FC402 (2023124)
Ragur's Speakng Noifs For Cass
\qquad
Vassihs is b (Wk 7, AT)

Question
(QI) $y=1^{T \times k+\varepsilon} ; A 1, A 2, A 3 R m i$

- Model I (A4GM) vs. Model II (A4. Ω) (Assume σ^{2}) is known).
(a) The researcher has 2 estimators:

$$
\begin{aligned}
& \text { The researcher has } 2 \text { estimators: } \\
& \hat{\beta}_{\text {Jus }}:=\left(x^{\prime} x\right)^{-1} x^{\prime} y \text { and } \hat{\beta}_{\text {GUS }}:=\left(x^{\prime} \Omega^{-1} x\right)^{-1} x^{\prime} \Omega^{-1} y \text { where } \Omega:=\left[\begin{array}{ccccc}
1 & 0.45 & 0 & \cdots & 0 \\
0.45 & 1 & 0.45 & & 0 \\
0 & 0.45 & 1 & & 0 \\
\vdots & & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
\end{aligned}
$$

Cnditimal on X,

$$
\begin{aligned}
& \text { Conditimal on } x \\
& \cdot \operatorname{Var}\left(\hat{\beta}_{\text {out }}\right)=E\left[\left(x^{-1} x\right)^{\prime} x^{\prime} \varepsilon \varepsilon^{\prime} x\left(x^{-1} x\right)^{-1}\right]=\sigma_{\varepsilon}^{2}\left(x^{\prime} x\right)^{-1} \\
& \cdot \operatorname{Var}\left(\hat{\beta}_{G \text { els }}\right)=E\left[\left(x^{\prime} \Omega^{-1} x\right)^{-1} x^{\prime} \Omega^{-1} \varepsilon \varepsilon^{\prime} \Omega^{-1} x\left(x^{\prime} \Omega^{-1} x\right)^{-1}\right]=\sigma_{\varepsilon}^{2}\left(x^{\prime} \Omega^{-1} x\right)^{-1} x^{\prime} \Omega^{-1} \Omega^{-1} x\left(x^{\prime} \Omega^{-1} x\right)^{-1}
\end{aligned}
$$

These are the variances of the respective $O S$ and GLS estimators under Model I.
The G(M thessen tells us that $\operatorname{Var}\left(\hat{\beta}_{G G S}\right)-\operatorname{Var}\left(\hat{\beta}_{\text {orcs }}\right)$ is a P.D. matrix under $A 1-A 4 G M$,
ie. oils is $B L L E$.

Given $H_{0}: \& \beta=q$
vs $H_{1}: \& p \neq q$,
the researcher can use either:

$$
\begin{aligned}
& V_{\text {out }}:=(R \hat{\beta}-q)^{\prime}\left[R \sigma_{2}^{2}\left(x^{-1}\right)^{-1} R^{\prime}\right]^{-1}\left(R \hat{\beta}_{\text {os }}-q\right)_{-1} O R \\
& V_{\text {GL }}:=\left(R \hat{\beta}_{\text {iLS }} q\right)^{\prime}\left[R \delta_{\sigma_{q}}\left(x^{\prime} \tilde{\Omega}^{-1} x\right)^{-1} x^{\prime} \Omega^{-1} \Omega^{-1} x\left(x^{-1} x\right)^{-1} R^{\prime}\right]^{-1}\left(R \hat{\beta}_{\text {UsS }} q\right)
\end{aligned}
$$

but if Model I is correct then the lest based on Vas will be more powerful (i.e. for a given size α, the probability of making a Tope II error will be lower with Vols).
(b) Conditional on X,

$$
\left.\begin{array}{l}
\operatorname{Var}\left(\hat{\beta}_{o u s}\right)=c^{2}\left(x^{\prime} x\right)^{-1} x^{\prime} \Omega x\left(x^{\prime} x\right)^{-1} \\
\operatorname{Var}\left(\hat{\beta}_{G \in S}\right)=c^{2}\left(x^{\prime} \Omega^{-1} x\right)^{-1} x^{\prime} \Omega^{-1} \Omega \Omega^{-1} x\left(x^{\prime} \Omega^{-1} x\right)^{-1}=c^{2}\left(x^{\prime} \Omega^{-1} x\right)^{-1}
\end{array}\right] \quad \begin{aligned}
& \text { with } c^{2}:=\sigma_{\varepsilon}^{2}=\sigma_{v}^{2}\left(1+\theta^{2}\right) \\
& \text { assuming } \varepsilon_{t}=\theta v_{t-1}+v_{t} \\
& \text { with } v_{t}^{\prime \prime \prime}\left(\sigma_{1} \sigma_{v}^{2}\right) \text { for } t=1 \ldots+
\end{aligned}
$$

These are the variances under Model II. The G/M theoren tells us that $\operatorname{Var}\left(\hat{\beta}_{\text {oas }}\right)$ - $\operatorname{Var}\left(\hat{\hat{\beta}_{\text {Gus }}}\right)$ is
a P.D. matrix (under Al- A4 Ω), ie. GLS is BLLE.
Given

$$
\begin{gathered}
H_{0}: R \beta=q \\
\text { vs } H_{1}: R \beta \neq q,
\end{gathered}
$$

the researcher can use either:

$$
\begin{aligned}
& V_{\text {OS }}:=\left(R \hat{\beta}_{\text {OS }}-q\right)^{\prime}\left[2 \sigma_{\varepsilon}^{2}\left(x^{\prime} x\right)^{-1} x^{\prime} \Omega \times\left(x^{\prime} x\right)^{-1} R^{\prime}\right]^{-1}\left(R \hat{\beta}_{\text {Gus }} q\right) \\
& V_{\text {GUS }}:=\left(R \hat{\beta}_{\text {GUS }} q\right)^{\prime}\left[R \sigma_{\sigma_{\varepsilon}}^{2}\left(x^{\prime} \mathcal{S}^{\prime} x\right)^{-1} R^{\prime}\right]^{\prime}\left(R \hat{\beta}_{\text {GUS }} q\right)
\end{aligned}
$$

but if Model II is correct then the lest based on VGIS will be more powerful (ie. for a given size α_{1}, the probability of making a Tope II error will be lower with $V_{G L S}$).

Intuition: $\operatorname{Say} X_{i} \stackrel{{ }^{11}}{\sim} N\left(\mu, \sigma^{2}\right)$ for $i=1, \ldots, N$ with σ^{2} known.
Consider 2 LUE's for $\mu: x_{1}$ and \bar{x} (and let's assume $x_{1}=\bar{x}=x^{*}$ in our sample)
Say $H_{0}: \mu=\mu_{0}$

$$
H_{1}: \mu=\mu_{1}>\mu_{0}
$$

We can use either of 2 tests (of size $\alpha=0.01$).
(i) Reject H_{0} of $x_{1}=x^{*}>\mu_{0}+2.33 \sigma$, TR H_{0} otherwise
(ii) Reject H_{0} iff $\bar{x}=x^{*}>\mu_{0}+2.33 \sigma / \sqrt{N}$, FTR H_{0} otherwise

Even though both tests have the sane size, clearly test (ii) has a higher power!
The result is being driven by the lower variance of the second estimator relative to the first.
"Ragvir, I doit understand your previous slide. What's
the intuition for your intuition ?!" Ans: Lets wark ont

$$
\beta_{(i)}{ }^{4}
$$ the powerfunctions (from EC400).

$=1-P\left(x_{1}-\mu_{1}<\left(\mu_{0}-\mu_{1}\right)+2.33 \sigma \mid \mu=\mu_{1}\right)$
$=1-P\left(\frac{x_{1}-\mu_{1}}{\sigma}<\left(\frac{\mu_{0}-\mu_{1}}{\sigma}\right)+2.33\left(\mu=\mu_{1}\right)\right.$
$=1-F_{Z}\left(\frac{\mu_{0}-\mu_{1}}{\sigma}+2.33\right)$ where $Z \sim N(0,1)$.

$$
\begin{aligned}
\beta_{(i i)}\left(\mu_{1}\right) & =\ldots \\
& =1-F_{z}\left(\sqrt{N}\left(\frac{\mu_{0}-\mu_{1}}{\sigma}\right)+2.33\right) \text { where } Z \sim N(0,1) .
\end{aligned}
$$

Clearly then, $\beta_{(i i)}\left(\mu_{1}\right)>\beta_{\text {(i) }}\left(\mu_{1}\right)$ for $N>1$.

Question 2
(Q2) Note: See Vassilis' dowtianfor this question. I preset slightly modified examples of intuition for each case...
(a) Antocovelation w. a lagged dependent variable:

Suppose $y_{t}=\beta_{1}+\beta_{2} x_{t}+\beta_{3} y_{t-1}+\varepsilon_{t}$ for $t=1, \ldots T$
Recall. so long as $E\left[x_{\varepsilon} \varepsilon_{t}\right]=0$ and $E\left[y_{t-1} \varepsilon_{k}\right]=0$ for all t (ie. A3R sur holds), $\hat{\beta}_{\text {cs }}$ is a consistat estimator for β as $T \rightarrow \infty$.
However, suppose $\varepsilon_{t}=\rho \varepsilon_{t-1}+v_{t}$ with $v_{t}{ }^{\prime \prime} \sim N\left(0, v_{v}^{2}\right)$ for $t=1, \ldots T$
Now, we can rewrite the model as:

$$
y_{t}=\beta_{1}+\beta_{2} x_{t}+\beta_{3} y_{t-1}+\rho \varepsilon_{t-1}+r_{t}
$$

but it also holds that Σ_{t}

$$
y_{t-1}=\beta_{1}+\beta_{2} x_{t-1}+\beta_{3} y_{t-2}+\varepsilon_{t-1}
$$

So CLEARLY $\operatorname{cov}\left(\varepsilon_{x}, y_{t-1}\right) \neq 0$! ABR sn u is violated.
$p \lim _{T \rightarrow \infty} \hat{\beta}_{\text {os }} \neq \beta$ (we N?)

KFY Our choice of A2, meaning a specification to include a lagged dependent variable, together MESSAGE with our choice of A4, meaning a specification to allow autownelation, forces a violation of even the weakest form of AB that is needed to establish Contisterm of our estimators, meaning even A3RGru.
(b) Measurement enos in an explanatory variable:
let $y_{t}=\beta_{1}+\beta_{2} w_{t}+v_{t}$ where $v_{t} \sim \mathbb{N} N\left(0, \sigma_{r}^{2}\right)$ for $t=1, \ldots T$ and assume $E[v \mid w]=0$
Suppose w_{t} cannot be measured acwrately; instead we observe x_{t} :
$x_{t}=\omega_{t}+u_{t} ;$ Assume $u_{t} \stackrel{\prime 1}{\sim}\left(0, \sigma_{u}^{2}\right)$ Ans $u \mathbb{1} v$ Ans $u \mathbb{1} w$
The model becomes:

$$
\begin{aligned}
y_{t} & =\beta_{1}+\beta_{2}\left(x_{t}-u_{t}\right)+v_{t} \\
& =\beta_{1}+\beta_{2} x_{t}+\left(\underline{r}_{t}-\beta_{2} u_{t}\right) \\
& =\beta_{1}+\beta_{2} \frac{x_{t}}{\varepsilon_{t}}
\end{aligned}
$$

So Clearly $\operatorname{Cov}\left(x_{t}, \varepsilon_{t}\right) \neq 0$! A3R sin is violated!

$$
\operatorname{plim}_{T \rightarrow \infty} \hat{\beta} \neq \beta \text { (use } \mathbb{N} ? \text {) }
$$

Question 3

Q1. GAUSSIAN CASE
RAGUR: $y_{i}=x_{i}^{\prime} \beta+\varepsilon_{i}$ for $i=1,1,1, N$
where $\varepsilon_{i} \mid \times \stackrel{I D}{ } N(0, v)$ with $0<v<\infty$ known; $\operatorname{dim}\left\{x_{i}\right\}=k$; $x:=\left[\begin{array}{c}x_{1}^{\prime} \\ \vdots \\ x_{N}^{\prime}\end{array}\right]$ is an $N \times k$ mamix s.t. $\operatorname{rank}\{x\}=k$;
Find $\hat{\beta}_{G_{\text {MLE }}}$ and $X I$
Vassius: A1, A_{2}, A3Rfj, A4GM, ASN
(a)

$$
\begin{align*}
\mathcal{L}\left(\beta ; y_{1} x\right) & =\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi r}} \exp \left[-\frac{1}{2 v}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}\right] \\
& =(2 \pi)^{-N / 2} v^{-N / 2} \exp \left[-\frac{1}{2 v} \sum_{i=1}^{N}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}\right] . \\
L\left(\beta_{i} y_{1} x\right) & =G-\frac{1}{2 v} \sum_{i=1}^{N}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}, \text { for some constart } G . \\
s\left(\beta ; y_{1} x\right) & =\frac{1}{v} \sum_{i=1}^{N} x_{i}\left(y_{i}-x_{i}^{\prime} \beta\right)
\end{align*}
$$

Define $\hat{\beta}_{G, \text { MLE }}$ s.t. $\&\left(\hat{\beta}_{G, \text { MLE }} ; y_{x} x\right)=0$
That is, $\sum_{i=1}^{N} x_{i} y_{i}=\sum_{i=1}^{N} x_{i} x_{i}^{\prime} \hat{\beta}_{G, M L E}$

$$
\therefore \hat{\beta}_{G, M L E}=\left(\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right)^{-1} \sum_{i=1}^{N} x_{i} y_{i}
$$

APPENDIX A: SOC
Typically, your have to also check the fol. Question doesn't require it apparently but I feel you should see it \geqslant once and at least for the Gaussian case:

$$
\frac{\partial d}{\partial \beta}\left(\beta_{i} y_{i} x\right)=-\frac{1}{v} \sum_{i=1}^{N} x_{i} x_{i}^{\prime}
$$

Given $0<v<\infty$ and $\operatorname{rank}\{x\}=k, \lambda_{1}\left\{-\frac{1}{v} \sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right\}<0$ for any β, where $\lambda_{1}\{ \}$ represents the largest eigenvalue; this confirms that $\mathcal{L}\left(\tilde{\beta}_{G}, M \in ; y, x\right)=\operatorname{Max}_{\beta} \mathcal{L}(\beta ; y, x)$ for any β in the parameter space.
(b) Define $S(\beta ; y, x)=\sum_{i=1}^{N}\left(y_{i}-x_{i}(\beta)^{2}\right.$

$$
\text { Then, } \begin{aligned}
\hat{\beta}_{\text {oLs }} & =\arg \min _{\beta} S\left(\beta_{i} y_{1} x\right)=\ldots=\left(\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right) \sum_{i=1}^{-1} x_{i} y_{i} \\
& =\hat{\beta}_{\text {f.MLE }}
\end{aligned}
$$

Since we have (a) $A 1: \operatorname{ran} K\{x\}=K$;
(b) A2: $y=x_{i}^{\prime} \beta+\varepsilon_{i}$ with $E\left(\varepsilon_{i}\right)=0, i=1, \ldots, N_{i}$
(c) ABRfi: $x \Perp \varepsilon$;
(d) AlGM: $E\left[\varepsilon \varepsilon^{\prime} \mid x\right]=v I_{N}$;
the G/M theorem tells us that $\hat{\beta}_{6, M L E}=\hat{\beta}_{\text {ors }}$ is the BLME for β. Indeed, since (e) $A S N: q \mid X \sim N\left(O, V I_{N}\right)$ hodds, $\hat{\beta}_{G M L E}$ is in fact the BUE

Q1. LoGistic Case - part (a)
Now assume instead that ri $\times \stackrel{\text { "II }}{\sim} \log \operatorname{sisic}(0, v)$. Find $\hat{\beta}_{L \text { LE }}$

$$
\begin{aligned}
\mathcal{L}(\beta ; y, x) & =\prod_{i=1}^{N} \exp \left(-\frac{1}{v}\left(y_{i}-x_{i}^{\prime} \beta\right)\right) / v\left(1+\exp \left(-\frac{1}{v}\left(y_{i}-x_{i}^{\prime} \beta\right)\right)\right)^{2} \\
l\left(\beta ; y_{1} x\right) & =\sum_{i=1}^{N}\left[-\frac{1}{v}\left(y_{i} x_{i}^{\prime} \beta\right)-\log (v)-2 \log \left(1+\exp \left(-\frac{1}{v}\left(y_{i}-x_{i}^{\prime} \beta\right)\right)\right)\right] \\
s\left(\beta ; y_{1} x\right) & =\sum_{i=1}^{N}\left[\frac{1}{v} x_{i}-\frac{2\left[\exp \left(-\frac{1}{v}\left(y_{i}-x_{i}^{\prime} \beta\right)\right)\right]}{\left[1+\exp \left(-\frac{1}{v}\left(y_{i}-x_{i}^{\prime} \beta\right)\right)\right]} \frac{1}{v} x_{i}\right] \\
& =\frac{1}{v} \sum_{i=1}^{N} x_{i}\left[1-2 \frac{\exp \left[-\frac{1}{v}\left(y_{i}-x_{i}^{\prime} \beta\right)\right]}{\left[1+\exp \left[-\frac{1}{v}\left(y_{i}-x_{i}^{\prime} \beta\right)\right]\right]}\right]
\end{aligned}
$$

(Sols not necessary; would have to use quotient rule, I guess.)

We define $\hat{\beta}_{L, M L E}$ st. \& $\left(\hat{\beta}_{L, M L E}^{\prime} ; y, X\right)=0$.

Recall the Aystens of equatias in (1) and (2):
(1) is a कystou of k LINEAR equations in K unkrounl.
(2) - 11 - NONLINEAR - 11 \qquad
For this reason, no closed-form tolutian for $\hat{\beta}_{\text {puLE }}$ exists. The solution must
be obtained numerically.

This is what "iterative solution on a computer" is referring to in the official solution. For a concrete exauple, see Appendix B.

APPENDIX B: Newton/Raphson Procedure
For example, ore could use the Newtor-Raphem method as follows: let $K=1$ to that β is a tecalar. Let $\tilde{\beta}$ denote our best guess of $\hat{\beta}_{2, \text { me e }}$ (or just β). - We approximate $s\left(\hat{\beta}_{\text {ins }} i_{1} x\right)$ using a $1^{3^{t}}$ adder Taylor expansion:

Set $s\left(\hat{\beta}_{L M L E} ; y_{X}\right) \simeq x(\tilde{\beta} ; y, x)+x^{\prime}\left(\tilde{\beta}_{i}, y, x\right)\left(\hat{\beta}_{L, M L E}-\tilde{\beta}\right)=0$

$$
\Rightarrow \hat{\beta}_{L_{M L E}}=\tilde{\beta}^{\prime}-⿻\left(\begin{array}{c}
\tilde{\beta} \\
i y, x) \\
s^{\prime}(\tilde{\beta} ; y, x)
\end{array}\right.
$$

So an iterative procedure may be devised as follows:

- Start with initial guess $\tilde{\beta}_{0}$.
- Obtain $\tilde{\beta}_{1}=\tilde{\beta}_{0}-s\left(\tilde{\beta}_{0} ; y_{1} x\right) / s^{\prime}\left(\tilde{\beta}_{0} ; y, x\right)$
- Repeat for $\tilde{\beta}_{J+1}=\tilde{\beta}_{J}-s\left(\tilde{\beta}_{J} ; y_{1}, x\right) / s^{\prime}\left(\tilde{\beta}_{J} ; y_{1} x\right)$
for $J=1,2, \ldots$,
until Convergence.
(ais is the simplest wnerical procedure. These are many others but unfortunately I'M not an expert on these.)
part (b) See Vacstic's solution

APPENDIX C: TYPICAL USE FOR LOGSTIC CDFs
(1) Say $y_{i}^{*}=x_{i}^{\prime} \beta+\varepsilon$ for $i=1, \ldots, N$ s.t.

- latent $y_{i}:=\left\{\begin{array}{ll}1, & y_{i}^{*} \geqslant 0 \\ 0, & 0 / \omega\end{array}\right.$, where $\varepsilon_{i} \sim f_{i}(i) \forall i$.
(11) Clearly, $y_{i}=1 \Leftrightarrow y_{i}^{*} \geqslant 0 \Leftrightarrow \varepsilon_{i} \geqslant-x_{i}^{\prime} \beta$.
(IIi) Assuming $f_{i}(\cdot)$ is symmetric, $P\left(\varepsilon_{i} \geqslant-x_{i}^{\prime} \beta\right)=P\left(\varepsilon_{i} \leq x_{i}^{\prime} \beta\right)=F_{\varepsilon_{i}}\left(x_{i}^{\prime} \beta\right)$.
(iv) Assume

$$
f_{\Sigma_{i}}(u)=\exp [-u \mid v] / v[1+\exp [-u \mid v]]^{2}, u \in \mathbb{R}
$$

$$
\Rightarrow F_{\varepsilon_{i}}(u)=(1+\exp [-u \mid v])^{-1}, u \in \mathbb{R}
$$

That's pretty much it. Now were in business because...
$y_{i} \stackrel{\text { " }}{ }{ }^{\text {P }}$ Bernoulli: $\left(F_{\varepsilon_{i}}\left(x_{i}^{\prime}(\beta)\right)\right.$ for $i=I_{1, \ldots, N}$.
So...

$$
\mathcal{L}\left(\beta_{i} y_{1} x\right)=\prod_{i=1}^{N} F_{z_{i}}\left(x_{i}^{\prime} \beta\right)\left[1-F_{\varepsilon_{i}}\left(x_{i} \mid \beta\right)\right]^{1-y_{i}}
$$

