FC402 (2023124)
Ragur's Speakng Noifs For Cass
\qquad
Vassihs is b (Wk 7, AT)
(Qi) $y=x \beta+\varepsilon$ where $\left(x^{\prime} x\right)=\left[\begin{array}{cc}x_{1}^{\prime} x_{1} & x_{1}^{\prime} x_{2} \\ x_{2}^{\prime} x_{1} & x_{2}^{\prime} x_{2}\end{array}\right]$ i $\begin{aligned} & N=11 \\ & k=2\end{aligned}$
Further $\varepsilon \mid x \sim N\left(0, \sigma^{2} I_{N}\right)$
(a) We want a $100(1-\alpha)^{2}$ 2. ?.I. for $\left\{\begin{array}{lll}y_{12} & \text { where } \alpha=0.2 & \& \\ y_{13} & \ldots & x_{12}^{\prime}=(5,-2) \\ x_{13}^{\prime}=(3,-7)\end{array}\right.$

- We have $\left(x^{\prime} x\right)=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ and $x^{\prime} y=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
-So $\left(x^{\prime} x\right)^{-1}=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right] \frac{1}{3}$ and $\hat{\beta}:=\left(x^{\prime} x\right)^{-1} x^{\prime} y=\left[\begin{array}{cc}213 & -113 \\ -113 & 213\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}113 \\ 113\end{array}\right]$
Thus, $\left[\begin{array}{l}\hat{y}_{12} \\ \hat{y}_{13}\end{array}\right]=\left[\begin{array}{cc}5 & -2 \\ 3 & -7\end{array}\right]\left[\begin{array}{l}1 / 3 \\ 113\end{array}\right]=\left[\begin{array}{c}1 \\ -4 / 3\end{array}\right]$
- let's consider the RVs:

$$
\left(\hat{y}_{12}-y_{12}\right) / \operatorname{Var}_{1 / 2}^{1 /}\left(\hat{y}_{12}-y_{12} \mid x\right) \&\left(\hat{y}_{13}-y_{13}\right) / \operatorname{Var}_{\text {ar }}^{1 / 2}\left(\hat{y}_{13}-y_{13} \mid x\right)
$$

Both of these are conditionally $N(0,1)$ under $A 1, A 2, A 3 \& f$, A4CMMid, $A 5 N$.

- Of course, we don know the denominators since σ^{2} is unknown so we need to use
$\left(\hat{y}_{12}-y_{12}\right) / \operatorname{Var}^{12}\left(\hat{y}_{12}-y_{12} \mid x\right) \&\left(\hat{y}_{13}-y_{13}\right) / \operatorname{Var}^{1 / 2}\left(\hat{y}_{13}-y_{13} \mid x\right)$, which are conditionally $t_{11-2=9}$, as our pivotal functions instead.
- So what is $\operatorname{var}\left(\hat{y}_{12}-y_{12} \mid x\right)$?

$$
\begin{aligned}
\operatorname{var}\left(\hat{y}_{12}-y_{12} \mid x\right) & =\operatorname{var}\left(x_{12}^{\prime} \hat{\beta}-x_{12}^{\prime} \beta-\varepsilon_{12} \mid x\right)=\operatorname{var}\left(x_{12}^{\prime}(\hat{\beta}-\beta)-\varepsilon_{12} \mid x\right) \\
& =x_{12}^{\prime} \operatorname{Var}(\hat{\beta}-\beta \mid x) x_{12}+\operatorname{var}\left(\varepsilon_{12} \mid x\right) \\
& =x_{12}^{\prime} \sigma^{2}\left(x^{\prime} x\right)^{-1} x_{12}+\sigma^{2} .
\end{aligned}
$$

$$
\therefore \operatorname{var}^{\wedge}\left(\hat{y}_{12}-y_{12} \mid x\right)=\left[1+x_{12}^{\prime}\left(x^{\prime} x\right)^{-1} x_{12}\right] \hat{\sigma}^{1}
$$

and we use an analogous expression for \hat{y}_{13}.
All that remains is to compute $\hat{\sigma}_{2}$:

$$
\left.\begin{array}{rl}
(N-k) \hat{\sigma}^{2} & =\hat{q}^{1} \hat{\varepsilon} \stackrel{A p o d i x}{ } A \\
= & y^{\prime} y-\hat{\beta}^{\prime} x^{\prime} x \hat{\beta}=\frac{4}{3}-[1 / 3 \\
1 / 3
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
113 \\
1 / 3
\end{array}\right]=\frac{2}{3} \text {, } 0
$$

Then, we can compute var $\left(\hat{y}_{12}-y_{12} \mid x\right)=\left\{1+\left[\begin{array}{cc}5 & -2\end{array}\right]\left[\begin{array}{cc}2 / 3 & -113 \\ -1 / 3 & 2 / 3\end{array}\right]\left[\begin{array}{c}5 \\ -2\end{array}\right]\right\} \frac{2}{27}$

$$
=(2 / 27)[1+26]=2 .
$$

Given our pivotal functions, and with $\alpha=0.2$, we know that

$$
P\left(t_{q, \alpha / 2}=-1.383<\binom{\hat{y}_{12}-y_{12}}{\operatorname{var}^{112}\left(\hat{y}_{12}-y_{12} \mid x\right)}<t_{q, 1-\frac{\alpha}{2}}=1.383\right)=1-\alpha .
$$

Indeed, $P\left(1-\sqrt{2} 1.383<y_{12}<1+\sqrt{2}(1.383)\right)=0.8$ So, ar 80\% R.I. for y_{12} is $1 \pm \sqrt{2} 1.383$.
Analogously, an 80\% R.I. for y_{13} is...
[Try this one yourself.]
(b) Now we reed a $100(1-x) 20$ P.I. for $m_{12}:=E\left[y_{12} \mid x\right]$ and

$$
m_{13}=E\left[y_{13} \mid x\right] .
$$

The appropriate pivotal functions would be

$$
\left(\hat{y}_{12}-M_{12}\right) / \hat{\operatorname{var}}^{1}\left(\hat{y}_{12}-M_{12} \mid x\right) \&\left(\hat{y}_{13}-M_{13}\right) / \operatorname{var}^{A} r^{1 / 2}\left(\hat{y}_{13}-M_{13} \mid x\right) \sim t_{q}
$$

As before, let's work out vars $\left(y_{12}-m_{12} \mid x\right)$.

$$
\begin{aligned}
\operatorname{var}\left(\hat{y}_{12}^{\prime}-m_{12} \mid x\right) & =\operatorname{var}\left(x_{12}^{\prime}(\hat{\beta}-\beta) \mid x\right)=x_{12}^{\prime} \operatorname{var}(\hat{\beta} \mid x) x_{12} \\
& =x_{12}^{\prime} \sigma^{2}\left(x^{\prime} x\right)^{-1} x_{12} . \\
\therefore \operatorname{var}^{1 / 2}\left(\hat{y}_{12}-m_{12} \mid x\right) & =\hat{\sigma}^{2}\left[x_{12}^{\prime}\left(x^{\prime} x\right)^{-1} x_{12}\right] .
\end{aligned}
$$

Plugging the given numbers in,

$$
\operatorname{var}^{112}\left(\hat{y}_{12}-m_{12} \mid x\right)=\left\{\left.(2 / 27)^{26}\right|^{11 / 2}=\sqrt{1.926}\right.
$$

Then, an 802 P.I. for M_{12} is $1 \pm \sqrt{1.926} 1.383$ Analogously, an 802 P.I. for M_{13} is...
[Try this one yourself.]
(c) The 8020 P. Is for y_{12} and y_{13} are necessarily wider than those for M_{12} and M_{13} since the former also account for prediction error variance due to ε_{12} and ε_{13} respectively.
COMPARE GNDITINAL VARIANCE EXPRESSIONS HERE, PLEASE:

APPEndix A: Small Common Question
"Fagulf, why is $\hat{\varepsilon}^{\prime \prime} \hat{\varepsilon}=y^{\prime} y-\hat{\beta}^{\prime} x^{\prime} x \hat{\beta}$?"
Method 1 :

$$
\begin{aligned}
& \hat{\varepsilon}^{\prime} \hat{\varepsilon}=(y-x \hat{\beta})^{\prime}(y-x \hat{\beta})=y^{\prime} y-y^{\prime} x \hat{\beta}-\hat{\beta}^{\prime} x^{\prime} y+\hat{\beta}^{\prime} x^{\prime} x \hat{\beta} \\
&=y^{\prime} y-\hat{\beta}^{\prime} x^{\prime} x^{\hat{\beta}}-\hat{\beta}^{\prime}\left(x^{\prime} x\right) \hat{\beta}+\hat{\beta}^{\prime} x^{\prime} x \hat{\beta} \\
&=y^{\prime} y-\hat{\beta}^{\prime} x^{\prime} x \hat{\beta} \\
& \text { since } \hat{\beta}^{\prime} x^{\prime} y=\hat{\beta}^{\prime}\left(x^{\prime} x\right)\left(x^{\prime-1} x^{\prime} x^{\prime} y=\hat{\beta}^{\prime}\left(x^{\prime} x\right) \hat{\beta} .\right.
\end{aligned}
$$

Method 2:

$$
\begin{gathered}
y^{\prime} y=\left(\hat{y}^{2}+\hat{\varepsilon}\right)^{\prime}(\hat{y}+\hat{\varepsilon})=\hat{y}^{\prime} \hat{y}+\hat{\varepsilon} \hat{y}+\hat{y}^{\prime} \hat{\varepsilon}+\hat{\varepsilon}^{\prime} \hat{\varepsilon} \\
\text { Since } \hat{y}^{\prime} \hat{\varepsilon}=\hat{\varepsilon}^{\prime} \hat{y}=\left(M_{x}\right)^{\prime} \times \hat{\beta}=\varepsilon^{\prime} M_{x} x \hat{\beta} \\
=0 \text { it follows that } \\
\hat{\varepsilon}^{\prime} \hat{\varepsilon}=y^{\prime} y-y^{\prime} \hat{y}=y^{\prime} y-\hat{\beta}^{\prime} x^{\prime} \times \hat{\beta} .
\end{gathered}
$$

(Q2) Say $y_{t}=\beta_{1}+\beta_{2} x_{t}+\varepsilon_{t}$ for $t=1, T$; where $\varepsilon \stackrel{i \prime \prime}{\sim} N\left(O_{1} 0^{2}\right)$. Assume $A 3 F$.
(a) Construct a $100(1-\alpha) Z_{0}$ C.I. for β_{2} given $\alpha \in(0,1)$.

Recall (from PSQ Q3) that the $(22)^{\text {th }}$ element of 2×2 matrix $\sigma^{2}\left(x^{\prime} x\right)^{-1}$ is $\sigma^{2} T\left[T \sum_{t=1}^{T} x_{t}^{2}-\left(\sum_{t=1}^{T} x_{t}\right)^{2}\right]=: \operatorname{Var}\left(\hat{\beta}_{2}\right)$,
where $\hat{\beta}_{2}$ refers to the usual OLS estimator for β_{2}.
Note: If you cannot recall if then that's ok purtplease in that case try to develop the ability to work out $\operatorname{Var}\left(\hat{\beta}_{2}\right)$ exactly as per PS 2 Q33).

$$
\begin{aligned}
& \text { Since } T \sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}=T \sum_{t=1}^{T}\left(x_{t}^{2}-2 x_{t} \bar{x}+\bar{x}^{2}\right)=T \sum_{t=1}^{T} x_{t}^{2}-T^{2} \bar{x}^{2} \\
&=T \sum_{t=1}^{T} x_{t}^{2}-\left(\sum_{t=1}^{\bar{x}} x_{t}\right)^{2} \text {, we obtain that } \\
& \operatorname{Var}\left(\hat{\beta}_{2}\right)=\sigma^{2}\left(\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}\right)^{-1}
\end{aligned}
$$

- It follows given the model specification that the function

$$
\left.\sigma^{2}\left(\hat{\beta}_{t=1}^{T}-\beta_{2} x_{t}-\bar{x}\right)^{2}\right)^{-1} \quad N N(0,1)
$$

would be pivotal for β_{2} if s^{2} were known.

- However, since σ_{ε}^{2} is unknown, we use instead

$$
\left.Q(\beta, x, y):=\frac{\hat{\beta}_{2}-\beta_{2}}{\hat{\sigma}^{2}\left(\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}\right.}\right)^{-1} \sim t_{T-2}
$$

as on f pivotal quantity, where $\sigma^{\lambda_{2}}:=(T-2)^{-1} \sum_{t=1}^{T} \hat{\Sigma}_{t}^{2}$.

- Given the above, we can always find $q_{1}, q_{2} \in \mathbb{R}$
s.t. $P\left(q_{1} \leq Q(\beta, x, y) \leq q_{2}\right)=1-k$.
- Indeed, suppose $q_{2}=t_{T, L, 1-\alpha / 2}$ and (by symmetry) $q_{1}=-t_{T-2,1-\alpha / 2}$.
- Let us also define $\operatorname{var}\left(\hat{\beta}_{2}\right):=\hat{\sigma}^{2}\left(\sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}\right)^{-1}$ for convenience.
-Then, $\left.1-\alpha=?\left(-t_{T-2,1-\alpha / 2} \leqslant Q\left(p_{1}, x_{1}\right)\right) \leqslant t_{T-2,1-\alpha / 2}\right)$

$$
\begin{aligned}
& \quad=P\left(-t_{T-2,1-\alpha / 2} \leqslant \frac{\hat{\beta}_{2}-\beta_{2}}{\operatorname{Var}(\hat{\beta})} \leq t_{T-2,1-\alpha / 2}\right) \\
& =P\left(-\hat{\beta}_{2}-t_{T-2,1-\alpha / 2} \operatorname{Var}(\hat{\beta}) \leq-\beta_{2} \leq-\hat{\beta}_{2}+t_{T-2,1-\alpha / 2} \operatorname{Var}\left(\hat{\beta}_{2}\right)\right) \\
& =P\left(\hat{\beta}_{2}-t_{T-2,1-\frac{\alpha}{2}} \operatorname{Var}\left(\hat{\beta}_{2}\right) \leq \beta_{2} \leq \hat{\beta}_{2}+t_{T-2,1-\alpha / 2} \operatorname{Var}(\hat{\beta})\right)
\end{aligned}
$$

serves as a basis to define a $100(1-\alpha) z_{0}$ C.I f_{0}, β_{2} given by

$$
\left[\hat{\beta}_{2}-t_{T-2,1-\frac{\alpha}{2}} \operatorname{Var}\left(\hat{\beta}_{2}\right), \hat{\beta}_{2}+t_{T-2,1-\frac{\alpha}{2}} \operatorname{Var}\left(\hat{\beta}_{2}\right)\right]
$$

(b) Show that the two-tailed test of the hypothesis $\beta_{2}=0$ at significance level α will fail to reject if and only if zero lies inside the $(1-\alpha)$ confidence interval for β_{2}.

- A test of the hypotheses $H_{0}: \beta_{2}=0$ versus $H_{1}: \beta_{2} \neq 0$ at the $100 \alpha^{\circ} l^{\circ}$ significance level, undes the given modelling assumptions, would be designed (using your TA's favourite recipe) as per the next slide.
- Once we see how the decision rule is defined, we Can analyse how to use the C.I. fou part (a) to Conduct the exact same test.
(b) Hypotheses: $H_{0}: \beta_{2}=0$

$$
A_{1}: \beta_{2} \neq 0
$$

Test Statistic: $V=\hat{\beta}_{2} / \sqrt{\lambda_{\sigma} \sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}$
Distribution of V under $H_{0}: V \sim t_{T-2}$
Significance level : α
Critical value: $V_{\text {Crit, }} \left\lvert\,-\frac{\alpha}{2}=t_{T-2, l-\frac{\alpha}{2}}\right.$
Decision rule: Reject H_{0} of $|V|>V_{\text {crit }} 1-\frac{\alpha}{2}$
That is Reject H_{0} iff $\left|\hat{\beta}_{2} / \sqrt{\hat{\sigma}^{2} \mid \sum_{t=1}^{T}\left(x_{E}-\bar{x}\right)^{2}}\right| \geqslant t_{T-2,1-\frac{\alpha}{2}}$
ie. $-t_{T-2,1-\frac{k}{2}}<\frac{\hat{\beta}_{2}-0}{\sqrt{\hat{\sigma}^{2} \sum_{t=1}^{T}(x-\bar{x})^{2}}}<t_{T-2,1-\frac{\alpha}{2}} \Leftrightarrow$ we fail-to-reject H_{0}
or indeed if the interval $\hat{\beta}_{2} \pm t_{T-2,1-\frac{k}{2}} \sqrt{\hat{\sigma}^{2} \sum_{t=1}^{T}\left(x_{t}-\bar{x}\right)^{2}}$ contains O, we fril.to. reject $H_{0}\binom{$ and vice }{ versa } , \ldots but this is exactly the $100(1-\alpha) 2_{0}$ C.I. for β_{2} (as derived in part (a))!

Question 3

Notes on Delta method.
let $y=x \beta+\varepsilon$ where $\underset{N \times k}{x}=\left[x_{1} x_{2} \ldots x_{k}\right]$ and $\hat{\beta}=\left(x^{\prime-1}\right)^{-1} x^{\prime} y$ Let's assume: $A 1, A_{2}, A 3 R$ sin,$A 4 G M$.
Non-Linear restrictions recap:
let $g(\beta) \in \mathbb{R}^{r}$ be a set of r non-linear and cantinonsly differentiable functions of $\beta \in \mathbb{R}^{k}$. Say we wish to lest

$$
\begin{aligned}
& H_{0}: g(\beta)=0 \\
& H_{1}: g(\beta) \neq 0
\end{aligned}
$$

- Using the Was PRiwapls of testing based on $\hat{\beta}:=\left(x^{\prime} x^{-1}\right)^{\prime} x^{\prime} y$ (ie. from the unrestricted model), we would ideally wish to construct a statistic of the form:

$$
[g(\hat{\beta})]^{\prime}[\operatorname{Vas}(g(\hat{\beta}))]^{-1}[g(\hat{\beta})]
$$

as the non-linear analogue to the usual $\left.(R \hat{\beta}-q)^{\prime}\left[R \operatorname{Var}(\hat{\beta}) R^{\prime}\right]^{-1}(R \hat{\beta}-q)\right)^{\text {approx. }} X_{r}^{2}$ statistic $a s$ in the case of r linear restrictions contained in the matrix R.

The problem is that we need $\hat{\operatorname{var}}(g(\hat{\beta}))$ where $g($ () is a NoN-LINEAR function. (i.e. you cart just" pull out" the "R" happily" with a square"!)

- We use the result (from the "delta method") that:

For "large" N (under $A 1, A 2, A 3 R$ sse, $A 4 G M)$,

- We can proceed then with test statistic V :

$$
\begin{aligned}
& \text { weed then with test statistic } V: \\
& V:=g(\hat{\beta})\left[\left[\partial g(\hat{\beta}) \mid \hat{p}^{\prime}\right]\left[\frac{2}{\sigma}\left(x^{\prime} x\right)^{-1}\right]\left[\partial g(\hat{\beta}) / \partial \hat{\beta^{\prime}}\right]^{\prime}\right]^{-1} g(\hat{\beta})
\end{aligned}
$$

Under $H_{0}: g(\beta)=0, V \stackrel{\text { approx. }}{ } X_{r}^{2}$ for "large" $N($ assuming $A 1, A 2, A 3 R \sin , A 4 G M)$.

- For of, we hale hyparficlar:

