FC402 (2023124)
Ragur's Speakng Noiss For Cass
\qquad

$$
\text { Vassihs is } \left.5 \text { (Wk }\}, A_{T}\right)
$$

Question
$Q 1 .(a)-$
(b) under A4GM: $E\left[\varepsilon \varepsilon^{\prime}\right]=\sigma^{2} I_{T}$

$$
\text { So, } \operatorname{Var}\left(\hat{\beta}_{\text {SSE }}\right)=E\left[\left(\hat{\beta}_{\text {SSE }}-E\left(\hat{\beta}_{\text {SSE }}\right)\right)\left(\hat{\beta}_{\text {SSE }}-E\left(\hat{\beta}_{\text {SSE }}\right)\right)^{\prime}\right] \text { due to ... }
$$

where $\hat{\beta}_{\text {sSE }}:=\left(x^{\prime} x^{-1}\right)^{\prime} y$;

$$
\begin{aligned}
& =E\left[\left(x^{\prime} x\right)^{-1} x^{\prime} \varepsilon \varepsilon^{\prime} x\left(x^{\prime} x\right)^{-1}\right] \text { due to ... } \\
& =\left(x^{\prime} x\right) x^{\prime} E\left[\varepsilon^{\prime}\right] x\left(x^{\prime} x\right)^{-1} \text { due to } . . \\
& =\left(x^{\prime} x\right)^{-1} x^{\prime} \sigma^{2} I_{T} x\left(x^{\prime} x\right)^{-1} \text { due to ... } \\
& =\sigma^{2}\left(x^{\prime} x\right)^{-1} .
\end{aligned}
$$

But here, we do not have A4GM!
Under $A 4 \Omega: E\left[\varepsilon \varepsilon^{\prime}\right]=\Omega$, a P.d. symmetric Matrix,

$$
\operatorname{Var}\left(\hat{\beta}_{S S E}\right)=\ldots=\left(x^{\prime} x\right)^{-1} x^{\prime} \Omega x\left(x^{\prime} x\right)^{-1}
$$

(C). Of course not! Vader $A 4 \Omega$, if $\Omega \neq \sigma^{2} I_{T}$, then
$\sigma^{2}\left(x^{\prime} x\right)^{-1}$ is just some arbitrary matrix we cave up with. It is whirly meaningless.

- Under the G FM theorem, $\hat{\beta}_{G B}:=\left(x^{\prime} \Omega^{-1} x\right)^{-1} x^{\prime} \Omega^{-1} y$, is the BLME.

That is, $\lambda_{T}\left\{\operatorname{Var}\left(\hat{\beta}_{\text {SSE }}\right)-\operatorname{Var}\left(\hat{\beta}_{G O S}\right)\right\}>0$ where $\lambda_{T}\left\{\right.$. $\left\{\begin{array}{l}\text { refers to the smalls } \\ \text { eigenvalue: }\end{array}\right.$ eigenvalue;

$$
\text { or } \lambda_{T}\left\{\left(x^{\prime} x\right)^{-1} x^{\prime} \Omega^{-1} x\left(x^{\prime} x\right)^{-1}-\left(x^{\prime} \Omega^{-1} x\right)^{-1}\right\} \geqslant 0 \text {. }
$$

(ie. So os $\left(x^{\prime} x\right)^{-1}$ really doesnit appear anywhere.)

Vassilis verifies this in his folutions.
make tue you can
derive this.

Question 2

Q2 (a) Say $y_{t}=p_{0}+\sum_{h=1}^{K} \beta_{n} x_{n t}+\varepsilon_{b}$, for $t=1, T . T$.
Then $y_{t-1}=\beta_{0}+\sum_{h=1}^{K} \beta_{n} x_{n t-1}+\varepsilon_{t-1}$, for $t=2_{1} \ldots T$.
So the " $F D$ model" is defined as

$$
\Delta y_{t}=\sum_{h=1}^{K} \beta_{n} \Delta x_{h t}+\Delta \varepsilon_{t} \text {, for } t=2, \ldots, T \text {, }
$$

where $\Delta y_{t}:=y_{t}-y_{t-1}$ and $\Delta x_{h t}$ and $\Delta \varepsilon_{t}$ are defined onalogonely.

Say $y=i \beta_{0}+x \beta+\varepsilon$, where

$$
\left\{\begin{array}{l}
x \text { is a } T x K \text { matrix ; } \\
i \text { is a } T \text { dimensional vector of ores; } \\
\varepsilon_{c} \stackrel{\sim}{\sim}\left(0, \sigma_{\varepsilon}^{2}\right) \text { for } t=1, \ldots, T
\end{array}\right.
$$

Then the "FD Model" is defined as An where A is...
let's visualise together...

NEW DATA $|$| y | i | x_{1} | |
| :---: | :---: | :---: | :---: |
| | \cdot | \cdot | \cdot |
| $y_{i} y_{1}$ | 0 | $x_{i 2}-x_{11}$ | |
| $y_{3}-y_{2}$ | 0 | x_{13} | x_{13} |

So if we define a $(T-1) \times T$ matrix

$$
A:=\left(\begin{array}{rrrrrr}
-1 & 1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & 1
\end{array}\right)
$$

then the transformation $A y=A \times \beta+A \varepsilon$ yields a "AD model" as required.
Note: $A_{i}=0$. In fact, $A(c i)=O$ for am constant $c \in \mathbb{R}$.
(b) Say the G/M assumptions held in the "levels model".

AI: $[i x]$ has rack $k+1$
Al: $y=[i x]\left[\begin{array}{l}\xi_{0} \\ \beta\end{array}\right]+\varepsilon, E(\varepsilon)=0$
AF: $[i x]$ is fixed in repeated temples
A4GM: $E[\varepsilon \varepsilon i]=\sigma^{2} I_{T}$
-Then the FWL theorem and the G $\mu \mathrm{M}$ theorem tell us $\hat{\beta}_{\text {ole }}=\left(x^{\prime} M_{i} x\right)^{-1} x^{\prime} M_{i} y$ is the BLLEE.
In other words, $\lambda_{T}\left\{\operatorname{Var}(\tilde{\beta})-\operatorname{Var}\left(\hat{\beta}_{\text {os }}\right)\right\} \geqslant 0$, for tome $L M E \tilde{\beta}$, and where $\left.\lambda_{T}\{ \}\right\}$ denotes the smallest eigenvalue.

But then we can easily compare

$$
\left.\hat{\beta}:=\left[(A x)^{\prime} A x\right)\right]^{-1}(A x)^{\prime}(A y)=\left(x^{\prime} A^{\prime} A x\right)^{-1} x^{\prime} A^{\prime} A y,
$$

with $\hat{\beta}_{\text {os }}$ because:
(i) $\hat{\beta}_{A \rightarrow \text { os }}$ is Linear since for $B:=\left(X^{\prime} A A X\right)^{-1} X^{\prime} A^{\prime} A$,

$$
\hat{\beta}_{F D O C S}=B y .
$$

(ii) $\hat{P}_{\text {Fr onus }}$ is unbiased since

$$
E\left[\hat{\beta}_{A \rightarrow O L S}\right]=\beta+E\left[\left(X^{\prime} A^{\prime} A X\right)^{-1} X^{\prime} A^{\prime} A \varepsilon\right]=\beta
$$

and so the GM theorem tell us that

$$
\lambda_{T}\left\{\operatorname{Var}\left(\hat{\beta}_{\text {FOOLS }}\right)-\operatorname{Var}\left(\hat{\beta}_{\text {DIS }}\right)\right\} \geqslant 0,
$$

that is, $\hat{\beta}_{\text {OMS }}$ is a "better" LWE than $\hat{\beta}_{\text {As oils }}$

APPENDIX A: COMMON QUESTION FROM STUDENTS
"RAGUIR I DINT UNDERSTAND WHY YOU ARE USING ALL THEBE FORMULAS WITH"Mi" IN THEM...?"
Consider our model again: $y=z \theta+\varepsilon$ where $z:=[i x]$ and $\theta:=\left[\beta_{0}, p^{\prime}\right]^{\prime}$.

- If we compare $\operatorname{Var}(\hat{\theta})$ with $\operatorname{Var}\left(\hat{\beta}_{F \Delta \text { onus }}\right)$, that would just be silly because the former is $(k+1$ by $k+1)$ and the latter is
$(k$ by $k)$. We cant even compute $\operatorname{Var}(\hat{\theta})-\operatorname{Var}\left(\hat{\beta}_{F \Delta}\right.$ os $)$.
- If we compared $\operatorname{Var}\left(\left(x^{\prime} x\right)^{-1} X^{\prime} y\right)$ with $\operatorname{Var}\left(\hat{\beta}_{F D O i l}\right)$, we are indeed able to do so, but $\left(x^{\prime} x^{-1} x^{\prime} y\right.$ is Not the right way to estimate β. You cant just ignore i.
- The only correct way is to run a partitioned regression.

APPENDIX B: EXTRA QUESTION TO TEST YOURSELF
IMAGINE YOU ARE THE ECYO2 TA. FOR 5 Ming. YOUR STUDENT ASKS You:
Clearly, $\hat{\beta}_{\text {ers aus }}$ \& $\hat{\beta}_{\text {os }}$ are both OLS estimators. To see this, note:
they both have the usual $\left(\tilde{x}^{\prime} \tilde{x}\right)^{-1} \tilde{x}^{\prime} \tilde{y}$ form, where for
LEVELS: $\quad \tilde{y}:=M_{i} y ; \tilde{x}:=M_{i} x$, and for
FD : $\quad \tilde{y}:=A_{y} ; \tilde{x}:=A x$.
That is, $\hat{\beta}_{\text {oils }}=\left[\left(M_{i} x\right)^{\prime} M_{i} x\right]^{-1}\left(M_{i} x\right)^{\prime} M_{i} y=\left(x^{\prime} M_{i} x\right)^{-1} x^{\prime} M_{i} y$, and

$$
\hat{\beta}_{\Rightarrow D \text { ais }}=\left[(A x)^{\prime} A x\right]^{-1}(A x)^{\prime} A y=\left(x^{\prime} A^{\prime} A x\right)^{-1} x^{\prime} A^{\prime} A y \text {. }
$$

The GM theorem tells us that OLS estimators are BLME (under suitable assumptions). However, here, we are using the G/M theorem to say that
one, old estimator is belles than another? one' OLS estimator is belles than another? Strange, is nt it? Explain, Please!

Question 3
(Q3) $\underset{T_{x} \mid}{y=x_{x} \beta_{1} \beta_{1}+x_{1-2}^{T_{k}} \beta_{2}+\varepsilon-0}$
Assume $A 1: \operatorname{rark}\left(\left[x_{1}, x_{2}\right]\right)=K+K_{2}$
A2: Model (1) holds and $E(\varepsilon)=0$,
A3F: $\left[X_{1}, X_{2}\right]$ non-stochactic.
(a)

$$
\begin{aligned}
& \hat{\gamma}_{1}:=\left(x_{1}^{\prime} x_{1}^{-1} x_{1}^{\prime} y^{\text {wमY? }}=\beta_{1}+\left(x_{1}^{\prime} x_{1}^{-1} x_{1}^{\prime} \varepsilon+\left(x_{1}^{\prime} x_{1}\right) x_{1}^{\prime} x_{2} \beta_{2}\right.\right. \\
& \Rightarrow \\
& \Rightarrow \\
& E\left(\hat{\gamma}_{1} \mid \stackrel{\text { wम? }}{=} \beta_{1}+\left(x_{1}^{\prime} x_{1}\right) x_{1}^{\prime} x_{2} \beta_{2} \neq \beta_{1} \text { waless } x_{1}^{\prime} x_{2}=0 \text { or } \beta_{2}=0 .\right.
\end{aligned}
$$

(b) $\operatorname{Var}\left(\hat{\gamma}_{1}\right)^{w+4}=E\left[\left(\hat{\gamma}_{1}-E\left(\hat{\gamma}_{1}\right)\right)\left(\hat{\gamma}_{1}-E\left(\hat{\gamma}_{1}\right)\right)^{1}\right]$
$\stackrel{\text { why? }}{=} \underset{\left.\left(x_{1}^{\prime} x_{1}\right) x^{-1} x_{1}^{\prime} \varepsilon \varepsilon^{\prime} x_{1}\left(x_{1}^{\prime} x_{1}\right)^{-1}\right]}{ }$
wh4? $\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime} E\left[\varepsilon \varepsilon^{\prime}\right\} x_{1}\left(x_{1}^{\prime} x_{1}\right)^{-1}$
I've just incurred a
2 mack penalty. Why? $\sim\left(x_{1}^{\prime} x_{1}\right) x_{1}^{\prime-1} \sigma_{\varepsilon}^{2} I_{7} x_{1}\left(x_{1}^{\prime} x_{1}\right)^{-1}=\sigma_{q}^{2}\left(x_{1} x_{1}\right)^{-1}$
(c) $\hat{\sigma}_{2}^{2}:=\left(y-x_{1} \hat{\gamma}_{1}\right)^{\prime}\left(y-x_{1} \hat{\gamma}_{1}\right) /\left(T-k_{1}\right)$

Step: $\left(y-x_{1} \hat{\gamma}_{1}\right)=y-x_{1}\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime} y=\left[I_{T}-x_{1}\left(x_{1}^{\prime} x_{1}\right)^{-1} x_{1}^{\prime}\right] y=M_{x} y$

$$
=M_{x_{1}}\left[x_{1} \beta_{1}+x_{2} \beta_{2}+\varepsilon\right]=M_{x_{1}} x_{2} \beta_{2}+M_{x_{1}} \varepsilon .
$$

Step 2: $\left(T-K_{1}\right) \hat{\sigma}_{\varepsilon}^{2}=\left(M_{x_{1}} x_{2} \beta_{2}+M_{x_{1}} \varepsilon\right)^{\prime}\left(M_{x_{1}} x_{2} \beta_{2}+M_{x_{1}} \varepsilon\right)$

$$
=\beta_{2}^{\prime} x_{2}^{\prime} M_{x_{1}} x_{2} \beta_{2}+\beta_{2}^{\prime} x_{2}^{\prime} M_{x_{1}} \varepsilon+\varepsilon^{\prime} M_{x_{1}} x_{2} \beta_{2}+\varepsilon^{\prime} M_{x_{1}} \varepsilon .
$$

Step $3: E\left(\varepsilon^{\prime} M_{x} \varepsilon\right)=$
This is actually a proof of separate interest

$$
=\ldots
$$

on its own. I provide it below in full

$$
=\sigma_{2}^{2}\left(T-k_{1}\right)
$$ detail in "Appendix D ".

Step 4: $E\left[\hat{\sigma}_{\varepsilon}^{2}\right]=\sigma_{\varepsilon}^{2}+\left(x_{2} \beta_{2}\right)^{\prime} M_{x_{1}}\left(x_{2} \beta_{2}\right) \geqslant \sigma_{\varepsilon}^{2}$ because ... STATE THE REASON PRECISELY (TM, WAY?
In other wads, $\hat{\sigma}_{2}^{2}$ gglenatically over- estimates σ_{n}^{2} under-
(d) If $x_{1 t}$ and $x_{2 t}$ are uncorrelated, we will have $\left(x_{1}^{\prime} x_{1}\right) x_{1}^{\prime} x_{2}=0$
$\therefore \hat{\gamma}_{1}$ would be unbiased for β_{1}.
However $M_{x_{1}} X_{2}$ would be "large relative to the correlated case.
\therefore the (upward) bias in $\hat{\sigma}_{\varepsilon}^{2}$ would be "the worst possible "relative to the Correlated case.

In case you deed help with the "Nore" part of Vassilis' solution:

- Consider a correctly spurified model (i.e. $\beta_{2} \neq 0$ and $\left.x_{1}^{\prime} x_{2} \neq 0\right)$:

$$
\begin{aligned}
& y=x_{1} \beta_{1}+x_{2} \beta_{2}+\Sigma \text {, with } \Sigma \sim N\left(O_{1}^{2} I_{T}\right) \\
& \text { and } \operatorname{rank}\left(\left[x_{1}, x_{2}\right]\right)=k_{1}+k_{2} \text { and }\left[x_{1}, x_{2}\right] \text { nor-stochas. }
\end{aligned}
$$

- We've seen that $E\left(\hat{\gamma}_{1}\right)=\beta_{1}+\left(x_{1}^{\prime} x_{1}\right)^{\prime} x_{1}^{\prime} x_{2} \beta_{2}$ (Biased)

$$
\text { and } \operatorname{Var}\left(\hat{\gamma}_{1}\right)=\sigma^{2}\left(x_{1}^{\prime} x_{1}\right)^{-1} \text {. }
$$

- Further, we know that for $\hat{\beta}_{1, Q e}:=\left(x_{1}^{\prime} M_{x_{2}} x_{1}\right) x_{1}^{\prime} M_{x_{2}} y$,

$$
\begin{gathered}
E\left(\hat{\beta}_{1, \text {,SE }}\right)^{\text {WHY? }}=\beta_{1} \\
\text { and } \operatorname{Var}\left(\hat{\beta}_{1, S E}\right) \stackrel{\text { WHY? }}{=} \sigma^{2}\left(x_{1}^{\prime} M_{x_{2}} X_{1}\right)^{-1} .
\end{gathered}
$$

(Unbiased)

So, let's compare $X_{1}^{\prime} M_{X_{2}} X_{1}$ with $X_{1}^{\prime} X_{1}$:
In general, wed expect $\lambda_{T}\left\{\left(x_{1}^{\prime} x_{1}\right)-\left(M_{x_{2}} x_{1}\right)^{\prime}\left(M_{x_{2}} x_{1}\right)\right\}>0$ if $x_{1}^{\prime} x_{2} \neq 0$, i.e. wed expect $\lambda_{T}\left\{\operatorname{var}\left(\hat{p}_{1, L E}\right)-\operatorname{Var}(\hat{\gamma}),\right\}>0$, where $\lambda_{T}\{$.$\} is the smallest eigenvalue.$
This is one reason "kitchen sink regressions"
are geerally not a good idea.
(FMI. this bias/vaiance trade off appears in many different guises throughout Statistice.)

APPENDIX C: MSE REVIEW

- Say $\hat{\theta}$ is an estimator fo, θ. We wart to analyse its properties; is it ever a deceit estimator? (i) - one person may say. "I case about bias". Is $\hat{\theta}$ centred on the truth? ie. Is $|E(\hat{\theta})-\theta|$ low or high?
(ii) - another may say "I care about variance". Is $\hat{\theta}$ clustered (or dispersed) around its centre? ie. Is $\operatorname{Var}(\hat{\theta})$ low or high?
(iii) - a third may say "I care about MSF". Are squared eros in estimation of θ ie. Is $E\left[(\hat{\theta}-\theta)^{2}\right]$ low or high?
- Turns ont that person (iii)'s criterion is not that different from the other two:

$$
\begin{aligned}
\operatorname{MSE}(\hat{\theta}):=E\left[(\hat{\theta}-\theta)^{2}\right] & =E\left[\hat{\theta}^{2}-2 \theta \hat{\theta}+\theta^{2}\right]=F\left(\hat{\theta}^{2}\right)-2 \theta E(\hat{\theta})+\theta^{2} \\
& =\operatorname{Var}(\hat{\theta})+(E(\hat{\theta}))^{2}-2 \theta E(\hat{\theta})+\theta^{2} \\
& =\operatorname{Var}(\hat{\theta})+[E(\hat{\theta})-\theta]^{2} \\
& =\operatorname{Var}(\hat{\theta})+\operatorname{Bias}^{2}(\hat{\theta}) .
\end{aligned}
$$

APPENDIX D

$$
\begin{aligned}
& \text { why⿳⺈⿴囗十一⿱䒑䶹. } \operatorname{Tr}\left\{\sigma_{\varepsilon}^{2} I_{T} M_{x}\right\}=\sigma_{\varepsilon}^{2} T r\left\{M_{x}\right\}=\sigma_{\varepsilon}^{2} T r\left\{I_{T}-x\left(x^{\prime} x\right)^{-1} x^{\prime}\right\} \\
& \left.\left.=\sigma_{k}^{2}\left[T_{r}\left\{I_{T}\right\}-T r\left\{x\left(x^{\prime} x\right)^{-1} x^{\prime}\right\}\right]=\sigma_{\varepsilon}^{2}\left[T_{r}\left\{I_{T}\right\}-\pi\right\}\left(x^{\prime} x\right) \mid x^{1} x\right)^{-1}\right\} \\
& \text { State } \geqslant \text { the } \\
& \text { lon? }=\sigma_{i}^{2}\left[T_{r}\left\{I_{T}\right\}-T_{r}\left\{I_{K}\right\}\right]=\sigma_{\varepsilon}^{2}(T-K) \text {. }
\end{aligned}
$$

For us，$x:=x_{1}$ and $k=k_{1} \therefore E\left[\xi^{\prime} M_{x}, s\right]=\sigma_{k}^{2}\left(T-R_{1}\right)$ as required．
These equations are useful，for instance，at the end of Vassilis solution to ${ }^{\prime}$ Q3 of PS＇ 2 ．

Question 4
(Qt) $\quad y=x \beta+\varepsilon, \varepsilon\left(x \sim\left(0, c^{2} \Omega\right)\right.$ with $\operatorname{rank}\left(x^{\prime} x\right)=k$, and y is $T x \mid$.

For $t_{1} s=1, \ldots T$, consider the cases below:
(a) $E\left[\varepsilon_{t}^{\varepsilon} s \mid x\right]=\left\{\begin{array}{l}\theta_{0}+\theta_{1} x_{3 t}^{2}+\theta_{2} x_{s t}^{-4}, t=s \\ 0, t \neq s .\end{array}\right.$
(b) $E\left[\varepsilon_{i} \varepsilon_{s} \mid x\right]=\left\{\begin{array}{cc}2_{v} \eta_{t}, & t=s \\ 0, & t \neq s,\end{array}\right.$ where σ_{v} is unknown but η_{t} is known.
(a)(i) let $E\left[\varepsilon \varepsilon^{\prime} \mid x\right]:=c^{2} \Omega$,
where $c^{2}:=1$, and
$\Omega \equiv \Omega(\theta):=\operatorname{diag}\left\{z_{1}^{\prime}, \theta_{1}, \ldots, z_{T}^{\prime} \theta\right\}$ for $\theta:=\left(\theta_{0}, \theta_{1}, \theta_{2}\right)^{\prime}$ and $z_{t}=\left(1, x_{3 t}^{2}, x_{5 t}^{-4}\right)^{\prime}$ for $t=1, \ldots T$.
(ii) Step. Define $\hat{\varepsilon}:=y-x\left(x^{\prime} x^{-1}\right)^{\prime} y$,
and for $t=1 \ldots T$, let $\hat{\varepsilon}_{t}$ denote the $t^{\text {th }}$ element of $\hat{\varepsilon}$.
Step 2. Define $\hat{\theta}:=\left(\sum_{t=1}^{T} z_{t} z_{t}^{\prime}\right)^{-1} \sum_{t=1}^{T} z_{t} \hat{z}_{t}^{2}$
Step 3. Define $\hat{\Omega}:=\Omega(\hat{\theta})=\operatorname{diag}\left\{z_{1}, \hat{\theta}, \ldots, z_{T}^{\prime} \hat{\theta}\right\}$
Step 4. Define $\hat{\beta}_{\text {EELS }}:=\left(x^{\prime} \hat{\Omega}^{-1} x\right)^{-1} x^{1} \hat{\Omega}^{-1} y$.
(b) (i) let $E\left[\varepsilon \varepsilon^{\prime} \mid x\right]:=c^{2} \Omega$, where $c^{2}:=\sigma_{v}^{2}$, and

$$
\Omega \equiv \Omega(\theta):=\operatorname{diag}\left\{\eta_{1}, \ldots, \eta_{T}\right\} \text { for } \theta:=\left(\eta_{1}, \ldots, \eta_{T}\right)^{\prime} \text {. }
$$

(ii) Define $\hat{\beta}_{\text {EGGS }}:\left(x^{-1} \Omega^{-1} x\right)^{-1} \times{ }^{1} \Omega^{-1} \equiv \hat{\beta}_{\text {IGLS }}$ since θ is known.

Fort $\in \mathbb{Z}$, consider the case below:
(c) $\varepsilon_{t}=\rho \varepsilon_{t-1}+v_{t},|p|<1, v_{t} \sim \| i s, E\left|v_{t}\right| x|=0, \operatorname{Var}| v_{t}|x|=\sigma_{v}^{2}<\infty$.
(i) For this(cov. stationary) process, since $E\left[\varepsilon_{\varepsilon} \varepsilon_{t-h} \mid x\right]=\left\{\begin{array}{l}\sigma^{2}, \text { if } h=0 \text { for sole } 0<\sigma^{2} \varepsilon<\infty \\ E\left[\left(\rho^{h} \varepsilon_{t-h}+\sum_{k=0}^{h-1} \rho^{k} v_{t-k}\right) \varepsilon_{t-h} \mid x\right], h>0 \\ E\left[\varepsilon_{t}\left(\rho^{-h} \varepsilon_{t}+\sum_{k=0}^{-h-1} \rho^{k} v_{t+k}\right) \mid x\right], h<0\end{array}\right.$
and $E\left[\varepsilon_{m} v_{n} \mid x\right]=0$ for any integers $m<n$, it follows that that $E\left[\varepsilon_{\varepsilon^{2}} \varepsilon_{t-h} \mid x\right]=\rho^{|h|} \sigma_{\varepsilon}^{2}$ for $h=-\infty, \ldots, 0, \ldots, \infty$.

Thus, for $t=I_{1}, \ldots, T$, we let
TXT matrix $E\left[\varepsilon \varepsilon^{\prime} \mid x\right]_{2}^{\prime}=c^{2} \Omega$,
where $c^{2}:=\sigma_{\varepsilon}^{2}$

$$
\Omega \equiv \Omega(\rho):=\left[\begin{array}{ccccc}
1 & \rho & \rho^{2} & \cdots & \rho^{T-1} \\
\rho & 1 & \rho & \cdots & \rho^{T-2} \\
\rho^{2} & \rho & 1 & & \rho^{T-3} \\
\vdots & \vdots & \vdots & \ddots & \\
\rho^{T-1} & \rho^{T-2} & \rho^{T-3} & & 1
\end{array}\right]
$$

Note: People who have studied time sees will know that $\sigma_{q}^{2}=\sigma_{5}^{2} \mid\left(1-p^{2}\right)$.
Test yourself: why did I not bother to torture the non-time-seees students by requiring then to compute σ_{2} for this question?
(ii) Step 1. Define $\hat{\varepsilon}:=y-x\left(x^{\prime} x\right)^{-1} x^{\prime} y$,
and for $t=1, \ldots$, , let $\hat{\varepsilon}_{t}$ denote the $t^{\text {th }}$ element of $\hat{\varepsilon}$.
Step 2. Define $\hat{\rho}:=\left(\sum_{t=2}^{T} \hat{\varepsilon}_{t-1} \hat{\varepsilon}_{t-1}\right)^{-1} \sum_{t=2}^{T} \hat{\varepsilon}_{t-1} \hat{\varepsilon}_{t}$.
Step 3. Define $\hat{\beta}_{F G U}:=\left(x^{\prime} \Lambda^{-1} x\right)^{-1} x^{\prime} \hat{\Omega}^{-1} y$ where $\hat{\Omega}:=\Omega(\hat{p})$ as
defined above. defined above.

For $t \in \mathbb{Z}$, consider the case below:
(d) $\varepsilon_{t}=r_{t}+\lambda v_{t-11} v_{t} \sim \| D, E\left[v_{t} \mid x\right]=0, \operatorname{Var}\left[v_{t} \mid x\right]=0_{v}^{2}<\infty$
(i) For this (Cov.stationary) process, since

$$
E\left[\varepsilon_{t} \varepsilon_{t-h} \mid x\right]=E\left[\left(v_{t}+\lambda v_{t-1}\right)\left(v_{t-h}+\lambda v_{t-h-1}\right) \mid x\right], h \in \mathbb{Z}
$$

and $E\left[V_{m} v_{n} \mid x\right]=0$ for am integers $m \neq n$, it follows that

$$
E\left[\varepsilon_{\left.t^{\varepsilon} t-h \mid x\right]=}= \begin{cases}\sigma_{v}^{2}\left(1+\lambda^{2}\right) & \text { if } h=0 \\ \lambda_{v}^{2},|h|=1 \\ 0,|h|>1,\end{cases}\right.
$$

for $h=-\infty, \ldots, \ldots \infty$.

Thus, the ACF of ε_{v} is given by

$$
f_{l}^{(h)}:=\left\{\begin{array}{l}
1, h=0 \\
\lambda\left|\left(1+\lambda^{2}\right),|h|=1\right. \\
0, \text { otherwise, }
\end{array}\right.
$$

for $h \in \mathbb{Z}$.

Thus, for $t=\backslash, \ldots T$, we can let
TXT matrix $E\left[\varepsilon \varepsilon^{\prime} \mid x\right]:=c^{2} \Omega$, where
$c^{2}:=\left(1+\lambda^{2}\right)^{2} r$ and

$$
\Omega \equiv \Omega(\rho):=\left[\begin{array}{ccccc}
1 & \rho & 0 & \ldots & 0 \\
\rho & 1 & \rho & \ldots & 0 \\
0 & \rho & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

where $\rho:=\rho_{\varepsilon}(-1)=\rho_{\varepsilon}(1)=\frac{\lambda}{1+\lambda^{2}}$.
(ii) Stepl. Define $\hat{\varepsilon}:=y-x\left(x^{\prime} x\right)^{-1} x^{\prime} y$ and let $\hat{\varepsilon}_{t}$ denote the $t^{\text {th }}$ element of $\hat{\varepsilon}$, for $t=1, \ldots, T$.
Step 2. Define $\hat{\rho}:=\sum_{t=2}^{\top} \hat{\varepsilon}_{t-1} \hat{\Sigma}_{t} / \sum_{t=1}^{I} \hat{z}_{t}^{2}$
Step 3. Define $\hat{\beta}_{\text {FoGS }}:=\left(x^{\prime} \hat{S}^{-1} x\right)^{-1} \times x^{-1} y$
${ }_{\text {FaGS }}$ where $\hat{\Omega}:=\Omega(\hat{\rho})$ as defined above.

