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Proofs from Section I

Capital-skill complementarity

Let G(K,S,U) be a three-factor production function that is homogeneous of degree one in
(K,S,U), twice continuously differentiable and has strictly positive first and second derivatives
in all its arguments. Let σKJ ≡ GKGJ

GGKJ
for J = S,U . We show that Assumption 1 implies

σKU > σKS . For the nested constant elasticity of substitution production function used by
Krusell et al. (2000), σKU > σKS if and only if (equipment) capital is more substitutable with
unskilled labor than with skilled labor.

Assumption 1 requires ϕ > 0 where

(A.1) ϕ ≡ d ln (Fh/FL)

d lnK
=
KFKh
Fh

− KFKL
FL

.

Let L = S + U and h = S/L. Then we can write F (K,L, h) = G(K,hL, (1 − h)L), which is
equivalent to F (K,S + U, S/(S + U)) = G(K,S,U). Differentiating yields

σKU − σKS =
FK
F

FL − hFh/L
FKL − hFKh/L

− FK
F

FL + (1− h)Fh/L

FKL + (1− h)FKh/L
,

=
FKFLFh
LF

1

GKUGKS

(
FKh
Fh
− FKL

FL

)
,

which is positive if and only if ϕ > 0.

Derivation of equation (1)

Let k = K/L. Output is homogeneous of degree one in K and L by Assumption 1, meaning
that the optimal capital use equation can be written as R = FK(k, 1, h). Differentiating yields

(A.2) dk =
FK
FKK

d lnR− FKh
FKK

dh.

Likewise, the capital share is given by θ = Rk/F (k, 1, h) and differentiating implies

dθ = θd lnR− θFh
F
dh+

θ(1− θ)
k

dk.



.
Using (A.2) to substitute for dk then gives

dθ = θ

[
1 + (1− θ) FK

kFKK

]
d lnR− θ

[
Fh
F

+ (1− θ) FKh
kFKK

]
dh.

Noting that the homogeneity of F implies kFKK = −FKL and using equation (A.1) for ϕ, we
can rearrange this expression to obtain equation (1).

Proofs from Section II

Optimal education: derivation of equation (6)

Let F̂ (k, h) = F (k, 1, h) denote the production function in intensive form where k = K/L.
Let κt(h) be the units of physical capital that are combined with a unit of labor bearing human
capital h at time t. Optimal capital use requires

(A.3) F̂k(κt(h), h) = R,

and since competitive producers make zero profits, the wage schedule is given by

(A.4) wt(h) = F̂ (κt(h), h)−Rκt(h).

Differentiating these expressions and suppressing the arguments of F̂ (κt(h), h) yields

(A.5)

κ′t(h) = − F̂kh
F̂kk

,
∂κt(h)

∂t
= gR

F̂k

F̂kk
,

w′t(h) = F̂h,
∂wt(h)

∂t
=
∂F̂

∂t
− gRκt(h)F̂k,

where gR denotes the growth rate of R. Note also that using the intensive form production
function we can write: θ = κt(h)F̂k/F̂ ; σ = −F̂k(1− θ)/(κt(h)F̂kk); ϕ = κt(h)F̂kh/F̂h − θ/σ.

Each individual chooses her labor supply path to maximize the expected present value of
lifetime earnings. Consider an individual with human capital ht at time t and labor supply
path `τ for τ ≥ t. Let ˜̀

τ be an alternative labor supply path defined by

˜̀
τ =


`τ + ε, τ ∈ [t, t+ ∆] ,

`τ − ε, τ ∈ (t+ ∆, t+ 2∆] ,

`τ , τ > t+ 2∆.

where ε ∈ R and ∆ > 0. The individual’s human capital under labor supply path ˜̀
τ is given by

h̃τ =


hτ − ε(τ − t), τ ∈ [t, t+ ∆] ,

hτ − ε (t+ 2∆− τ) , τ ∈ [t+ ∆, t+ 2∆] ,

hτ , τ ≥ t+ 2∆.



Note that this labor supply perturbation does not affect the individual’s human capital outside
the interval (t, t+ 2∆).

Let S be the difference between the individual’s expected present value of earnings under ˜̀
τ

and under `τ . We have

S =

∫ t+2∆

t
e−

∫ τ
t (rs+ν)ds

[
˜̀
τwτ (h̃τ )− `τwτ (hτ )

]
dτ,

=

∫ t+∆

t
e−

∫ τ
t (rs+ν)ds {`τ (wτ [hτ − ε(τ − t)]− wτ [hτ ]) + εwτ [hτ − ε(τ − t)]} dτ

+

∫ t+2∆

t+∆
e−

∫ τ
t (rs+ν)ds {`τ (wτ [hτ − ε (t+ 2∆− τ)]− wτ [hτ ])− εwτ [hτ − ε (t+ 2∆− τ)]} dτ,

where the second equality uses the expressions for ˜̀
τ and h̃τ above. Expressing the functions

in the integrands as Taylor series around t, computing the integrals and dropping terms that
are o(∆2) implies that for ∆ close to zero

(A.6) S ≈ ε∆2

[
(rt + ν)wt(ht)− w′t(ht)−

∂wt(ht)

∂t

]
.

The intuition for this expression is as follows. When ε > 0, switching from labor supply path `τ
to ˜̀

τ means working more today and less tomorrow. The benefit of this switch is (rt+ν)wt(ht),
which equals the increase in the expected present value of earnings from bringing forward the
time at which labor income is received. The costs of delaying schooling are: w′t(ht), which

gives the decline in earnings from having lower human capital tomorrow, and; ∂wt(ht)
∂t , which

is positive when wages are increasing over time. Since human capital accumulation and labor
supply are both linear in `t, agents for whom the benefits of delaying schooling exceed the costs
will choose to work full-time, while agents for whom the costs are greater will devote all their
time to schooling.

Agents are indifferent between working and learning if and only if the right hand side of (A.6)
equals zero for all ε, which requires

(A.7) S̃t(ht) ≡ (rt + ν)wt(ht)− w′t(ht)−
∂wt(ht)

∂t
= 0.

We now make the following assumption

ASSUMPTION A.1: The production function and parameters of the economy are such that
for all t
(i) There exists h∗t > 0 such that S̃t(h

∗
t ) = 0;

(ii) Γt(h
∗
t ) > 0 for all k where

Γt ≡
1

F̂

[(
F̂h +

∂F̂

∂t
− gRκt(h∗t )F̂k

)
F̂h

F̂ − κt(h∗t )F̂k
− F̂hh +

F̂ 2
kh

F̂kk
− ∂F̂h

∂t
− gR

F̂kF̂kh

F̂kk

]
.

Assumption A.1.i imposes that a solution to equation (A.7) exists. This is a relatively weak



restriction. To see why, note that S̃t(ht) is continuous in ht whenever the production function is
continuously differentiable in k, h and t. Then if a solution does not exist, either all individuals
work full-time with `t = 1 or all individuals are in full-time education with `t = 0. It is
straightforward to impose sufficient conditions to rule out such equilibria. For example, if
individuals with no human capital produce no output then wt(0) = 0, meaning that working
full-time cannot be optimal for newborn agents. In addition, if the economy has a positive
capital stock and the marginal product of capital is unbounded as the capital input approaches
zero, then it cannot be optimal for all agents to be in full-time education.

Assumption A.1.ii is a second order condition for educational choice that ensures the solution
to equation (A.7) is unique. To show this we differentiate S̃t(ht) given by (A.7). Using equations

(A.3)–(A.5) and setting ht = h∗t yields S̃′t(h
∗
t ) = F̂Γt(h

∗
t ). Thus, the gradient of S̃t(ht) is positive

if S̃t(ht) = 0.
This single-crossing property guarantees that equation (A.7) has a unique solution ht = h∗t .

It also implies that S̃t(ht) < 0 for all ht < h∗t and S̃t(ht) > 0 for all ht > h∗t . Consequently,
individuals with human capital below the threshold h∗t prefer to study today and work tomorrow,
while the opposite is true for individuals with human capital above h∗t . Since labor supply is
bounded on the interval [0, 1] it follows that optimal labor supply is given by `t = 0 if ht < h∗t
and `t = 1 if ht > h∗t .

Setting ht = h∗t and rearranging equation (A.7) gives equation (6) in the paper. Taking the
total derivative of this expression for given t and using equations (A.3)–(A.5) together with the
definitions of ϕ, σ and θ yields

(A.8) dh∗t = − 1

Γt

σϕ

1− θ
Fh
F
d lnR+

1− θ
Γt

(
dgw|h∗t ,t − drt − dν

)
,

where dgw|h∗t ,t denotes the change in the growth rate of wages evaluated at h∗t . Equation (A.8)
shows that whenever there is capital-skill complementarity as defined in Assumption 1 (meaning
ϕ > 0) and the technical conditions in Assumption A.1 hold, an increase in the rental rate of
capital R reduces the optimal human capital threshold h∗t . Moreover, even in the absence of
capital-skill complementarity, the human capital threshold is increasing in the growth rate of
wages, but decreasing in the real interest rate and the risk of death.

Optimal human capital in a model of occupational choice

Suppose there are two types of labor – skilled and unskilled – and h denotes the fraction of
the labor force that is skilled. Formally, let S denote the skilled labor force and U the unskilled
labor force. Then L = S + U and human capital h = S/L. Let wU denote the unskilled wage
and wS = ψwU the skilled wage, where ψ denotes the skill premium. For this economy the
wage schedule wt(h) satisfies

(A.9) wt(h) =
wUU + wSS

L
= wU [1 + h (ψ − 1)] ,

implying that w′t(h) = wU (ψ − 1).
Competitive firms hire capital and labor taking the rental rate and the wage schedule as given,

implying that equations (A.3)-(A.5) hold. Using the wage schedule in (A.9) to differentiate
(A.3), (A.4) together with the expression for w′t(h) in (A.5) we obtain



(A.10) dh = − 1

Γ̃t

σϕ

1− θ
d lnR− 1

Γ̃t

1

1 + h(ψ − 1)

dψ

ψ − 1
,

where

Γ̃t ≡
1

F̂h

(
F̂ 2
kh

F̂kk
− F̂hh

)
,

and we assume Γ̃t > 0 for all t to ensure that the second order condition for profit maximization
holds. Thus, the relative demand for skilled labor is declining in the skill premium ψ and also
decreasing in the capital rental rate R whenever there is capital-skill complementarity.

Equation (A.10) gives demand for human capital conditional on the skill premium. However,
when individuals choose whether or not to invest in becoming skilled, the skill premium also
affects occupational choice. Suppose all newborns are unskilled, but have the opportunity
to become skilled workers by attending school for ζ periods. Apart from this change to the
education technology, the economy is as specified in Section II.

To maximize dynastic utility, each individual chooses the occupation that offers the highest
expected present value of lifetime earnings. We restrict attention to equilibria where at each
instant some, but not all, unskilled individuals choose to become skilled. This requires that
unskilled individuals are indifferent over whether or not to attend school. Skilled agents earn
nothing for ζ periods and then receive the skilled wage, while unskilled agents always earn the
unskilled wage. Therefore, the indifference condition at time τ is∫ ∞

τ
e−

∫ t
τ (rz+ν)dzwUt dt =

∫ ∞
τ+ζ

e−
∫ t
τ (rz+ν)dzψtw

U
t dt,

where the left hand side is the expected present value of earnings of an unskilled worker and
the right hand side is the expected present value of earnings of an individual that chooses to
become skilled. Differentiating the indifference condition with respect to τ yields

(A.11) wUτ = e−
∫ τ+ζ
τ (rz+ν)dzψτ+ζw

U
τ+ζ .

Thus, the unskilled wage at time τ equals the expected present value of the skilled wage at time
τ + ζ, which is when skilled agents who start schooling at τ join the labor force.

Let gUw (t, ζ) = wUt /w
U
t−ζ denote growth in the unskilled wage between t−ζ and t and r(t, ζ) =

e
∫ t
t−ζ(rz+ν)dz be the inverse of the discount factor used to value time t earnings at time t − ζ.

Then differentiating (A.11) with τ = t− ζ gives

dψt
ψt

=
dr(t, ζ)

r(t, ζ)
−
dgUW (t, ζ)

gUW (t, ζ)
,

and using this expression to substitute for dψt in (A.10) yields

(A.12) dht = − 1

Γ̃t

σϕ

1− θ
d lnR+

1

Γ̃t

1

1 + ht(ψt − 1)

ψt
ψt − 1

[
dgUw (t, ζ)

gUw (t, ζ)
− dr(t, ζ)

r(t, ζ)

]
.



Equation (A.12) is analogous to equation (A.8) from the baseline model. As in the baseline
model, an increase in the capital rental rate reduces equilibrium human capital h whenever
there is capital-skill complementarity. In addition, h is increasing in the growth rate of unskilled
wages, but decreasing in the compound interest rate during the period when individuals attend
school. This shows that the qualitative results concerning the determinants of optimal human
capital derived in Section II continue to hold in a model of occupational choice with endogenous
supplies of skilled and unskilled labor.

Proofs from Section III

Proof of Lemma 1 and Proposition 1

Imposing the functional form in Assumption 2 and noting that optimal capital use satisfies
equation (8), a firm that hires labor with human capital ht at time t has capital share θ [zt(ht)]

where θ(z) ≡ zf ′(z)/f(z) and zt(h) ≡ e−(a+b)h Atκt(h)
Bt

. Moreover, equation (8) implies zt is
strictly decreasing in ht and Grossman et al. (2017a) show that θ(z) is strictly decreasing in z.
It follows that θ [zt (ht)] is strictly increasing in ht.

Differentiating the wage schedule in (9) yields

1

wt(h)

∂wt(h)

∂t
= γL + (gA − gR)

θ [zt (h)]

1− θ [zt (h)]
,

and substituting this expression together with equation (14) into equation (A.7) gives

S̃t(ht) =

(
rt + ν − b− γL + (a+ gR − gA)

θ [zt (ht)]

1− θ [zt (ht)]

)
wt(ht).

Now, assume that for all t there exists h∗t > 0 that solves S̃t(h
∗
t ) = 0 and that a+gR−gA > 0,

which ensures S̃′t(h
∗
t ) > 0 because θ [zt (ht)] is strictly increasing in ht. We prove below that

these assumptions hold on a balanced growth path (BGP). Then Assumption A.1 is satisfied.
It follows that h∗t defines a human capital threshold such that at time t all individuals with
human capital below h∗t are in full-time education and all individuals with human capital above
h∗t work full-time.

Next, suppose the economy is on a BGP. The no arbitrage condition for capital accumulation
implies that on a BGP where the interest rate is constant gR = −gq. Therefore, on a BGP
a+gR−gA = a−γK , which is strictly positive by Assumption 3.i. It follows that a+gR−gA > 0
on a BGP as assumed above.

Setting S̃t(h
∗
t ) = 0 implies the human capital threshold on a BGP satisfies

(A.13)
θ [zt (h∗t )]

1− θ [zt (h∗t )]
=
b+ γL − (r + ν)

a− γK
,

showing that zt(h
∗
t ) = z∗ must be constant on a BGP which proves equation (11) in Lemma 1.

Differentiating (8) with respect to time while holding zt(h
∗
t ) constant then yields

ḣ∗t =
γK
a
.

Therefore, in order to keep their human capital rising at the same rate as h∗t , individuals that
are in the labor force must choose labor supply ` = 1 − γK/a as claimed in equation (10) of



Lemma 1.
At time t any individuals with human capital above h∗t work full-time. Consequently, on a

BGP it is not possible for individuals to have human capital above h∗t since h∗t is growing over
time. Given this observation, the remaining properties of the unique BGP can be derived as
in the discussion following Lemma 1 in the paper. In particular, equation (16) gives the real
interest rate on the BGP and substituting (16) into (A.13) gives (18), which determines the
BGP value of θ. Assumption 3.iii ensures the discount rate is sufficiently large that dynastic
utility is finite on the BGP. Finally, since gR = −gq and the real interest rate r satisfies (16),
Assumption 3.ii guarantees that, as assumed above, for all t there exists h∗t > 0 that solves
S̃t(h

∗
t ) = 0.

This completes the proof that there exists a unique BGP. In our working paper Grossman et
al. (2017b) we analyze the stability of the BGP and show that the BGP is locally saddle-path
stable in a calibrated version of the model.

Proof of Proposition 2

Differentiating equation (18) with respect to γK yields

1

(1− θ)2

∂θ

∂γK
= − η − 1

a− γK
b− λ
a
−

(η − 1)(γL + b−λ
a γK)− λ+ ν + ρ

(a− γK)2
.

The first term on the right hand side is negative when η > 1 since Assumption 2 imposes b > λ.
The second term on the right hand side is negative by Assumption 3.iii which guarantees finite
utility on the BGP. It follows that an increase in γK reduces θ or, equivalently, that a reduction
in γK reduces labor’s share of income.

Differentiating equation (18) with respect to γL yields

1

(1− θ)2

∂θ

∂γL
= − η − 1

a− γK
,

which is negative if and only if η > 1. Thus, a reduction in γL increases θ and lowers labor’s
share of income.

Quantitative Exploration

We present the results of calibrating the model and quantifying the impact on factor shares
of a one percentage point reduction in trend growth of labor productivity. For a complete
description of the calibration and quantitative analysis see our working paper Grossman et al.
(2017b).

We rely on the empirical literature to set some of our parameters and choose others to match
moments from the U.S. historical experience as detailed in Table A1. Conveniently, steady
state factor shares can be calculated without assuming a functional form for F̃ (·). However,
we have no firm basis for specifying the magnitude of the capital-skill complementarity that is
reflected in the parameter a in F̃

(
e−ahAtK, e

bhBtL
)
. Given our other moments, this parameter

would be pinned down if we knew the bias of technical progress in the pre-slowdown period.
However, the Diamond-McFadden “Impossibility Theorem” tells us that we cannot identify this
from time series data. Consequently, we pursue two different approaches to calibrating a. First,
we introduce plausible but ad hoc assumptions about the bias in technical progress along the
initial BGP. Then, we employ cross-sectional data for U.S. regions and industries in a crude
attempt to estimate a directly.



Table A1—Targeted Moments and Parameters

Parameter/Moment Value
Birth rate λ 2.16%
Death rate ν 0.95%
Internal Rate of Return on schooling ι 10%
Capital share θ 0.35

Growth in labor productivity γL + b
aγK 0.024

Increase in schooling ṡτ =
γ
K

a−γK 0.088

Intertemporal elasticity of substitution 1
η 0.5

Table A2—Response of Capital Share to Productivity Slowdown: Ad Hoc Examples

γK = γL = 1.1%⇒ a = 0.132, b = 0.164

γK γL

Growth in
per capita

Income

Annual
Increase in
Schooling

Interest
Rate

Capital
Share

Baseline 1.1% 1.1% 2.2% 0.09 10.0% 0.35
γL ↓ 1.1% 0.1% 1.2% 0.09 8.0% 0.383
γK ↓ 0.3% 1.1% 1.4% 0.02 8.3% 0.39

gq = 2.0%, gA = γL = 0.4%⇒ a = 0.293, b = 0.251

γK γL

Growth in
per capita

Income

Annual
Increase in
Schooling

Interest
Rate

Capital
Share

Baseline 2.4% 0.4% 2.2% 0.09 10.0% 0.35
γL ↓ 2.4% -0.6% 1.2% 0.09 8.0% 0.365
γK ↓ 1.2% 0.4% 1.3% 0.04 8.2% 0.368

Table A2 shows the quantitative results when we make ad-hoc assumptions about the bias
of technical progress. For the top panel, we assume that technical change in the pre-slowdown
period was factor neutral, so that γK = γL. For the lower panel, we assume that the ob-
served average decline in investment goods prices of 2% per year represents the full extent
of investment-specific technical change, and that the disembodied technological progress was
factor neutral (gA = γL). In both cases we report the new steady state following a perma-
nent one percentage point slowdown in labor productivity growth caused by a decline in either
labor-augmenting or capital-augmenting technical progress. We see that the increase in capital’s
share of national income following a productivity slowdown varies between 1.5 and 4 percentage
points.

Our second approach to calibrating the model estimates a from the association between labor
shares and wage growth across states and industries in the US, details are given in Grossman
et al. (2017b). We find an inverse relationship between the average labor share in the state-
industry and the average rate of wage growth, as would be predicted by our model assuming
that the US has an integrated national capital market. Our preferred estimate implies a = 0.19.

In Table A3, we repeat the exercise of simulating the effects of a one percentage point slow-
down in annual labor-productivity growth. In this case, the values of γK and γL in the baseline



Table A3—Response of Capital Share to Productivity Slowdown: Estimates of Capital-Schooling Comple-

mentarity using Cross-Sectional Data

Central Estimate of a: a = 0.19, b = 0.195

γK γL

Growth in
per capita

Income

Annual
Increase in
Schooling

Interest
Rate

Capital
Share

Baseline 1.5% 0.8% 2.2% 0.09 10.0% 0.35
γL ↓ 1.5% -0.2% 1.2% 0.09 8.0% 0.373
γK ↓ 0.6% 0.8% 1.3% 0.03 8.2% 0.378

calibration are those needed for the model to match the annual increase in schooling, the cap-
ital share, the rate of return on education, and the growth rate of labor productivity in the
pre-slowdown period. Again, we simulate the slowdown in labor-productivity growth as being
the result of either a deceleration of capital-augmenting technological progress or of labor-
augmenting technological progress.

We find that a one percentage point slowdown in trend productivity growth can account for
a sizeable shift in income from labor to capital. With the parameters reflected in the table,
the capital share rises between two and three percentage points. In our working paper we
also analyze the sensitivity of the quantitative results and argue that once we admit a reason-
able amount of capital-skill complementarity (as captured by the parameter a), a productivity
slowdown can account for a substantial redistribution of income from labor to capital for all
plausible values of the other parameters.


