
EXTENSION OF THE ν-METRIC

JOSEPH A. BALL AND AMOL J. SASANE

Abstract. We extend the ν-metric introduced by Vinnicombe in ro-
bust control theory for rational plants to the case of infinite-dimensional
systems/classes of nonrational transfer functions.

1. Introduction

The general stabilization problem in control theory is as follows. Suppose
that R is a commutative integral domain with identity (thought of as the
class of stable transfer functions) and let F(R) denote the field of fractions
of R. The stabilization problem is:

Given P ∈ (F(R))p×m (an unstable plant transfer function),
find C ∈ (F(R))m×p (a stabilizing controller transfer function),
such that (the closed loop transfer function)

H(P,C) :=

[
P

I

]
(I − CP )−1

[
−C I

]

belongs to R(p+m)×(p+m) (is stable).

Recipes for constructing such C is a central theme in control theory; see for
example the book by Vidyasagar [24].

However, in the robust stabilization problem, one goes a step further. One
knows that the plant is just an approximation of reality, and so one would
really like the controller C to not only stabilize the nominal plant P0, but
also all sufficiently close plants P to P0. The question of what one means by
“closeness” of plants thus arises naturally. So one needs a function d defined
on pairs of stabilizable plants such that

(1) d is a metric on the set of all stabilizable plants,
(2) d is amenable to computation, and
(3) d has “good”properties in the robust stabilization problem.

Such a desirable metric, was introduced by Glenn Vinnicombe in [25] and is
called the ν-metric. In that paper, essentially R was taken to be the rational
functions without poles in the closed unit disk or, more generally, the disk
algebra, and the most important results were that the ν-metric is indeed a
metric on the set of stabilizable plants, and moreover, it has the following
nice property in the context of the robust stabilization problem:
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(P): If the ν-metric between two stabilizable plants P0 and P is less than
the stability margin µP0,C of P0 and its stabilizing controller C, then C
also stabilizes P .

The problem of what happens when R is some other ring of stable trans-
fer functions of infinite-dimensional (that is, one time axis and infinite-
dimensional state space) or multidimensional systems (several “time” axes
of evolution) was left open. This problem of extending the ν-metric from
the rational case to transfer function classes of infinite-dimensional systems
was also mentioned in article by Nicholas Young [26]. In this article, we
address this issue of extending the ν-metric.

The starting point for our approach is abstract: we suppose that R is any
commutative integral domain with identity which is a subset of a Banach
algebra S satisfying certain assumptions, which we label (A1)-(A4). We then
define an “abstract” ν-metric in this setup, and show that it does define a
metric on the class of all stabilizable plants. We also show that it has the
desired property (P) in the context of robust stabilization for an appropriate
definition of stability margin µP0,C .

Next we give several examples of integral domains R arising as natural
classes of stable transfer functions of infinite-dimensional and multidimen-
sional systems which satisfy the abstract assumptions (A1) to (A4). In
particular, we cover the case of full subalgebras of the disk algebra, the
causal almost periodic function classes, the class of measures on [0,+∞)
without a singular nonatomic part, and the polydisk algebra.

The paper is organized as follows:

(1) In Section 2, we give our general setup and assumptions, and define
the abstract metric dν .

(2) In Section 3, we will show that dν is a metric on the set of stabilizable
plants.

(3) In Section 4, we introduce a notion of stability margin µP,C and prove
Theorem 4.6; this implies in particular that if the ν-metric between
two stabilizable plants P0 and P is less than the stability margin
µP0,C of P and its stabilizing controller C, then C also stabilizes P .

(4) In Section 5, we specialize R to concrete rings of stable transfer
functions of various types, and show that our abstract assumptions
hold in these particular cases.

(5) The final Section 6 mentions a loose end which is a direction for
further work.

2. General setup and assumptions

Our setup is the following:

(A1) R is commutative integral domain with identity.
(A2) S is a unital commutative complex semisimple Banach algebra with

an involution ·∗, such that R ⊂ S. We use inv S to denote the
invertible elements of S.
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(A3) There exists a map ι : inv S → G, where (G,+) is an Abelian group
with identity denoted by ◦, and ι satisfies
(I1) ι(ab) = ι(a) + ι(b) (a, b ∈ inv S).
(I2) ι(a∗) = −ι(a) (a ∈ inv S).
(I3) ι is locally constant, that is, ι continuous when G is equipped

with the discrete topology.
(A4) x ∈ R ∩ (inv S) is invertible as an element of R iff ι(x) = ◦.

A consequence of (I3) is the following “homotopic invariance of the index”,
which we will use in the sequel.

Proposition 2.1. If H : [0, 1] → inv S is a continuous map, then

ι(H(0)) = ι(H(1)).

Proof. The map h, given by t 7→ ι(H(t)) : [0, 1] → G is continuous. Here
[0, 1] is equipped with usual topology from R, while G is equipped with the
discrete topology, given by the metric

d(x, y) =

{
1 if x 6= y,

0 if x = y,
(x, y ∈ G).

The image of the connected set [0, 1] under the continuous map h is con-
nected. But the only connected subsets of G are the singleton sets, since G
is carrying the discrete topology. Hence ι(H(0)) = ι(H(1). �

We recall the following standard definitions from the factorization ap-
proach to control theory.

Definition 2.2.
The notation F(R): F(R) denotes the field of fractions of R.

The notation F ∗: If F ∈ Rp×m, then F ∗ ∈ Sm×p is the matrix with the
entry in the ith row and jth column given by F ∗

ji, for all 1 ≤ i ≤ p, and all
1 ≤ j ≤ m.

Right coprime/normalized coprime factorization: Given a matrix
P ∈ (F(R))p×m, a factorization P = ND−1, where N,D are matrices with
entries from R, is called a right coprime factorization of P if there exist
matrices X,Y with entries from R such that XN + Y D = Im. If moreover
there holds that N∗N +D∗D = Im, then the right coprime factorization is
referred to as a normalized right coprime factorization of P .

Left coprime/normalized coprime factorization: Similarly, a factor-

ization P = D̃−1Ñ , where Ñ , D̃ are matrices with entries from R, is called a

left coprime factorization of P if there exist matrices X̃, Ỹ with entries from

R such that ÑX̃+D̃Ỹ = Ip. If moreover there holds that ÑÑ∗+D̃D̃∗ = Ip,

then the left coprime factorization is referred to as a normalized left coprime
factorization of P . We note that the existence of both a left and right nor-

malized factorization P = ND−1 = D̃−1Ñ for P leads immediately to a
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normalized double coprime factorization of P , i.e., one has the identity
[
N∗ D∗

−D̃ Ñ

] [
N −D̃∗

D Ñ∗

]
=

[
I 0
0 I

]
. (2.1)

Since we are dealing with finite matrices over a commutative ring, (2.1)
implies also the identity

[
N −D̃∗

D Ñ∗

] [
N∗ D∗

−D̃ Ñ

]
=

[
I 0
0 I

]
. (2.2)

The notation G, G̃,K, K̃: Given P ∈ (F(R))p×m with normalized right and

left factorizations P = ND−1 and P = D̃−1Ñ , respectively, we introduce
the following matrices with entries from R:

G =

[
N

D

]
and G̃ =

[
−D̃ Ñ

]
.

In this notation the fact that the left and right coprime factorizations of P
are normalized translates to

G∗G = I, G̃G̃∗ = I (2.3)

and the identity (2.2) assumes the form

GG∗ + G̃∗G̃ = I. (2.4)

Similarly, given C ∈ (F(R))m×p with normalized right and left factorizations

C = NCD
−1
C and C = D̃−1

C ÑC , respectively, we introduce the following
matrices with entries from R:

K =

[
DC

NC

]
and K̃ =

[
−ÑC D̃C

]
.

The notation S(R, p,m): We denote by S(R, p,m) the set of all elements
P ∈ (F(R))p×m that posses a normalized right coprime factorization and a
normalized left coprime factorization.

Remark 2.3. Given P ∈ (F(R))p×m and C ∈ (F(R))m×p, define the closed

loop transfer function

H(P,C) :=

[
P

I

]
(I − CP )−1

[
−C I

]
∈ (F(R))(p+m)×(p+m).

It can be shown (see for example [24, Chapter 8]) that if P ∈ S(R, p,m),
then P is a stabilizable plant, that is,

S(R, p,m) ⊂
{
P ∈ (F(R))p×m

∣∣∣∣
∃C ∈ (F(R))m×p such that

H(P,C) ∈ R(p+m)×(p+m)

}
. (2.5)

It was shown by A. Quadrat [18, Theorem 6.3] that if the Banach alge-
bra R is a projective-free ring, then every stabilizable plant admits a right
coprime factorization and a left coprime factorization, that is, the reverse
containment ⊃ and hence equality holds in (2.5).
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We will need a couple of straightforward results on coprime factorizations,
which we have listed below. The first lemma says that coprime factorizations
are unique up to invertibles.

Lemma 2.4. Let P ∈ (F(R))p×m.

(1) If P has right coprime factorizations P = N1D
−1
1 = N2D

−1
2 , then

there exist V,Λ ∈ Rm×m such that V Λ = ΛV = Im, N1 = N2V and

D1 = D2V .

(2) If P has left coprime factorizations P = D̃−1
1 Ñ1 = D̃−1

2 Ñ2, then

there exist Ṽ , Λ̃ ∈ Rp×p such that Ṽ Λ̃ = Λ̃Ṽ = Ip, Ñ1 = Ṽ Ñ2 and

D̃1 = Ṽ D̃2.

In the case of normalized coprime factorizations, the invertibles can be
chosen to be unitary.

Lemma 2.5. Let P ∈ (F(R))p×m.

(1) If P has normalized right coprime factorizations P =N1D
−1
1 =N2D

−1
2 ,

then there exists a U ∈ Rm×m, which is invertible as an element of

Rm×m, and such that U∗U = UU∗ = Im, N1 = N2U and D1 = D2U .

(2) If P has normalized left coprime factorizations P = D̃−1
1 Ñ1 = D̃−1

2 Ñ2,

then there exists a Ũ ∈ Rp×p which is invertible as an element of

Rp×p, and such that Ũ∗Ũ = Ũ Ũ∗ = Ip, Ñ1 = ŨÑ2 and D̃1 = ŨD̃2.

Lemma 2.6. Suppose that F ∈ Rm×m, detF ∈ inv S and ι(detF ) = ◦.
Then F is invertible as an element of Rm×m.

Proof. Since detF ∈ inv S and ι(detF ) = ◦, it follows from (A4) that detF
is invertible as an element of R. The result then follows from Cramer’s
rule. �

We now define the metric dν on S(R, p,m). But first we specify the norm
we use for matrices with entries from S.

Definition 2.7 (‖ · ‖∞). Let M denote the maximal ideal space of the
Banach algebra S. For a matrix M ∈ Sp×m, we set

‖M‖∞ = max
ϕ∈M

M(ϕ) . (2.6)

Here M denotes the entry-wise Gelfand transform of M , and · denotes
the induced operator norm from Cm to Cp. For the sake of concreteness, we
fix the standard Euclidean norms on the vector spaces Cm to Cp.

The maximum in (2.6) exists since M is a compact space when it is
equipped with Gelfand topology, that is, the weak-∗ topology induced from
L(S;C). Since we have assumed S to be semisimple, the Gelfand transform

·̂ : S → Ŝ (⊂ C(M,C))

is an isomorphism. IfM ∈ S1×1 = S, then we note that there are two norms
available for M : the one as we have defined above, namely ‖M‖∞, and the
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norm ‖ ·‖ of M as an element of the Banach algebra S. But throughout this
article, we will use the norm given by (2.6).

Definition 2.8 (Abstract ν-metric dν). For P1, P2 ∈ S(R, p,m), with the
normalized left/right coprime factorizations

P1 = N1D
−1
1 = D̃−1

1 Ñ1,

P2 = N2D
−1
2 = D̃−1

2 Ñ2,

we define

dν(P1, P2) :=

{
‖G̃2G1‖∞ if det(G∗

1G2) ∈ inv S and ι(det(G∗
1G2)) = ◦,

1 otherwise.
(2.7)

Normalized coprime factorizations are not unique for a given plant in
S(R, p,m). But we have the following:

Lemma 2.9. dν given by (2.7) is well-defined.

Proof. This follows from Lemma 2.5. �

Lemma 2.10. dν given by (2.7) is bounded above by 1.

Proof. We have ‖G̃2G1‖∞ ≤ ‖G̃2‖∞‖G1‖∞. As G∗
1G1 = Im and G̃2G̃

∗
2 = Ip,

we see that ‖G1‖∞ = 1 = ‖G̃2‖∞. �

In Section 3, we will also prove the following.

Theorem 2.11. dν given by (2.7) is a metric on S(R, p,m).

We recall the definition of singular values of a square matrix, and a few
properties which will be needed in the sequel.

Definition 2.12. If M ∈ Ck×k, then the set of eigenvalues of MM∗ and
M∗M are equal and the eigenvalues are real. The square roots of these
eigenvalues are called the singular values of M , and the largest of these is
denoted by σ(M), while the smallest of these is denoted by σ(M).

Proposition 2.13. The following hold for P,Q ∈ Ck×k.

(S1) ‖P‖ = σ(P ).
(S2) If P is invertible, then σ(P ) > 0, and ‖P−1‖ = (σ(P ))−1.

(S3) |σ(P +Q)− σ(P )| ≤ σ(Q).
(S4) σ(PQ) ≤ σ(P ) · σ(Q).
(S5) σ(PQ) ≥ σ(P ) · σ(Q).

(S6) σ(PQ) = σ((P ∗P )
1

2Q) = σ(P (QQ∗)
1

2 ).

Proof. (S1), (S2) follow from the spectral theorem. (S3), (S4), (S5) are given
in [1, Proposition 9.6.8, Corollary 9.6.6]. (S6) can be verified directly using
the definition of σ. �

Lemma 2.14. Suppose that A,B ∈ Cp×m and that A∗A+B∗B = I. Then

(σ(A))2 + (σ(B))2 = 1.
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Proof. This follows from the spectral theorem. Indeed, A∗A = I − B∗B,
and so for all x ∈ Cm with unit norm, we have

〈A∗Ax, x〉 = 〈x, x〉 − 〈B∗Bx, x〉 = 1− 〈B∗Bx, x〉.
Thus (σ(A))2 = max

‖x‖=1

〈A∗Ax, x〉 = 1− min
‖x‖=1

〈B∗Bx, x〉 = 1− (σ(B))2. �

In particular, we have the following consequence as an application of this
lemma. (In this article, we often suppress the argument of the Gelfand
transforms of matrices with S-entries.)

Lemma 2.15. If P1, P2 ∈ S(R, p,m), then
(
σ(G∗

2
G1)

)2
+
(
σ(G̃2G1)

)2
= 1

pointwise on M.

Proof. Observing from (2.3) and (2.4) that G∗
1G1 = I and G2G

∗
2+G̃

∗
2G̃2 = I,

we obtain
G∗

1G2G
∗
2G1 +G∗

1G̃
∗
2G̃2G1 = I

pointwise on M. An application of Lemma 2.14 now yields the result. �

3. dν is a metric

In this section, we will prove Theorem 2.11.

Proof (of Theorem 2.11).

3.1. Positivity. If P1, P2 ∈ S(R, p,m), then clearly dν(P1, P2) ≥ 0. Also, if

dν(P1, P2) = 0, then ‖G̃2G1‖∞ = 0, and so G̃2G1 = 0. But

G̃2G1 = D̃2(P2 − P1)D1.

Thus P1 = P2. Finally, for P ∈ S(R, p,m), it is clear that dν(P,P ) = 0.

3.2. Symmetry. Let P1, P2 ∈ S(R, p,m). Since G∗
1G2 = (G∗

2G1)
∗, it fol-

lows that det(G∗
1G2) is invertible as an element of S iff det(G∗

2G1) is in-
vertible as an element of S. Using (I2), we see that ι(det(G∗

1G2)) = ◦ iff
ι(det(G∗

2G1)) = ◦. Hence dν(P1, P2) = dν(P2, P1).

3.3. The triangle inequality. Suppose that P1, P2, P0 ∈ S(R, p,m). We
want to show that dν(P1, P2) ≤ dν(P1, P0)+dν(P0, P2). Since dν is bounded
above by 1, this inequality is trivially satisfied if either dν(P1, P0) = 1
or dν(P0, P2) = 1. So in the rest of this subsection, we will assume that
dν(P1, P0) < 1 and dν(P0, P2) < 1. This means that

(1) det(G∗
1G0) is invertible in S and ι(det(G∗

1G0)) = ◦.
(2) det(G∗

0G2) is invertible in S and ι(det(G∗
0G2)) = ◦.

We will consider separately the following two possible cases:

1◦ det(G∗
1G2) ∈ inv S and ι(det(G∗

1G2)) = ◦. Then dν(P1, P2) = ‖G̃2G1‖∞.

2◦ ¬[det(G∗
1G2) ∈ inv S and ι(det(G∗

1G2)) = ◦]. Then dν(P1, P2) = 1.

First, using the fact (2.4) that G0G
∗
0 + G̃∗

0G̃0 = I, we obtain that

G∗
1G2 = G∗

1G0G
∗
0G2 +G∗

1G̃
∗
0G̃0G2. (3.1)
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1◦ Suppose that det(G∗
1G2) ∈ inv S and ι(det(G∗

1G2)) = ◦. In this case,

dν(P1, P2) = ‖G̃2G1‖∞. Using (S3) from Proposition 2.13, with

P := G∗
1
G0G

∗
0
G2,

Q := G∗
1G̃

∗
0G̃0G2.

and (3.1), we have σ(G∗
1
G0G

∗
0
G2)−σ(G∗

1
G2) ≤ σ(G∗

1
G̃∗

0
G̃0G2) pointwise

on M. Furthermore, using (S4) and (S5), and rearranging, we obtain

σ(G∗
1G2) ≥ σ(G∗

1G0) · σ(G∗
0G2)− σ(G̃0G1) · σ(G̃0G2) (3.2)

pointwise on M. Since dν(P1, P0) and dν(P0, P2) are both in [0, 1], we can
find α, β (which are maps from M to [0, π2 ]) such that

sinα = σ(G̃0G1),

sin β = σ(G̃0G2),

pointwise on M. Then using Lemma 2.15, it follows from (3.2) that

σ(G∗
1G2) ≥ (cosα) · (cos β)− (sinα) · (sin β) = cos(α+ β) (3.3)

pointwise on M. Similarly, define γ : M → [0, π2 ] by σ(G̃1G2) = sin γ,
then σ(G∗

1
G2) = cos γ pointwise on M. The inequality (3.3) now says that

cos γ ≥ cos(α+ β) pointwise on M. Hence

sin γ ≤ sin(α+ β) = (sinα) · (cos β) + (sin β) · (cosα)
≤ (sinα) · 1 + (sin β) · 1,

that is, σ(G̃1G2) ≤ σ(G̃0G1) + σ(G̃0G2) ≤ dν(P1, P0) + dν(P0, P2) point-

wise on M. Consequently, dν(P1, P2) = ‖G̃1G2‖∞ ≤ dν(P1, P0)+dν(P0, P2).

2◦ ¬[det(G∗
1G2) ∈ inv S and ι(det(G∗

1G2)) = ◦]. In this case dν(P1, P2) = 1.
Let

A := G∗
1G0G

∗
0G2, and

B := G∗
1G̃

∗
0G̃0G2.

Using the fact that G∗
1G0 and G∗

0G2 are invertible in Sm×m, it follows also
that A is invertible in Sm×m.

Suppose that ‖A−1B‖∞ < 1. Then it follows from (3.1) that

G∗
1G2 = A+B = A(I +A−1B)

and soG∗
1G2 is also invertible in S

m×m. Consider the mapH : [0, 1] → inv S,
given by H(t) = det(A(I + tA−1B)), t ∈ [0, 1]. By Proposition 2.1,

◦ = ◦+ ◦ = ι(G∗
1G0) + ι(G∗

0G2) = ι(detA) = ι(H(0))

= ι(H(1)) = ι(det(G∗
1G2)).

But then we have that det(G∗
1G2) ∈ inv S and ι(det(G∗

1G2)) = ◦, which is
a contradiction.
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So our assumption that ‖A−1B‖∞ < 1 cannot be true. From the com-
pactness of M and the definition of the norm on Cm×m, it follows that there
is a ϕ ∈ M such that σ((A−1B)(ϕ)) ≥ 1. But then we have that

1 ≤ σ((A−1B)(ϕ)) ≤ σ((A(ϕ))−1) · σ(B(ϕ)),

and so

σ(A(ϕ)) ≤ σ(B(ϕ)). (3.4)

Thus

(1− (σ((G̃0G1)(ϕ)))
2) · (1− (σ((G̃0G2)(ϕ)))

2)

= (σ((G∗
1G0)(ϕ))

2 · (σ((G∗
0G2)(ϕ))

2 by Lemma 2.15

≤ σ((G∗
1G0G

∗
0G2)(ϕ))

2 by (S5) in Proposition 2.13

≤ σ((G∗
1G̃

∗
0G̃0G2(ϕ))

2 by (3.4)

≤ (σ((G̃0G1)(ϕ)))
2 · (σ((G̃0G2)(ϕ)))

2 by (S4) in Proposition 2.13.

With

x := σ((G̃0G1)(ϕ)), and

y := σ((G̃0G2)(ϕ)),

the above says that (1− x2) · (1− y2) ≤ x2y2, and so 1 ≤ x2 + y2. Thus

1 ≤ (σ((G̃0G1)(ϕ)))
2 + (σ((G̃0G2)(ϕ)))

2 ≤ (dν(P0, P1))
2 + (dν(P0, P2))

2.

Consequently,

(dν(P0, P1)+dν(P0, P2))
2 ≥ (dν(P0, P1))

2+(dν(P0, P2))
2 ≥ 1 =(dν(P1, P2))

2.

Taking square roots, we obtain the desired conclusion.
This completes the proof of the triangle inequality, and also the proof of

Theorem 2.11. �

4. Robust stability theorem

In this section we prove Theorem 4.6.

Definition 4.1. Given P ∈ (F(R))p×m and C ∈ (F(R))m×p, we define the
stability margin of the pair (P,C) by

µP,C =

{
‖H(P,C)‖−1

∞ if P is stabilized by C,
0 otherwise.

The number µP,C can be interpreted as a measure of the performance of
the closed loop system comprising P and C: larger values of µP,C correspond
to better performance, with µP,C > 0 if C stabilizes P .

Proposition 4.2. If P is stabilized by C, then µP,C = inf
ϕ∈M

σ(K̃(ϕ)G(ϕ)).
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Proof. We now write P = NM−1 = M̃−1Ñ for a normalized left/right

coprime factorization of P and C = NcM
−1
c = M̃−1

c Ñc for a normalized
left/right coprime factorization of C and we set

G =

[
N

M

]
, G̃ =

[
−M̃ Ñ

]
, K =

[
Nc

Mc

]
, K̃ =

[
−Ñc M̃c

]
.

Then we have

H(P,C) =

[
P

I

]
(I − CP )−1

[
−C I

]

=

[
NM−1

I

]
(I − M̃−1

c ÑcNM
−1)−1

[
−M̃−1

c Ñc I

]

=

[
N

M

]
(−ÑcN + M̃cM)−1

[
−Ñc M̃c

]

= G(K̃G)−1K̃.

Also, G∗G =
[
N∗ M∗

] [ N

M

]
= N∗N +M∗M = I. Similarly,

K̃K̃∗ =
[
−Ñc M̃c

] [ −Ñ∗
c

M̃∗
c

]
= ÑcÑ

∗
c + M̃cM̃

∗
c = I.

Using (S6) of Proposition 2.13, we obtain for each ϕ ∈ M that

σ(G(ϕ)(K̃(ϕ)G(ϕ))−1K̃(ϕ)) = σ((K̃(ϕ)G(ϕ))−1) =
1

σ(K̃(ϕ)G(ϕ))
.

Thus
1

µP,C
= sup

ϕ∈M

σ(G(ϕ)(K̃(ϕ)G(ϕ))−1K̃(ϕ)) = sup
ϕ∈M

1

σ(K̃(ϕ)G(ϕ))
,

and so µP,C = inf
ϕ∈M

σ(K̃(ϕ)G(ϕ)). �

Remark 4.3. It is useful to note that

µP,C < 1 (4.1)

for any P and C as above. One way to see this is to note that H(P,C)
is idempotent H(P,C) · H(P,C) = H(P,C); this forces ‖H(P,C)‖∞ ≥ 1.
Another way to see (4.1) is to use the formula for µP,C in Proposition 4.2

as follows. Since G∗G = I and K̃K̃∗ = i, it follows that σ(G) = 1 and

σ(K̃) = 1. Then it follows from various of the properties singular values
listed in Proposition 2.13 that

σ(K̃(ϕ)G(ϕ)) ≤ σ(K̃(ϕ)G(ϕ)) ≤ σ(K̃(ϕ)) · σ(G(ϕ)) = 1.

Proposition 4.4. The following are equivalent:

(1) C stabilizes P .

(2) det(K̃(ϕ)G(ϕ)) 6= 0 for all ϕ ∈ M and ι(det(K̃G)) = ◦.
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Proof. Suppose that C stabilizes P . Then from the calculation done above
in the proof of Proposition 4.2, we have

H(P,C) = G(K̃G)−1K̃. (4.2)

But we know that G is left invertible and K̃ is right invertible as matrices

with entries from R. So from the above, we see that K̃G ∈ Rm×m is in-

vertible as an element of Rm×m. In particular det(K̃G) is invertible as an

element of R and so det(K̃(ϕ)G(ϕ)) 6= 0 for all ϕ ∈ M. Also from (A4), it

follows that ι(det(K̃G)) = ◦.
Now suppose that det(K̃(ϕ)G(ϕ)) 6= 0 for all ϕ ∈ M and ι(det(K̃G)) = ◦.

Then K̃G ∈ R ∩ inv S. From (A4), we obtain that det(K̃G) is invertible as
an element of R, and so we see from (4.2) that H(P,C) has entries from R.
So P is stabilized by C. �

Proposition 4.5. µP,C = µC,P .

Proof. It is not hard to see that C stabilizes P iff P stabilizes C. We have

K̃G̃∗G̃K̃∗ + K̃GG∗K̃∗ = I,

G̃K̃∗K̃G̃∗ + G̃KK∗G̃∗ = I

pointwise on M. So it follows from Lemma 2.14 that

(σ(K̃G))2 = 1− (σ(K̃G̃∗))2 = (σ(G̃K))2. (4.3)

This completes the proof. �

Theorem 4.6. If P0, P1 ∈ S(P, p,m) and C ∈ S(R,m, p), then

sin−1 µP1,C ≥ sin−1 µP0,C − sin−1(dν(P0, P1)).

Proof. If dν(P0, P1) ≥ µP0,C , then sin−1(dν(P0, P1)) ≥ sin−1 µP0,C and so
sin−1 µP0,C−sin−1(dν(P0, P1)) ≤ 0. The claimed inequality in the statement
of the theorem now follows trivially since µP1,C ≥ 0.

We therefore assume in the rest of the proof that dν(P0, P1) < µP0,C . As
noted in Remark4.3, µP0,C ≤ 1: hence we must have dν(P0, P1) < 1. Also
µP0,C = 0 implies that dν(P0, P1) < 0, a contradiction to the fact that dν is
a metric. Hence µP0,C > 0, that is, C stabilizes P0. Now

dν(P0, P1) = sup
ϕ∈M

σ((G̃0G1)(ϕ)) < inf
ϕ∈M

σ((K̃G0)(ϕ)) = µP0,C ,

and so pointwise on M, there holds that σ(G̃0G1) < σ(K̃G0). But for
numbers a, b ∈ (0, 1),

a < b iff
a2

1− a2
<

b2

1− b2
,

and so we have

(σ(G̃0G1))
2

1− (σ(G̃0G1))2
<

(σ(K̃G0))
2

1− (σ(K̃G0))2
.



12 JOSEPH A. BALL AND AMOL J. SASANE

Using Lemma 2.15 and (4.3), we obtain
σ(G̃0G1)

σ(G∗
0
G1)

<
σ(K̃G0)

σ(K̃G̃∗
0
)
. Thus

σ(K̃G̃∗
0G̃0G1) < σ(K̃G0G

∗
0G1). (4.4)

But

K̃G1 = K̃G0G
∗
0G1 + K̃G̃∗

0G̃0G1. (4.5)

Let A := K̃G0G
∗
0G1, and B := K̃G̃∗

0G̃0G1. Using the fact that K̃G0 and
G∗

0G1 are invertible in Sm×m, it follows also that A is invertible in Sm×m.
Also, from (4.4), it follows that ‖A−1B‖∞ < 1. Then it follows from (4.5)

that K̃G1 = A+B = A(I +A−1B) and so K̃G1 is also invertible in Sm×m.
Consider the map H : [0, 1] → inv S, defined by H(t) = det(A(I+ tA−1B)),
t ∈ [0, 1]. By Proposition 2.1, it follows that H(0) = H(1), that is,

ι(det(K̃G1)) = ι(det(K̃G0G
∗
0G1)) = ι(det(K̃G0))+ι(det(G

∗
0G1)) = ◦+◦ = ◦.

But det(K̃G1) ∈ R. By (A4) it follows that det(K̃G1) is invertible as an
element of R. Consequently C stabilizes P1 and

µP1,C = inf
ϕ∈M

σ((K̃G1)(ϕ)).

From (4.5), we have

σ(K̃G1) = σ(K̃G0G
∗
0G1 + K̃G̃∗

0G̃0G1)

≥ σ(K̃G0G
∗
0G1)− σ(K̃G̃∗

0G̃0G1)

≥ σ(K̃G0)σ(G
∗
0G1)− σ(K̃G̃∗

0)σ(G̃0G1)

= sin(sin−1 σ(K̃G0)− sin−1 σ(G̃0G1)).

Since sin−1 : [−1, 1] → [−π
2 ,

π
2 ] is an increasing function, it now follows that

sin−1 σ(K̃G1) ≥ sin−1 σ(K̃G0)− sin−1 σ(G̃0G1).

Consequently, sin−1 µP1,C ≥ sin−1 µP0,C − sin−1(dν(P0, P1)). �

Corollary 4.7. If P0, P ∈ S(R, p,m), then

µP,C ≥ µP0,C − dν(P0, P ).

Proof. For x, y, z ∈ [0, 1], if sin−1 x ≤ sin−1 y+sin−1 z. By taking the cosine
of both sides and using that the cos is a decreasing function on [0, π2 ], we

then get
√
1− x2 ≥

√
1− y2

√
1− z2 − yz, which in turn implies that

(
√

1− x2 + yz)2 ≥ (1− y2)(1− z2).

Hence x2 ≤ y2 + z2 +2yz
√
1− x2 ≤ y2+ z2 +2yz · 1 = (y+ z)2, which gives

finally that x ≤ y+z. The claimed inequality now follows immediately from
the inequality in Theorem 4.6 upon setting x = µP0,C , y = dν(P0, P ) and
z = µP,C . �
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The above result says that if the controller C performs sufficiently well
with the nominal plant P0, and the distance dν(P0, P ) between the plant P
and P0 is sufficiently small, then C is guaranteed to achieve a certain level
of performance with the plant P . So if P and P0 represent alternate models
of the system (one which is “true” and one which is our nominal model) and
if dν(P0, P ) is small, then the difference between P and P0 can be ignored
for the purposes of designing a stabilizing controller.

Another way of stating the result in Theorem 4.6 is that if C stabilizes
P0 with a stability margin µP,C > m, and P is another plant which is close
to P0 in the sense that dν(P,P0) ≤ m, then C is also guaranteed to stabilize
P . Furthermore, if C satisfies the stronger condition µP,C > M > m for a
number M , then C is also guaranteed to stabilize P with a stability margin
µP,C which satisfies µP,C ≥ sin−1M − sin−1m.

5. Applications

Now we specialize R to several classes of stable transfer functions and obtain
various extensions of the ν-metric. Some of the verifications of the properties
(A1)-(A4) are similar to the section on examples from [22].

5.1. The disk algebra. Let

D := {z ∈ C : |z| < 1}, D := {z ∈ C : |z| ≤ 1}, T := {z ∈ C : |z| = 1}.

The disk algebra A(D) is the set of all functions f : D → C such that f is
holomorphic in D and continuous on D. Let C(T) denote the set of complex-
valued continuous functions on the unit circle T. For each f ∈ inv C(T), we
can define the winding number w(f) ∈ Z of f as follows:

w(f) =
1

2π
(Θ(2π) −Θ(0)),

where Θ : [0, 2π] → R is a continuous function such that

f(eit) = |f(eit)|eiΘ(t), t ∈ [0, 2π].

The existence of such a Θ can be proved; see [23, Lemma 4.6]. Also, it can
be checked that w is well-defined and integer-valued. Geometrically, w(f) is
the number of times the curve t 7→ f(eit) : [0, 2π] → C winds around the
origin in a counterclockwise direction.

Recall the definition of a full subring.

Definition 5.1. Let R1, R2 be commutative unital rings, and let R1 be a
subring of R2. Then R1 is said to be a full subring of R2 if for every x ∈ R1

such that x is invertible in R2, it holds that x is invertible in R1.
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Lemma 5.2. Let

R = a unital full subring of A(D),

S := C(T),

G := Z,

ι := w.

Then (A1)-(A4) are satisfied.

Proof. (A1) is clear. The involution ·∗ in (A2) is defined by f∗(z) = f(z) (z ∈
T) for f ∈ C(T). (A3)(I1) and (A3)(I2) are evident from the definition of w.
Also, the map w : inv C(T) → Z is locally constant (that is, it is continuous
when Z is equipped with the discrete topology and C(T) is equipped with
the usual sup-norm); see [23, Lemma 4.6.(ii)]. So (A3)(I3) holds as well.
Finally, we will show below that (A4) holds.

Suppose that f ∈ R ∩ (inv C(T)) is invertible as an element of R. Then
obviously f is also invertible as an element of A(D). Hence it has no zeros or
poles in D. For r ∈ (0, 1), define fr ∈ A(D) by fr(z) = f(rz) (z ∈ D). Then
fr also has no zeros or poles in D, and has a holomorphic extension across
T. From the Argument Principle (applied to fr), it follows that w(fr) = 0.
But ‖fr − f‖∞ → 0 as r ր 1. Hence w(f) = lim

r→1
w(fr) = lim

r→1
0 = 0.

Suppose, conversely, that f ∈ R ∩ (inv C(T)) is such that w(f) = 0. For
all r ∈ (0, 1) sufficiently close to 1, we have that fr ∈ inv C(T). Also, by the
local constancy of w, for r sufficiently close to 1, w(fr) = w(f) = 0. By the
Argument principle, it then follows that fr has no zeros in D. Equivalently,
f has no zeros in rD. But letting r ր 1, we see that f has no zeros in D.
Moreover, f has no zeros on T either, since f ∈ inv C(T). Thus f has no
zeros in D. Consequently, we conclude that f is invertible as an element of
A(D). (Indeed, f is invertible as an element of C(D), and it is also then
clear that this inverse is holomorphic in D.) Finally, since R is a full subring
of A(D), we can conclude that f is invertible also as an element of R. �

Besides A(D) itself, some other examples of such R are:

(1) RH∞(D), the set of all rational functions without poles in D.
(2) The Wiener algebra W+(D) of all functions f ∈ A(D) that have an

absolutely convergent Taylor series about the origin:
∞∑

n=0

|fn| < +∞, where f(z) =

∞∑

n=0

fnz
n (z ∈ D).

(3) ∂−nH∞(D), the set of f : D → C such that f, f (1), f (2), . . . , f (n)

belong to H∞(D). Here H∞(D) denotes the Hardy algebra of all
bounded and holomorphic functions on D.

In the definition of the ν-metric given in Definition 2.8 corresponding to
Lemma 5.2, the ‖ · ‖∞ now means the following: if F ∈ (C(T))p×m, then

‖F‖∞ = max
z∈T

F (z) .
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This follows from (2.6), since the maximal ideal space M of S = C(T)
can be identified with the unit circle as a topological space; see [20, Exam-
ple 11.13.(a)].

Remark 5.3. RH∞(D) is a projective free ring since it is a Bézout do-
main. Also A(D), W+(D), or ∂−nH∞(D) are projective free rings, since
their maximal ideal space is D, which is contractible; see [2]. Thus if R is
one of RH∞(D), A(D), W+(D) or ∂−nH∞(D), then the set S(R, p,m) of
plants possessing a left and a right coprime factorization coincides with the
class of plants that are stabilizable by [18, Theorem 6.3].

5.2. Almost periodic functions. The algebra AP of complex valued (uni-
formly) almost periodic functions is the smallest closed subalgebra of L∞(R)
that contains all the functions eλ := eiλy. Here the parameter λ belongs to
R. For any f ∈ AP , its Bohr-Fourier series is defined by the formal sum

∑

λ

fλe
iλy, y ∈ R, (5.1)

where

fλ := lim
N→∞

1

2N

∫

[−N,N ]
e−iλyf(y)dy, λ ∈ R,

and the sum in (5.1) is taken over the set σ(f) := {λ ∈ R | fλ 6= 0},
called the Bohr-Fourier spectrum of f . The Bohr-Fourier spectrum of every
f ∈ AP is at most a countable set.

The almost periodic Wiener algebra APW is defined as the set of all AP
such that the Bohr-Fourier series (5.1) of f converges absolutely. The almost
periodic Wiener algebra is a Banach algebra with pointwise operations and

the norm ‖f‖ :=
∑

λ∈R

|fλ|. Set

AP+ = {f ∈ AP | σ(f) ⊂ [0,∞)}
APW+ = {f ∈ APW | σ(f) ⊂ [0,∞)}.

Then AP+ (respectively APW+) is a Banach subalgebra of AP (respectively
APW ). For each f ∈ inv AP , we can define the average winding number

w(f) ∈ R of f as follows:

w(f) = lim
T→∞

1

2T

(
arg(f(T ))− arg(f(−T ))

)
.

See [15, Theorem 1, p. 167].

Lemma 5.4. Let

R := a unital full subring of AP+

S := AP,

G := R,

ι := w.

Then (A1)-(A4) are satisfied.
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Proof. (A1) is clear. The involution ·∗ used in (A2) is defined by

f∗(y) = f(y), y ∈ R,

for f ∈ AP . (A3)(I1) and (A3)(I2) follow from the definition of w. (A3)(I3)
follows for example from [16, Theorem 2.6 and Example 2.10], where it is
shown that w is a topological index on AP , and hence in particular, it is
locally constant.

Finally, (A4) follows from [7, Theorem 1, p.776] which says that f ∈ AP+

satisfies

inf
Im(s)≥0

|f(s)| > 0 (5.2)

iff inf
y∈R

|f(y)| > 0 and w(f) = 0. But

inf
y∈R

|f(y)| > 0

is equivalent to f being an invertible element of AP by the corona theo-
rem for AP (see for example [11, Exercise 18, p.24]). Also the equivalence
of (5.2) with that of the invertibility of f as an element of AP+ follows
from the Arens-Singer corona theorem for AP+ (see for example [3, Theo-
rems 3.1, 4.3]). Finally, the invertibility of f ∈ R in R is equivalent to the
invertibility of f as an element of AP+ since R is a full subring of AP+. �

Remark 5.5. Specific examples of such R are AP+ and APW+. More
generally, let Σ ⊂ [0,+∞) be an additive semigroup (if λ, µ ∈ Σ, then
λ+ µ ∈ Σ) and suppose 0 ∈ Σ. Denote

APΣ = {f ∈ AP | σ(f) ⊂ Σ}
APWΣ = {f ∈ APW | σ(f) ⊂ Σ}.

Then APΣ (respectively APWΣ) is a unital Banach subalgebra of AP+

(respectively APW+). Let YΣ denote the set of all maps θ : Σ → [0,+∞]
such that θ(0) = 0 and θ(λ + µ) = θ(λ) + θ(µ) for all λ, µ ∈ Σ. Examples
of such maps θ are the following. If y ∈ [0,+∞), then θy, defined by

θy(λ) = λy, λ ∈ Σ, belongs to YΣ. Another example is θ∞, defined as
follows:

θ∞(λ) =

{
0 if λ = 0,
+∞ if λ 6= 0.

So in this way we can consider [0,+∞] as a subset of YΣ.
The results [3, Proposition 4.2, Theorem 4.3] say that if YΣ ⊂ [0,+∞],

and f belongs to APΣ (respectively to APWΣ), then f belongs to inv APΣ

(respectively to inv APWΣ) iff (5.2) holds. So in this case APΣ and APWΣ

are unital full subalgebras of AP+.

In the definition of the ν-metric given in Definition 2.8 corresponding to
Lemma 5.4, the ‖ · ‖∞ now means the following: if F ∈ (AP )p×m, then

‖F‖∞ = sup
y∈R

F (y) .
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This follows from (2.6), since R is dense in the maximal ideal spaceM (which
is the Bohr compactification RB of R) of the Banach algebra S = AP ; see
[11, Exercise 18, p.24].

Remark 5.6. It was shown in [2] that AP+ and APW+ are projective
free rings. Thus if R = AP+ or APW+, then the set S(R, p,m) of plants
possessing a left and a right coprime factorization coincides with the class
of plants that are stabilizable by [18, Theorem 6.3].

5.3. Algebras of Laplace transforms of measures without a singular
nonatomic part. Let C+ := {s ∈ C | Re(s) ≥ 0} and let A+ denote the
Banach algebra

A+ =

{
s(∈ C+) 7→ f̂a(s) +

∞∑

k=0

fke
−stk

∣∣∣∣
fa ∈ L1(0,∞), (fk)k≥0 ∈ ℓ1,

0 = t0 < t1, t2, t3, . . .

}

equipped with pointwise operations and the norm:

‖F‖ = ‖fa‖L
1 + ‖(fk)k≥0‖ℓ

1 , F (s) = f̂a(s) +

∞∑

k=0

fke
−stk (s ∈ C+).

Here f̂a denotes the Laplace transform of fa, given by

f̂a(s) =

∫ ∞

0
e−stfa(t)dt, s ∈ C+.

Similarly, define the Banach algebra A as follows ([13]):

A=

{
iy(∈ iR) 7→ f̂a(iy) +

∞∑

k=−∞

fke
−iytk

∣∣∣∣
fa ∈ L1(R), (fk)k∈Z ∈ ℓ1,

. . . , t−2, t−1 <0= t0< t1, t2, . . .

}

equipped with pointwise operations and the norm:

‖F‖ = ‖fa‖L
1 + ‖(fk)k∈Z‖ℓ

1 , F (iy) := f̂a(iy) +

∞∑

k=−∞

fke
−iytk (y ∈ R).

Here f̂a is the Fourier transform of fa, f̂a(iy) =

∫ ∞

−∞

e−iytfa(t)dt, (y ∈ R).

It can be shown that L̂1(R) is an ideal of A.

For F = f̂a +
∞∑

k=−∞

fke
−i·tk ∈ A, we set FAP (iy) =

∞∑

k=−∞

fke
−iytk (y ∈ R).

If F = f̂a + FAP ∈ inv A, then it can be shown that FAP (i·) ∈ inv AP as
follows. First of all, the maximal ideal space of A contains a copy of the
maximal ideal space of APW in the following manner: if ϕ ∈ M(APW ),

then the map Φ : A → C defined by Φ(F ) = Φ(f̂a + FAP ) = ϕ(FAP (i·)),
(F ∈ A), belongs to M(A). So if F is invertible in A, in particular for
every Φ of the type describe above, 0 6= Φ(F ) = ϕ(FAP (i·)). Thus by the
elementary theory of Banach algebras, FAP (i·) is an invertible element of
AP .

Moreover, since L̂1(R) is an ideal in A, F−1
AP f̂a is the Fourier transform of

a function in L1(R), and so the map y 7→ 1 + (FAP (iy))
−1f̂a(iy) =

F (iy)
FAP (iy)
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has a well-defined winding number w around 0. Define W : inv A → R × Z

by

W (F ) = (w(FAP ), w(1 + F−1
AP f̂a)), (5.3)

where F = f̂a + FAP ∈ inv A, and

w(FAP ) := lim
R→∞

1

2R

(
arg

(
FAP (iR)

)
− arg

(
FAP (−iR)

))
,

w(1 + F−1
AP f̂a) :=

1

2π

(
arg

(
1 + (FAP (iy)

)−1
f̂a(iy))

∣∣∣∣
y=+∞

y=−∞

)
.

Lemma 5.7. F = f̂a + FAP ∈ A is invertible iff for all y ∈ R, F (iy) 6= 0
and inf

y∈R
|FAP (iy)| > 0 .

Proof. The ‘only if’ part is clear. We simply show the ‘if’ part below.

Let F = f̂a + FAP ∈ A be such that F (iy) 6= 0 for all y ∈ R and

inf
y∈R

|FAP (iy)| > 0.

Thus FAP (i·) is invertible as an element of AP . Hence F = FAP (1+ f̂aF
−1
AP )

and so it follows that (1 + f̂aF
−1
AP )(iy) 6= 0 for all y ∈ R. But by the corona

theorem for

W := L̂1(R) +C

(see [12, Corollary 1, p.109]), it follows that 1 + f̂aF
−1
AP is invertible as an

element of W and in particular, also as an element of A. This completes the
proof. �

Lemma 5.8. Let

R := a unital full subring of A+,

S := A,
G := R× Z,

ι := W.

Then (A1)-(A4) are satisfied.

Proof. (A1) is clear. The involution ·∗ in (A2) is defined by

F ∗(iy) = F (iy), y ∈ R,

for F ∈ A. (A3)(I2) is now easy to see from the definition of W . Also,

(A3)(I1) follows from the definition of W as follows. Let F = f̂a +FAP and
G = ĝa +GAP . Then we have

w(FAPGAP ) = w(FAP ) + w(GAP )
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from the definition of w. Thus

W (FG) = W ((f̂a + FAP )(ĝa +GAP ))

= W (f̂aĝa + f̂aGAP + ĝaFAP + FAPGAP )

= (w(1 + (FAPGAP )
−1(f̂aĝa + f̂aGAP + ĝaFAP ), w(FAPGAP ))

= (w((1 + F−1
AP f̂a)(1 +G−1

AP ĝa)), w(FAP ) + w(GAP ))

= (w(1 + F−1
AP f̂a) + w(1 +G−1

AP ĝa), w(FAP ) +w(GAP ))

= W (f̂a + FAP ) +W (ĝa +GAP ).

So (A3)(I2) holds.
The local constancy of W demanded in (A3)(I3) can be seen in the fol-

lowing manner. We have already noted that w is locally constant on inv AP

and w is locally constant on inv C(T). Note that w(1+F−1
AP f̂a) defined above

is just w(ϕ) where

ϕ(θ) = (1 + F−1
AP f̂a)(iy), where iy =

1 + eiθ

1− eiθ
, θ ∈ (0, 2π).

Hence (A3)(I3) follows.

Finally we check that (A4) holds. Suppose that F = f̂a + FAP belonging
to A+∩(inv A), is such thatW (F ) = 0. Since F is invertible in A, it follows
that FAP (i·) is invertible as an element of AP . But w(FAP ) = 0, and so
FAP (i·) ∈ AP+ is invertible as an element of AP+. But this implies that

1 + F−1
AP f̂a belongs to the Banach algebra

W+ := ̂L1(0,∞) + C.

Moreover, it is bounded away from 0 on iR since

1 + F−1
AP f̂a =

F

FAP
,

and F is bounded away from zero on iR. Moreover w(1 + F−1
AP f̂a) = 0,

and so it follows that 1 + F−1
AP f̂a is invertible as an element of W+, and in

particular in A+. Since F = (1+F−1
AP f̂a)FAP and we have shown that both

(1 + F−1
AP f̂a) as well as FAP are invertible as elements of A+, it follows that

F is invertible in A+. �

An example of such a R (besides A+) is the algebra

̂L1(0,+∞)+APWΣ(i·) := {f̂a+FAP : fa ∈ L1(0,+∞), FAP (i·) ∈ APWΣ},
where Σ is as described in Remark 5.5.

In the definition of the ν-metric given in Definition 2.8 corresponding to
Lemma 5.8, the ‖ · ‖∞ now means the following: if F ∈ Ap×m, then

‖F‖∞ = sup
y∈R

F (iy) .



20 JOSEPH A. BALL AND AMOL J. SASANE

This follows from (2.6), since R is dense in the maximal ideal space M of
the Banach algebra S = A; see [14, Theorems 4.20.1 and 4.20.4].

Remark 5.9. It was shown in [2] that A+ is a projective free ring. Thus the
set S(A+, p,m) of plants possessing a left and a right coprime factorization
coincides with the class of plants that are stabilizable by [18, Theorem 6.3].

5.4. The polydisk algebra. Let

D
n := {(z1, . . . , zn) ∈ C

n : |zi| < 1 for i = 1, . . . , n},
Dn := {(z1, . . . , zn) ∈ C

n : |zi| ≤ 1 for i = 1, . . . , n},
T
n := {(z1, . . . , zn) ∈ C

n : |zi| = 1 for i = 1, . . . , n}.
The polydisk algebra A(Dn) is the set of all functions f : Dn → C such that
f is holomorphic in Dn and continuous on Dn.

If f ∈ A(Dn), then the function fd defined by z 7→ f(z, . . . , z) : D → C

belongs to the disk algebra A(D), and in particular also to C(T). The map

f 7→ (f |Tn , fd) : A(D
n) → C(Tn)× C(T)

is a ring homomorphism. This map is also injective, and this is an immediate
consequence of Cauchy’s formula; see [19, p.4-5]. We recall the following
result; see [19, Theorem 4.7.2, p.87].

Proposition 5.10. Suppose that Ψ = (ψ1, . . . , ψn) is a continuous map

from D into Dn, which carries T into Tn and the winding number of each

ψi is positive. Then for every f ∈ A(Dn), f(Ψ(D) ∪ Tn) = f(Dn).

Lemma 5.11. Let

R = a unital full subring of A(Dn),

S := C(Tn)× C(T),

G := Z,

ι := ((g, h) 7→ w(h)).

Then (A1)-(A4) are satisfied.

Proof. (A1) is clear. The involution ·∗ in (A2) is defined as follows: if
(f, g) ∈ C(Tn)× C(T), then (f, g)∗ := (f∗, g∗), where

f∗(z1, . . . , zn) = f(z1, . . . , zn), (z1, . . . , zn) ∈ T
n,

g∗(z) = g(z), z ∈ T.

(A3) was proved earlier in Subsection 5.1. Finally, we will show below that
(A4) holds, following [10].

Suppose that f ∈ A(Dn) is such that f |Tn ∈ inv C(Tn), fd ∈ inv C(T) and
that w(fd) = 0. We use Proposition 5.10, with Ψ(z) := (z, . . . , z) (z ∈ D).
Then we know that f will have no zeros in Dn if f(Ψ(D)) does not contain
0. But since fd ∈ inv C(T) and w(fd) = 0, it follows that fd is invertible as
an element of A(D) by the result in Subsection 5.1. But this implies that
f(Ψ(D)) does not contain 0.
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Now suppose that f ∈ A(Dn) with f |Tn ∈ inv C(Tn), fd ∈ inv C(T), and
that it is invertible as an element of A(Dn). But then in particular, fd is an
invertible element of A(D), and so again by the result in Subsection 5.1, it
follows that w(fd) = 0. �

Besides A(Dn) itself, another example of such an R is RH∞(Dn), the set of
all rational functions without poles in Dn.

In the definition of the ν-metric given in Definition 2.8 corresponding
to Lemma 5.11, the ‖ · ‖∞ now means the following: if F = (G,H) ∈
(C(Tn)× C(T))p×m, then

‖F‖∞ = max

{
max
z∈Tn

G(z) ,max
w∈T

H(w)

}
.

This follows from (2.6), since the maximal ideal space M of the Banach
algebra S = C(Tn)× C(T) can be identified with Tn ∪ T.

Remark 5.12. By [2], it follows that A(Dn) is a projective free ring, since
its maximal ideal space the polydisk Dn is contractible. Thus the set
S(A(Dn), p,m) of plants possessing a left and a right coprime factorization
coincides with the class of plants that are stabilizable by [18, Theorem 6.3].

Remark 5.13. Roughly, the index function ι : inv S → G in all the exam-
ples given above (Sections 5.1–5.4) can be viewed as generalizations of the
winding number for a continuous nonvanishing function on the unit circle.
Another important application of such index functions, apart from robust
control theory as presented here, is to the Fredholm theory of various classes
of operators (e.g., Toeplitz, Wiener-Hopf, convolution) associated with the
function. In this context we mention that Murphy [16] has given an ab-
stract quantized C∗-algebra setting which, among other things, unifies the
connection between analytic index and Fredholm index for the C(T)-setting
of Section 5.1 and the AP -setting of Section 5.2. There has also been a
substantial amount of other work (see the books [6, 4]) where the analytic
index has been extended to more general classes of functions (e.g. piecewise-
continuous) in order to develop the Fredholm theory for more general classes
of Toeplitz operators. On the other hand, the index theory for semi-almost

periodic symbols (a version of the Callier-Desoer class where f̂a is only re-

quired to be continuous on the extended imaginary line and where f − f̂a
is required only to be AP rather than APW ) follows a different more com-
plicated path rather than making use of the index function W as in (5.3).
Similarly, the Fredholm theory for Toeplitz operators on the quarter plane
(associated with continuous functions on the bitorus T2) (see [6, Chapter 8])
makes use of the Z2-valued index associated with the winding number of a
function f on T2 taken with respect to each variable separately, rather than
with the index ι as in Lemma 5.11.
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6. Further directions

It was shown in [25] that when R comprised rational functions without poles
in the closed unit disk, then the bound established in Theorem 4.6 is the
best possible one in the following sense:

(P′): C satisfying µP0,C > m stabilizes P only if dν(P,P0) ≤ m.

Since this property of dν already holds in the rational case, we expect the
same to hold also in the specific examples considered in the previous section.
We leave the question of investigation of whether the property (P′) always
holds in our abstract setup for future work.
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