Sequential Changepoint Detection in Factor Models for Time Series

Ragvir Sabharwal

London School of Economics (LSE)

1 February 2016

Sequential Changepoint Detection in Factor Models for Time Series

London School of Economics (LSE)

I. Summary

Sequential Changepoint Detection in Factor Models for Time Series

London School of Economics (LSE)

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Research Question

(1) How to Detect Changepoints in FMs

- Structural instabilities in factor models for time series:
- 1. Changes in Loadings (Λ); and/or
- 2. Changes in Number of Factors (r).

(2) ... ON A REAL-TIME BASIS?

- Unique? Existing literature only addresses offline setting.
- ▶ Necessary? Important for applications such as "Nowcasting".

(1) NEW SEQUENTIAL CHANGEPOINT ESTIMATOR

I propose to monitor the value of an eigenvalue ratio

$$\delta_{r+1}(\tau_s, \tau_e) = \frac{\mu_{r+1}^{\mathsf{x}}(\tau_s, \tau_e)}{\mu_{r+1}^{\mathsf{x}}(\tau_s - 1, \tau_e - 1)}$$

using observations within a rolling window over time, and

(1) NEW SEQUENTIAL CHANGEPOINT ESTIMATOR

I propose to monitor the value of an eigenvalue ratio

$$\delta_{r+1}(\tau_s, \tau_e) = \frac{\mu_{r+1}^{\mathsf{x}}(\tau_s, \tau_e)}{\mu_{r+1}^{\mathsf{x}}(\tau_s - 1, \tau_e - 1)}$$

using observations within a rolling window over time, and

• declare a changepoint when it breaches some threshold (H).

(1) NEW SEQUENTIAL CHANGEPOINT ESTIMATOR

I propose to monitor the value of an eigenvalue ratio

$$\delta_{r+1}(\tau_s, \tau_e) = \frac{\mu_{r+1}^{\mathsf{x}}(\tau_s, \tau_e)}{\mu_{r+1}^{\mathsf{x}}(\tau_s - 1, \tau_e - 1)}$$

using observations within a rolling window over time, and

- declare a changepoint when it breaches some threshold (H).
- ▶ So, with window of fixed length (z), my estimator is of type

$$\inf\{\tau_e > z : \delta_{r+1}(\tau_e - z + 1, \tau_e) \ge H\} - 1$$

(2) Theoretical Justification $(N \to \infty)$

In Theorem 3.1, I prove that my eigenvalue ratio exhibits distinctive (spiking) behaviour exactly at the changepoint.

(2) Theoretical Justification $(N \to \infty)$

- In Theorem 3.1, I prove that my eigenvalue ratio exhibits distinctive (spiking) behaviour exactly at the changepoint.
- What's the intuition?

Switch in asymptotic behaviour of $(r + 1)^{th}$ eigenvalue:

(2) Theoretical Justification $(N \to \infty)$

- In Theorem 3.1, I prove that my eigenvalue ratio exhibits distinctive (spiking) behaviour exactly at the changepoint.
- What's the intuition?

Switch in asymptotic behaviour of $(r + 1)^{th}$ eigenvalue:

Pre- κ : the $(r + 1)^{th}$ eigenvalue remains bounded for all N;

(2) Theoretical Justification $(N \to \infty)$

- In Theorem 3.1, I prove that my eigenvalue ratio exhibits distinctive (spiking) behaviour exactly at the changepoint.
- What's the intuition?

Switch in asymptotic behaviour of $(r + 1)^{th}$ eigenvalue:

Pre- κ : the $(r + 1)^{th}$ eigenvalue remains bounded for all *N*;

Post- κ : the $(r + 1)^{th}$ eigenvalue diverges to infinity with *N*.

(2) Theoretical Justification $(N \to \infty)$

- In Theorem 3.1, I prove that my eigenvalue ratio exhibits distinctive (spiking) behaviour exactly at the changepoint.
- What's the intuition?

Switch in asymptotic behaviour of $(r + 1)^{th}$ eigenvalue:

Pre- κ : the $(r + 1)^{th}$ eigenvalue remains bounded for all *N*;

Post- κ : the $(r + 1)^{th}$ eigenvalue diverges to infinity with *N*.

Ratio comparing successive values of this eigenvalue over time should spike at the changepoint and remain stable otherwise.

• • = • • = • =

(3) Full Detection Procedure

In Theorem 3.2, I prove that my eigenvalue ratio can be consistently estimated from sample data (as T → ∞).

(3) Full Detection Procedure

- In Theorem 3.2, I prove that my eigenvalue ratio can be consistently estimated from sample data (as T → ∞).
- What else?

Rolling and expanding window methodologies;

(3) Full Detection Procedure

- In Theorem 3.2, I prove that my eigenvalue ratio can be consistently estimated from sample data (as T → ∞).
- What else?

Rolling and expanding window methodologies;

Block-bootstrap procedure to obtain alarm thresholds;

(3) FULL DETECTION PROCEDURE

- In Theorem 3.2, I prove that my eigenvalue ratio can be consistently estimated from sample data (as T → ∞).
- What else?

Rolling and expanding window methodologies;

Block-bootstrap procedure to obtain alarm thresholds;

Simulations; Application to FTSE100 data (detect Brexit);

くほし くほし くほし

(3) Full Detection Procedure

- In Theorem 3.2, I prove that my eigenvalue ratio can be consistently estimated from sample data (as T → ∞).
- What else?

Rolling and expanding window methodologies;

Block-bootstrap procedure to obtain alarm thresholds;

Simulations; Application to FTSE100 data (detect Brexit);

Extension to emerging and disappearing factors.

・ 同 ト ・ ヨ ト ・ ヨ ト

Merits of Proposed Procedure

- Simple idea which works well in practice
 - ...in fact, with no detection delay in FTSE100 data example;
- Allows us to detect different break types
 - ...and distinguish among break types;
- Builds on standard modelling framework from the literature;
- Quick to implement.

II. Structural Instability

Sequential Changepoint Detection in Factor Models for Time Series

< E London School of Economics (LSE)

▶ ∢ ≣

A FM with breaks in the loadings has a representation as a FM with constant loadings but a larger set of factors.

- ∢ ≣ ▶

- A FM with breaks in the loadings has a representation as a FM with constant loadings but a larger set of factors.
- Consider a one-factor model with a structural break.

$$\mathbf{x_t} = egin{cases} \lambda_{1} f_t + \mathbf{e_t}, t \leq \kappa \ \lambda_{2} f_t + \mathbf{e_t}, t > \kappa \end{cases}$$

- A FM with breaks in the loadings has a representation as a FM with constant loadings but a larger set of factors.
- Consider a one-factor model with a structural break.

$$\mathbf{x}_{\mathbf{t}} = egin{cases} \lambda_{\mathbf{1}} f_t + \mathbf{e}_{\mathbf{t}}, t \leq \kappa \ \lambda_{\mathbf{2}} f_t + \mathbf{e}_{\mathbf{t}}, t > \kappa \end{cases}$$

$$\blacktriangleright \text{ Define } g_{1t} = \begin{cases} f_t, t \leq \kappa \\ 0, t > \kappa \end{cases} \text{ and } g_{2t} = \begin{cases} 0, t \leq \kappa \\ f_t, t > \kappa \end{cases}$$

- A FM with breaks in the loadings has a representation as a FM with constant loadings but a larger set of factors.
- Consider a one-factor model with a structural break.

$$\mathbf{x}_{\mathbf{t}} = \begin{cases} \lambda_{\mathbf{1}} f_t + \mathbf{e}_{\mathbf{t}}, t \leq \kappa \\ \lambda_{\mathbf{2}} f_t + \mathbf{e}_{\mathbf{t}}, t > \kappa \end{cases}$$

$$\blacktriangleright \text{ Define } g_{1t} = \begin{cases} f_t, t \leq \kappa \\ 0, t > \kappa \end{cases} \text{ and } g_{2t} = \begin{cases} 0, t \leq \kappa \\ f_t, t > \kappa \end{cases}$$

• $\mathbf{x}_{\mathbf{t}} = \lambda_{\mathbf{1}}g_{\mathbf{1}t} + \lambda_{\mathbf{2}}g_{\mathbf{2}t} + \mathbf{e}_{\mathbf{t}}$, an equivalent stable model.

・ 同 ト ・ ヨ ト ・ ヨ ト

Asymptotic Behaviour of Eigenvalues $(N \rightarrow \infty)$

• Effectively, we have a piece-wise stationary setup.

Sequential Changepoint Detection in Factor Models for Time Series

- E

Asymptotic Behaviour of Eigenvalues $(N \rightarrow \infty)$

- Effectively, we have a piece-wise stationary setup.
- We begin by examining the covariance structure of \mathbf{x}_t

$$\Sigma^{\mathsf{x}}(\tau_s, \tau_e) = rac{1}{ au_e - au_s + 1} \sum_{t= au_s}^{ au_e} E[\mathsf{x}_t \mathsf{x}_t']$$

within a (potentially moving) window of time points.

Asymptotic Behaviour of Eigenvalues $(N \rightarrow \infty)$

- Effectively, we have a piece-wise stationary setup.
- \blacktriangleright We begin by examining the covariance structure of x_t

$$\Sigma^{\mathsf{x}}(\tau_{s},\tau_{e}) = \frac{1}{\tau_{e}-\tau_{s}+1}\sum_{t=\tau_{s}}^{\tau_{e}} E[\mathsf{x}_{t}\mathsf{x}_{t}']$$

within a (potentially moving) window of time points.

Lemma 3.1 - Behaviour of eigenvalues of Common part;
 Lemma 3.2 - Behaviour of eigenvalues of Idiosyncratic part;
 Lemma 3.3 - Behaviour of eigenvalues of Σ^x(τ_s, τ_e).

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma 3.3 - Eigenvalue Behaviour under Instability

For any N∈ N, there exist constants M₄, M₄, M₅, M₅ s.t.
(i) 0 < M₄ ≤ N⁻¹μ_j^x(τ_s, τ_e) ≤ M₄ < ∞ for j = 1, ..., r^{*}; and
(ii) 0 < M₅ ≤ μ_{r*+1}^x(τ_s, τ_e) ≤ M₅ < ∞

where

$$\mathbf{r}^* = \begin{cases} \mathbf{r}, & \tau_{\mathbf{s}} < \tau_{\mathbf{e}} \le \kappa \\ \mathbf{r} + \mathbf{q}, & \tau_{\mathbf{s}} \le \kappa < \tau_{\mathbf{e}} \\ \mathbf{r}, & \kappa < \tau_{\mathbf{s}} < \tau_{\mathbf{e}} \end{cases}$$

and $q \in \{1, ..., r\}$ is the # of breaking factors.

- 4 E b 4 E b

Lemma 3.3 - Eigenvalue Behaviour under Instability

For any N∈ N, there exist constants <u>M</u>₄, <u>M</u>₄, <u>M</u>₅, <u>M</u>₅ s.t.
(i) 0 < <u>M</u>₄ ≤ N⁻¹μ_j^{*}(τ_s, τ_e) ≤ <u>M</u>₄ < ∞ for j = 1, ..., r^{*}; and
(ii) 0 < <u>M</u>₅ ≤ μ_{r*+1}^{*}(τ_s, τ_e) ≤ <u>M</u>₅ < ∞

where

$$\mathbf{r}^* = \begin{cases} \mathbf{r}, & \tau_{\mathbf{s}} < \tau_{\mathbf{e}} \le \kappa \\ \mathbf{r} + \mathbf{q}, & \tau_{\mathbf{s}} \le \kappa < \tau_{\mathbf{e}} \\ \mathbf{r}, & \kappa < \tau_{\mathbf{s}} < \tau_{\mathbf{e}} \end{cases}$$

and $q \in \{1, ..., r\}$ is the # of breaking factors.

(r + q) eigenvalues diverge when window straddles κ;
 but only r eigenvalues diverge otherwise.

くほし くほし くほし

Theorem 3.1 - Upward Spike in Detection Statistic

• As $N \to \infty$, (i) if $\kappa \neq (\tau_e - 1)$, then there exists a constant \overline{M}_6 s.t. $\delta_{r+\rho}(\tau_s, \tau_e) \leq \overline{M}_6 < \infty$; (ii) but if $\kappa = (\tau_e - 1)$, then $\delta_{r+\rho}(\tau_s, \tau_e) \to \infty$, for $\rho = 1, ..., q$.

Sequential Changepoint Detection in Factor Models for Time Series

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem 3.1 - Upward Spike in Detection Statistic

▶ As $N \to \infty$,

(i) if $\kappa \neq (\tau_e - 1)$, then there exists a constant \overline{M}_6 s.t.

$$\delta_{r+
ho}(au_s, au_e) \leq \overline{M}_6 < \infty;$$

(ii) but if $\kappa = (\tau_e - 1)$, then

 $\delta_{r+\rho}(\tau_s, \tau_e) \to \infty,$

for $\rho = 1, ..., q$.

- Proof is evident from analysis of Lemma 3.3.
- Corollary 3.1 Useful secondary result (downward spike).

・ 同 ト ・ ヨ ト ・ ヨ ト

III. Changepoint Detection

Sequential Changepoint Detection in Factor Models for Time Series

Lemma 3.4/Theorem 3.2 - Estimation

Lemma 3.4

For any $N \in \mathbb{N}$ and $j \in \{1, ..., N\}$, $\left|\frac{\hat{\mu}_{j}^{\mathbf{x}}(\tau_{s}, \tau_{e})}{N} - \frac{\mu_{j}^{\mathbf{x}}(\tau_{s}, \tau_{e})}{N}\right| = O_{p}\left((\tau_{e} - \tau_{s} + 1)^{-1/2}\right).$

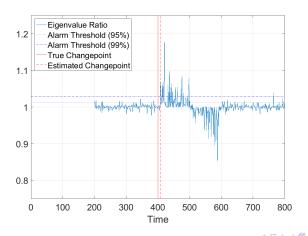
Theorem 3.2

For $j \in \{1, ..., N\}$, $\hat{\delta}_j(\tau_s, \tau_e) \xrightarrow{p} \delta_j(\tau_s, \tau_e) \text{ as } (\tau_e - \tau_s + 1) \to \infty.$

- 4 同 6 4 日 6 4 日 6

Simulation using Rolling Window Methodology

Figure 3.1



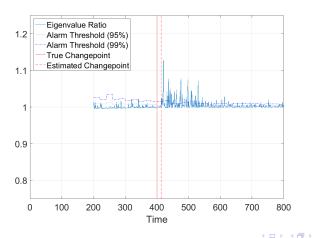
Sequential Changepoint Detection in Factor Models for Time Series

э London School of Economics (LSE)

3

Simulation using Expanding Window Methodology

Figure 3.4



Sequential Changepoint Detection in Factor Models for Time Series

< ∃ >

Bootstrapping Alarm Thresholds

Overlapping blocks resampling scheme from Kunsch(1989).

< ∃ >

Bootstrapping Alarm Thresholds

- Overlapping blocks resampling scheme from Kunsch(1989).
- Rolling Window:
 - (i) bootstrap from training period; choose $100(1-\alpha)^{th}$ pctile;
 - (ii) generate a single threshold for use over time.

・ロト ・同ト ・ヨト ・ヨト

London School of Economics (LSE)

Bootstrapping Alarm Thresholds

- Overlapping blocks resampling scheme from Kunsch(1989).
- Rolling Window:
 - (i) bootstrap from training period; choose $100(1-\alpha)^{th}$ pctile;

(ii) generate a single threshold for use over time.

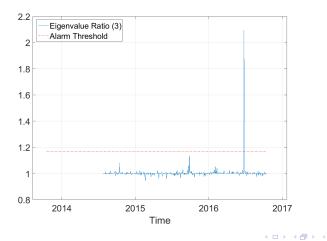
- Expanding Window:
 - (i) ongoing bootstrap every (or every w) period(s);
 - (ii) resample from training period with equal probability AND from observations thereafter with geometrically declining probability;

17/21

- (iii) choose $100(1-\alpha)^{th}$ pctile;
- (iv) relevant threshold declines step-wise over time.

June 23, 2016: Changepoint Detected!

Figure 3.8



Sequential Changepoint Detection in Factor Models for Time Series

IV. Concluding Remarks

Sequential Changepoint Detection in Factor Models for Time Series

 □
 <</td>
 □
 <</td>
 □
 <</td>
 ○

 London School of Economics (LSE)

Research Plan

High Frequency Data

- Jump Detection in continuous-time models.
- Pelger (2015) and Ait-Sahalia and Xiu (2015).
- Adapt existing method (eigenvalue-based criterion)?
- Develop new method (test statistic)?

Sequential Changepoint Detection in Factor Models for Time Series

London School of Economics (LSE)

Thank you, Kostas and Matteo!

RECAP:

Real-time Detection of Changepoints in FMs:

- Introduced detection statistic based on eigenvalue ratio;
- Provided theoretical justification for changepoint estimator;
- Developed a sequential changepoint detection procedure;
- Tested procedure using simulations and real-world data.

...and a special thanks to Matteo for all his help with my research!