwe to ...;$
 $= (X|X)X' E[25!] \times [X|X]^{-1} dwe to ...;$
 $= (X'X)X' \sigma^{2} I_{T} X[X|X]^{-1} dwe to ...;$
 $= \sigma^{2}(x'X)^{-1}$
But here, we do not have NUGM!
Under AUL: $E[25!] = \Omega$, a P.d. typometric matrix,
 $Var(\hat{f}_{USE}) = ... = (X|X)X'\Omega \times (x'X)^{-1}$$

$$\begin{array}{l} (L \) \cdot \) \int course not! \quad Under AU \Omega , if \Omega \neq \partial I_{T} , then \\ & \sigma^{2}(X \setminus T)' \text{ is just some arbitrary } \\ & \text{mediative came up with. It is utterly } \\ & \text{meaningleess.} \end{array} \\ & \cdot \ Under the G/M \ theorem, \ \beta_{GS} := (X \cdot D \setminus T)' \times 'D' \ y \ is \ the BLUE. \\ & \text{That is } \lambda_{T} \left\{ Var(\beta_{CS}) - Var(\beta_{GN}) \right\} > 0 \quad \text{where } \lambda_{T} \left\{ . \right\} \ orders \ to \ the \ smallest \ eigenvalue; \\ & \sigma \in \lambda_{T} \left\{ \left[(X' \times X) \times (D \setminus X' \times X' \times Y' - (X \cdot D \setminus X) \right] \right\} > 0 \\ & (i.e. \ bo \ \sigma'(X' \times Y) \ ieally \ doesn't \ oppear \ anywhere.) \\ & (i.e. \ bo \ \sigma'(X' \times Y) \ ieally \ doesn't \ oppear \ anywhere.) \\ & \text{make twe yon can } \\ & \text{derive this.} \end{array}$$

QUESTION Q

QQ (A) Say
$$y_{t} = \beta_{0} + \sum_{h=1}^{K} \beta_{h} x_{hk} + z_{b}$$
, for $t = 1, -T$.
Then $y_{t} = \beta_{0} + \sum_{h=1}^{K} \beta_{h} x_{hk-1} + z_{t-1}$, for $t = a_{1} ..., T$.
So the "FD model" is defined as
 $Ay_{t} = \sum_{h=1}^{K} \beta_{h} \Delta x_{hk} + \Delta z_{t}$, for $t = a_{1} ..., T$,
Where $Ay_{t} := y_{t} - y_{t}$ and Δx_{hk} and Δz_{t} are defined
onalogonely.

Say
$$y = i\beta_0 + x\beta_0 + \Sigma$$
, where
 $\begin{cases} X \text{ is a TxK matrix} \\ i \text{ is a T dimensional vector of ones}; \\ Z_1^{(0)}(0, \sigma_2^2) \text{ for } t = 1, ..., T. \end{cases}$
Then the FD Model " is defined as Ay where A is ...

So if we define a (T-1) XT makix

$$A:=\begin{pmatrix} -110 & ... & 00\\ 0-11 & ... & 00\\ \vdots \vdots \vdots & \vdots & \vdots\\ 0000 & ... & -11 \end{pmatrix}$$

then the transformation $Ay = Ax\beta + Az$ yields a
"D model" as required.
Note: $Ai=0$. In fact, $A(ci) = 0$ for any constant CER.

(b) Say the GM assumptions held in the "levels model".
A1:
$$[i \times]$$
 has rack K+1
A2: $y = [i \times] [F_0] + \Sigma$, $E[\Sigma] = 0$
A3F: $[i \times]$ is fixed in repeated transles
A445M: $E[\Sigma \Sigma] = \overline{O} = T_T$
. Then the Fush theorem and the GMM theorem tell us
 $\widehat{F}_{01S} = [\chi'M_{1}\times] \chi'M_{1}y$ is the BLUE.
In other words, $\lambda_{T} \{ Var(\widetilde{F}) - Var(\widehat{F}_{01}) \} \ge 0$,
for tome LUE \widetilde{F} , and where $\lambda_{T} \{ \cdot \}$ denotes the smallest
eigenvalue.

But then use can easily compare

$$\begin{array}{l}
\hat{\beta} := \left[(Ax) Ax \right] \left[(Ax) (Ay) = (X' A'A x) x' A'Ay, \\
\text{FBOUS} \\
\text{with } \hat{\beta}_{OUS} \text{ because}. \\
\text{(i) } \hat{\beta}_{FBOUS} \text{ is linear since for } \mathcal{B} := (X' A'A x) x' A'A, \\
\hat{\beta}_{FBOUS} = \mathcal{B}_{Y}. \\
\end{array}$$

(ii)
$$\hat{F}_{FSOLS}$$
 is unbiased since
 $E[\hat{F}_{FDOLS}] = \beta + E[(X'A'AX)X'A'AZ] = \beta$

and so the GM theorem tells us that

APPENDIX A: COMMON QUESTION FROM STUDENTS
RAGUR I DON'T UNDERSTAND WHY YOU AKE USING ALL THESE
FORMULAS WITH "M;" IN THEM...?"
Consider our model again: y= ZO + Z where Z:=[i X]
and 0:=[B, B].
The OLS estimator would be
$$\hat{D}:=(Z'\bar{Z})Z'Y$$
, a (K+1) XI vector.
If we compare $Var(\hat{D})$ with $Var(\hat{F}_{FDOLS})$, that would just
be silly because the former is (K+1 by K+1) and the latter is
(K by K). We can't even compute $Var(\hat{D}) - Var(\hat{F}_{FDOLS})$.
If we compared $Var((X'X)X'Y)$ with $Var(\hat{F}_{FDOLS})$, we
are indeed able to do so, but (X'X)X'Y is Not the right
way to estimate B. It's can't just ignore i.
The only connect way is to run a partitiated negressian.

QUESTION 3

(US) $y = X, \beta, + X, \beta, + Z = 0$ $\int T_{XK_1} \int T_{XK_2} f_2 + Z = 0$ Tx1

Assume Al: rank ([X, X2]) = K, + K2 A2. Model (D holds and E(2) = 0, A3F: [X, X2] non-stochastic. (A) $\gamma := (x(x_1) x(y = \beta_1 + (x(x_1) x(z + (x(x_1) x(x_2\beta_2$ => $E[\hat{g}_1 \mid \overset{\text{WHM}}{=} + (X_1' \times 1) \times X_2 B_2 \neq B_1$ unless $X_1' \times 1 = 0$ or $B_2 = 0$. (b) $Var(\hat{\gamma}_{1}) \stackrel{unun}{=} E[(\hat{\gamma}_{1} - E(\hat{\gamma}_{1}))(\hat{\gamma}_{1} - E(\hat{\gamma}_{1}))]$ $\stackrel{unun}{=} E[(\hat{\chi}_{1}' \times \hat{\chi}_{1}) \times \hat{\chi}_{1}' = \hat{\chi}_{1}' \times (\hat{\chi}_{1}' \times \hat{\chi}_{1})]$ $\stackrel{unun}{=} [\chi_{1}' \times \hat{\chi}_{1}] \times \hat{\chi}_{1}' = \hat{\chi}_{1}' \times (\hat{\chi}_{1}' \times \hat{\chi}_{1})]$ I've just incorred a 2 mark penalty. Why? $r = |X_1'X_1| \times |\sigma_z I_7 \times |(X_1'X_1)| = \sigma_z |X_1'X_1|$

(c)
$$\delta_{z}^{2} := (y - x_{1} \hat{x}_{1})'(y - x_{1} \hat{x}_{1}) / (T - K_{1})$$

Step1: $(y - x_{1} \hat{x}_{1}) = y - x_{1}(x_{1}'x_{1})x_{1}' = [T_{T} - x_{1}(x_{1}'x_{1})x_{1}']y = M_{x_{1}}y_{1}$
 $= M_{x_{1}} [x_{1}\beta_{1} + x_{2}\beta_{2} + z] = M_{x_{1}}x_{1}\beta_{2} + M_{x_{1}}z_{1}$
Step2: $[T - K_{1}]\delta_{z}^{2} = (M_{x_{1}}x_{2}\beta_{2} + M_{x_{1}}z)'(M_{x_{1}}x_{2}\beta_{2} + M_{x_{1}}z)$
 $= \beta_{1}'x_{1}'M_{x_{1}}x_{2}\beta_{2} + \beta_{2}'x_{2}'M_{x_{1}}z + z'M_{x_{1}}x_{2}\beta_{2} + z'M_{x_{1}}z_{1}$
Step3: $E(s'M_{x_{1}}z) = \cdots$
This is actually a proof of departer interest
 $= \cdots$
 $= \sigma_{1}^{2}[T - K_{1}]$.
Step4: $E[\delta_{2}^{2}] = \sigma_{2}^{2} + (x_{2}\beta_{2})'M_{x_{1}}(x_{2}\beta_{2}) \ge \sigma_{2}^{2}$ because ...
States The Rescale IV
 h other words, δ_{2}^{2} Notionalically Over-
 $= choose one.$

In case you need help with the nore "part of Vassilis' tolution:
• Consider a correctly specified model (i.e.
$$\beta_2 \neq 0$$
 and $X'_1X_2 \neq 0$).
 $\Im = X_1\beta_1 + X_2\beta_2 + \Xi_1$ with $\Xi \sim N(0, \widetilde{\Xi}I_7)$
 $\Im = X_1\beta_1 + X_2\beta_2 + \Xi_1$ with $\Xi \sim N(0, \widetilde{\Xi}I_7)$
and rank $[\{X_1, X_2\}\} = K_1 + [X_2]$ hor shocked.
• We've seen that $E[\hat{X}_1] = \beta_1 + [X_1X_1] \times [X_2\beta_2]$ (Biased)
and $Var(\hat{Y}_1) = \overline{\Xi}(X_1X_1)^{-1}$.

• Further, we know that for
$$\hat{\beta}_{1,(SE} := (X_1'M_{X_2}X_1) X_1'M_{X_2}Y_1$$

 $E(\hat{\beta}_{1,(SE}) \stackrel{WHY?}{=} \hat{\beta}_1$ (Unbiased)
and $Var(\hat{\beta}_{1,(SE}) \stackrel{WHY?}{=} \sigma^2 (X_1'M_{X_2}X_1)$.

So, let's compare
$$X'_{1}M_{\chi}X_{1}$$
 with $X'_{1}X_{1}$:
In general, we'd expect $A_{T}\left\{ (X'_{1}X_{1}) - (M_{\chi}X_{1})'_{1}(M_{\chi}X_{1}) \right\} > 0$ if $X'_{1}X_{2} \neq 0$
i.e. we'd expect $A_{T}\left\{ Vad\left(\hat{F}_{1,1}c_{E}\right) - Vas\left(\hat{Y}_{1}\right)\right\} > 0$,
where $A_{T}\left\{ X_{2}\right\}$ is the smallest eigenvalue.
This is one reason "Kitchen sink regressions"
are governly not a good idea.
[FyI: this biosynamice tradeoff appears in many different gausses throughout Statistice.]

- APPENDIX C: MSE REVIEW · Say Q is an estimator for Q. We want to analyte its properties; is it even a decert estimators? is - one person may say "I care about trias". Is Q centred on the fruth? i.e. Is [E(Q)-Q] low or high? (ii) - avoller may say "I care about valance". Is θ clustered (or dispersed) around its cabe?
i.e. Is Varlé) low or high?
(iii) - a third may say "I care about MSE". Are squared errors in estimation of θ
(iv) - a third may say "I care about MSE". Are squared errors in estimation of θ
(Nong θ) zero ... on average?
i.e. Is E[(θ-θ)] low or high? - Turne out that zerson (iii)'s criterian is not that different from the other two: $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = E[(\hat{\theta}^2 - 2\theta\hat{\theta} + \theta^2] = E[(\hat{\theta}^2) - 2\theta E(\hat{\theta}) + \theta^2]$

$$= \operatorname{Var}(\hat{\Theta}) + (E|\hat{\Theta}) - 2\Theta E(\hat{\Theta}) + \Theta^{2}$$

$$= \operatorname{Var}(\hat{\Theta}) + (E|\hat{\Theta}| - \Theta)^{2}$$

$$= \operatorname{Var}(\hat{\Theta}) + \operatorname{Bias}(\hat{\Theta}) \cdot (\operatorname{Now}, \operatorname{have a look at the} \operatorname{last line of Vassilis' polution})$$

Appendix D

$$E\left[z'H_{x}z\right]^{ulu_{2}^{2}} E\left[Tr\left\{z'M_{x}z\right\}^{ulu_{2}^{2}}E\left[Tr\left\{zz'H_{x}\right\}\right]^{ulu_{2}^{2}}E\left[Tr\left\{zz'H_{x}\right\}\right]^{ulu_{2}^{2}}E\left[Tr\left\{zz'H_{x}\right\}\right]^{ulu_{2}^{2}}Tr\left\{zz'H_{x}\right\}^{2} = Tr\left\{zz'H_{x}\right\}^{2} = Tr\left\{zz'H_{x}\right\}^{2} = Tr\left\{zz'H_{x}\right\}^{2} = Tr\left\{zz'H_{x}\right\}^{2} = Tr\left\{zz'H_{x}\right\}^{2} = Tr\left\{zz'H_{x}\right\}^{2} = \sigma_{z}^{2}\left[Tr\left\{zz-x(x'x)x'\right\}^{2}\right]^{2} = \sigma_{z}^{2}\left[Tr\left\{zz-x(x'x)x'\right\}^{2}\right]^{2} = \sigma_{z}^{2}\left[Tr\left\{zz'H_{x}\right\}^{2} = Tr\left\{zz'H_{x}\right\}^{2} = Tr\left\{zz'H_{x}\right\}^{2$$

For us, X = X, and R=K, : E[2'MX, 2] =
$$\mathcal{F}_4(T-K)$$
, as required.
These equations are useful for instance at the end of Vaseilis'
Solution to QZ of PS'Z.

QUESTION H

(lit)
$$y = x\beta + z$$
, $z[x \sim (0, c^{2}SL)$
with rank $(x'x) = k$, and y is TxI .
For $t, s = 1, ..., T$, consider the cases below:
(a) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{3k}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{3k}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{3k}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{3k}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{3k}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{3k}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{3k}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{3k}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{3k}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{3k}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{3k}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{sk}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{sk}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{sk}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{sk}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{sk}^{2} + 0_{2}x_{sk}^{-1}, t = s]$
(c) $z_{t}z_{s}^{-1} + 0_{t}x_{sk}^{-1}, t = s]$
(b) $E[z_{t}z_{s}]x] = [0_{0} + 0_{1}x_{sk}^{-1}, t = s]$
(c) $z_{t}z_{s}^{-1} + 0_{t}x_{sk}^{-1}, t = s]$
(c) $z_{t}z_{s}^{-1} + 0_{t}x_{s}^{-1}, t = s]$
(c) $z_{t}z_{s}^{-1}$

(a)(i) let
$$E\left[\frac{g_{z'}}{x}\right] := c^{2}\Omega$$
,
where $c^{2}:= 1$, and
 $\Omega = \Omega[\theta] := diag \{\frac{z}{\theta}, ..., \frac{z}{t}^{-\theta}\}$ for $\theta:=(\theta_{0}, \theta_{1}, \theta_{2})$ and
 $\overline{z}_{t}:=(1, \frac{x_{3t}}{x_{3t}}, \frac{x_{5t}}{x_{5t}})$ for $t=1,...,T$.
(ii) Stop1. Define $\hat{z} := y - x(\frac{x}{x})^{x}y$,
and for $t=1,...,T$, let \hat{z}_{t} denote the tth element of \hat{z}_{t} .
Step2. Define $\hat{\theta} := (\sum_{t=1}^{t} \overline{z}_{t} \overline{z}_{t})^{t} \sum_{t=1}^{t} \overline{z}_{t} \hat{z}_{t}^{2}$
Step 3. Define $\hat{\Omega} := \Omega[\hat{\theta}] = diag \frac{z}{\theta}, ..., \overline{z}_{t}^{2}\hat{\theta} \frac{z}{\theta}$.

(b)(i) let
$$E[zz'|X] := c^2 \Omega$$
,
where $c^2 := \sigma_r^2$, and
 $\Omega = \Omega(\theta) := diag \{\eta_1, ..., \eta_T\}$ for $\theta := (\eta_{1,...,\eta_T})$.
[ii] Define $\hat{\beta} := (x' \overline{\Sigma}' x) \overline{X}' \overline{\Sigma} y' = \hat{\beta}_{1515}$ since θ is Known.

For
$$t \in \mathbb{Z}$$
, consider the case below:
(c) $\varepsilon_{t} = \rho \varepsilon_{t-1} + v_{t}$, $|\rho| < 1$, $v_{t} \sim 10$, $\varepsilon [v_{t}|X] = 0$, $Var[v_{t}|X] = \varepsilon^{2} < 0$.
(i) For this (cov. stationary) process, since
 $\varepsilon [\varepsilon_{t} \varepsilon_{t-n}|X] = \begin{bmatrix} v_{t} \\ v_{t} \end{bmatrix} \begin{bmatrix} h = 0 & \text{for some } 0 < v_{t} < \infty \end{bmatrix}$
 $\varepsilon [(p^{h} \varepsilon_{t-h} + \sum_{k=0}^{2} p^{k} v_{t-k}) \varepsilon_{t-h}|X], h > 0$
 $\varepsilon [\varepsilon [(p^{h} \varepsilon_{t} + \sum_{k=0}^{2} p^{k} v_{t+k})]X], h < 0$
and $\varepsilon [\varepsilon m v_{t}|X] = 0$ for any integers $m < n$, it follows that
 $that \varepsilon [\varepsilon_{t} \varepsilon_{t-h}|X] = p^{h} = \varepsilon^{h} = 0$.

Thus, for
$$b = 1, ..., T$$
, we let
TxT matrix $E \left[22^{2} | X \right] := C^{2} \Omega$,
where $c^{2} := b_{Z}^{2}$
 $\Omega = \Omega(p) := 1 p p^{2} \dots p^{T-1}$
 $p | p \dots p^{T-2}$
 $p^{2} p | p^{T-3}$
 $\vdots \vdots \vdots \vdots \vdots$
 $T = T^{T-2} T^{T-3} I$

[Note: People who have studied time series will know that
$$\vec{v}_{\vec{z}} = \vec{v}_{\vec{v}} (1-p^2)$$
.
Test yourself: why did I not bother to torture the non-time-series students
by requiring them to compute $\vec{v}_{\vec{z}}$ for this guestian?]

(ii) Step (. Define $\hat{z} := y - x(x'x) x'y$, and for t = 1, ..., T, let \hat{z}_t denote the tth element of \hat{z}_t . Step 2. Define $\hat{q} := (\overline{Z}, \hat{z}_{t-1}, \hat{z}_{t-1}) = \hat{Z}_{t-1}, \hat{z}_{t-1}$ Step Z. Define B := (x'SZ'x) x'SZ'y where SZ = SL(p) as defined above.

For $t \in \mathbb{Z}_{+}$ consider the case below: (d) $\mathcal{E}_{+} = V_{+} + \lambda V_{+-1}, V_{+} \sim IID, E[V_{+}|X] = 0, Var[V_{+}|X] = \overline{v} < 40$

(i) For this (cov. stationary) process, since $E[2_{k}2_{k},h[X] = E[(v_{k}+\lambda v_{k-1})(v_{k-n}+\lambda v_{k-n-1})|X], h \in \mathbb{H}$

and $E[v_{m}v_{n}|x]=0$ for any integers $m \neq n$, it follows that $E[2_{t}2_{t-n}|x] = \begin{cases} v_{t}v_{t-n}|x] \\ v_{t}v_{t-n}|x] \end{cases} = \begin{cases} v_{t}v_{t-1}v_{t-1}^{2} \\ v_{t}v_{t-1}v_{t-1}^{2} \end{cases}$, if h=0 $for h=-\infty, ..., 0, ..., \infty$, h|z|

Thus the ACF of Zz is given by $P_{\xi}(h) := [1, h=0]$ $\lambda | (1+\lambda^2), |h| = 1$ 0, otherwise,for hEZ

(ii) Stepl. Define &:= y-x(x'x)x'y and let & denote the tth element of &, for t = 1,...,T. Step2. Define & := \$\overline \$\overline \$\verline \$\verline