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OF ALGEBRAS OF MEASURES IN A HALF-SPACE

AMOL SASANE

Abstract. Let H
[n] be the canonical half space in R

n, that is,

H
[n] = {(t1, . . . , tn) ∈ R

n \ {0} | ∀j, [tj 6= 0 and t1 = t2 = · · · = tj−1 = 0] ⇒ tj > 0} ∪ {0}.

Let M(H[n]) denote the Banach algebra of all complex Borel measures with support contained

in H
[n], with the usual addition and scalar multiplication, and with convolution ∗, and the

norm being the total variation of µ. It is shown that the maximal ideal space X(M(H[n]))

of M(H[n]), equipped with the Gelfand topology, is contractible as a topological space. In

particular, it follows that M(H[n]) is a projective free ring. In fact, for all subalgebras R of

M(H[n]) that satisfy a certain condition, it is shown that the maximal ideal space X(R) of R

is contractible. Several examples of such subalgebras are also given. We also show that this
condition, although sufficient, is not necessary for the contractibility of unital subalgebras of
M(H[n]).

1. Introduction

The aim of this paper is to show that the maximal ideal space X(R) of some Banach
subalgebras (possessing a certain property) of the convolution algebra M(H[n]) of all complex

Borel measures with support in the half space H[n], is contractible. It follows then that
such Banach algebras are projective free rings. All the notation and precise definitions are
explained below.

In particular, our result can be viewed as a two-fold generalization:

(1) of the result in [12], from the one dimensional case (of the half space [0,+∞) of R)

to the n-dimensional case (the half space H[n] of Rn).
(2) of the result in [10], from the specific subalgebra of almost periodic measures of

M(H[n]) to all subalgebras of M(H[n]) satisfying a certain condition. (The result
in [10] was in turn a generalization of a one-dimensional result of A. Brudnyi [2] to
the multi-dimensional setting.)

Although the current result is a generalization of the result from the conference paper [12],
it does not follow automatically.

1.1. Preliminary definitions and notation.

Definition 1.1. Let H[n] ⊂ Rn be the canonical half space defined by

H
[n] = {(t1, . . . , tn) ∈ R

n \ {0} | ∀j, [t1 = t2 = · · · = tj−1 = 0, tj 6= 0] ⇒ tj > 0} ∪ {0}.
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M(H[n]) denotes the set of all complex Borel measures with support contained in H[n].

Then M(H[n]) is a complex vector space with addition and scalar multiplication defined in
the pointwise manner as usual. The space M(H[n]) becomes a complex algebra if convolution
of measures (denoted henceforth by ∗) is taken as the operation of multiplication in the

algebra. With the norm of µ taken as the total variation of µ, M(H[n]) is a Banach algebra.
Recall that the total variation ‖µ‖ of µ is defined by

‖µ‖ = sup

∞∑

k=1

|µ(Ek)|,

the supremum being taken over all partitions of H[n], that is over all countable collections
(Ek)k∈N of Borel subsets of H[n] such that Ek

⋂
Em = ∅ whenever m 6= k and

⋃
k∈N

Ek = H[n].

The identity with respect to convolution in M(H[n]) is the Dirac measure δn
0 in Rn supported

at 0, given by

δn
0 (E) =

{
1 if 0 ∈ E,

0 if 0 6∈ E,

where E is any Borel subset of H[n].

Definition 1.2.

(1) (µ[•]) For µ ∈ M(H[n]), define the measures µ[k] ∈ M(H[k]), k = n, n − 1, . . . , 2, 1,
inductively as follows. Set

µ[n] = µ.

Suppose µ[k] ∈ M(H[k]) has been defined. Then µ[k−1] ∈ M(H[k−1]) is defined by

µ[k−1](E) = µ({0} × E),

where E is any Borel subset of H[k−1].
(2) (µ•) Given θ ∈ [0, 1) and µ ∈ M(H[k]), the measure µθ ∈ M(H[k]) is defined by

µθ(E) =

∫

E

(1 − θ)t1dµ(t), (1)

where E is any Borel subset of H[k]. If θ = 1, then for µ ∈ M(H[k]), µ1 is defined as
follows:

µ1 :=

{
δ1
0 ⊗ µ[k−1] if k > 1,

µ({0})δ1
0 if k = 1.

Notation 1.3. If R is a complex commutative unital Banach algebra, then X(R) denotes the
maximal ideal space of R. Thus X(R) is the set of all nonzero complex homomorphisms from
R to C. X(R) is endowed with the Gelfand topology, that is, the weak-⋆ topology induced
from the dual space L(R; C) of the Banach space R.

If R is any Banach subalgebra of M(H[n]) which satisfies an assumption, namely Prop-
erty (P) in Theorem 1.5 below, then we will show that X(R) is contractible. The notion of
contractibility of a topological space is recalled below.

Definition 1.4. A topological space X is said to be contractible if there exists a continuous
map H : X × [0, 1] → X and an x0 ∈ X such that

for all x ∈ X, H(x, 0) = x and H(x, 1) = x0.
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1.2. Main result. Our main result is the following:

Theorem 1.5. Suppose that R is a unital Banach subalgebra of M(H[n]) satisfying:

(P)

For all µ ∈ R and all θ ∈ [0, 1),
µθ

δ1
0 ⊗ µ

[n−1]
θ

...

δn−1
0 ⊗ µ

[1]
θ





∈ R.

Then the maximal ideal space X(R) equipped with the Gelfand topology is contractible.

The Laplace transform µ̂ of µ ∈ M(H[n]) is defined by

µ̂(s) =

∫

H[n]

e−〈s,t〉dµ(t), s ∈ H
[n].

Then µ̂ is a holomorphic function of the variable s in the interior (H[n])◦ of H[n], and µ̂ is con-

tinuous on H[n]. Let M̂(H[n]) denote the set of all Laplace transforms of elements of M(H[n]).

Then M̂(H[n]) is a complex vector space with addition and multiplication defined pointwise,
and it is a complex algebra if we define multiplication also in a pointwise manner. With the

norm of µ̂ ∈ M̂(H[n]) defined to be the norm of µ ∈ M(H[n]), M̂(H[n]) becomes a Banach
algebra, which is isometrically isomorphic to M(H[n]). Then our main result (Theorem 1.5)
yields the following:

Theorem 1.6. Suppose that R is a unital Banach subalgebra of M̂(H[n]) satisfying:

(P̂)

For all µ̂ ∈ R and all θ ∈ [0, 1), the maps

H[n] ∋ (s1, . . . , sn) 7→ µ̂(s1 − log(1 − θ), s2, . . . , sn),

H[n] ∋ (s1, . . . , sn) 7→ µ̂[n−1](s2 − log(1 − θ), s3, . . . , sn),
...

H[n] ∋ (s1, . . . , sn) 7→ µ̂[1](sn − log(1 − θ)),
belong to R.

Then the maximal ideal space X(R) equipped with the Gelfand topology is contractible.

1.3. Corollaries of the main result. By a result proved in [3], our main result from The-
orem 1.5 implies that R is a projective free ring. The definition of a projective free ring is
given below.

Definition 1.7. A commutative ring R with identity is said to be projective free if every
finitely generated projective R-module is free. Recall that if M is an R-module, then

(1) M is free if M ∼= Rd for some integer d ≥ 0;
(2) M is projective if there is an R-module N and an integer d ≥ 0 such that M⊕N ∼= Rd.

In terms of matrices (with entries from R), the ring R is projective free iff for every square
matrix P satisfying P 2 = P , there exists an invertible matrix G such that

GPG−1 =

[
Ik 0
0 0

]
;

see [4, Proposition 2.6].
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For example, it can be seen from the matricial definition that any field F is projective
free, since matrices P satisfying P 2 = P are diagonalizable over F. Quillen and Suslin
independently proved, that the polynomial ring over a projective free ring is again projective
free (see [7]), and so in particular, the polynomial ring F[x1, . . . , xn] is projective free, settling
Serre’s conjecture from 1955. In the context of Banach algebras, the following result was
shown recently [3, Corollary 1.4.(1)]:

Proposition 1.8. Let R be a semisimple complex commutative unital Banach algebra. If the
maximal ideal space X(R) (equipped with the Gelfand topology) of the Banach algebra R is
contractible, then R is a projective free ring.

Recall that a commutative unital Banach algebra is said to be semisimple if its radical
(that is, the intersection of all maximal ideals) is 0.

Proposition 1.9. Every Banach subalgebra R of M(H[n]) is semisimple.

This will be proved at the end of Section 2. In light of Proposition 1.8, the main result
given in Theorem 1.5 then implies the following.

Corollary 1.10. Let R be a Banach subalgebra of M(H[n]) satisfying the property (P) from
Theorem 1.5. Then R is projective free.

At the end of this article, we give examples of subalgebras of M(H[n]) (respectively

M̂(H[n])) which satisfy the property (P) (respectively P̂), which include several well-known
classical convolution algebras of measures (and classes of almost periodic functions). Thus
we have (with the notation explained in Section 4):

Corollary 1.11. Let R be one of the Banach algebras L1(H[n]) + Cδn
0 , A(H[n]), APW n

Σ or
APn

Σ . Then the maximal ideal space X(R) is contractible. In particular, R is projective free.

The motivation for investigating whether or not convolution algebras of measures are pro-
jective free rings also arises from control theory, in the problem of stabilization of linear
systems, since if R is a projective free ring, then every stabilizable plant with a transfer func-
tion over the field of fractions of R has a doubly coprime factorization. The reader is referred
to [9], [3] for details.

The proof of Theorem 1.5 is given in Section 3, while examples are given in Section 4. In
Subsection 3.2, we also show that the condition (P) is sufficient but not necessary for the

contractibility of the maximal ideal space of the unital Banach subalgebra R of M(H[n]). But
first, a few technical results used in the sequel are proved in Section 2.

2. Preliminaries

In this section, we show a few auxiliary facts needed to prove the main result.

Lemma 2.1. Let k ∈ {1, . . . , n} and µ ∈ M(H[k]). Then for all θ ∈ [0, 1],

(1) µθ ∈ M(H[k]).
(2) ‖µθ‖ ≤ ‖µ‖.
(3) (δk

0 )θ = δk
0 .

Proof. (1) and (3) follow immediately from the definitions. The inequality in (2) is a straight-
forward verification when θ = 1. We give a proof below when θ ∈ [0, 1). Given a µ ∈ M(H[k]),
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there exists a Borel measurable function w such that d|µ|(t) = eiw(t)dµ(t). Note that

‖µθ‖ = sup
∑

|µθ(Ei)|, the supremum being taken over all partitions (Ei)i∈N of H[k]. So

|µθ(Ei)| =

∣∣∣∣
∫

Ei

(1 − θ)t1dµ(t)

∣∣∣∣ =

∣∣∣∣
∫

Ei

e−iw(t)(1 − θ)t1eiw(t)dµ(t)

∣∣∣∣

=

∣∣∣∣
∫

Ei

e−iw(t)(1 − θ)t1d|µ|(t)

∣∣∣∣ ≤
∫

Ei

1d|µ|(t) = |µ|(Ei).

Hence
∑

|µθ(Ei)| ≤
∑

|µ|(Ei) = |µ|(H[k]) = ‖µ‖. �

Lemma 2.2. If µ, ν ∈ M(H[k+1]) and k ≥ 1, then (µ ∗ ν)[k] = µ[k] ∗ ν [k].

Proof. Let E ⊂ H[k] be a Borel set. Then

(µ ∗ ν)[k](E) = (µ ∗ ν)({0} × E) =

∫

{0}×E

µ(({0} × E) − t)dν(t)

=

∫

{0}×E

µ({0} × (E − τ))dν [k](τ)

=

∫

E

µ[k](E − τ)dν [k](τ) = (µ[k] ∗ ν [k])(E).

This completes the proof. �

Lemma 2.3. If µ, ν ∈ M(H[k+1]) where k ≥ 1, then (δ1
0 ⊗µ[k])∗ (δ1

0 ⊗ν [k]) = δ1
0 ⊗ (µ[k] ∗ν [k]).

Proof. (The notation Fµ is used for the Fourier transform of µ: (Fµ)(w) =
∫

eiwtdµ(t),

w ∈ R). For w1 ∈ R and ω ∈ Rk,

F((δ1
0 ⊗ µ[k]) ∗ (δ1

0 ⊗ ν [k]))(w1, ω) = (F(δ1
0 ⊗ µ[k]))(w1, ω) · (F(δ1

0 ⊗ ν [k]))(w1, ω)

= (Fδ1
0)(w1) · (Fµ[k])(ω) · (Fδ1

0)(w1) · (Fν [k])(ω)

= 1 · (Fµ[k])(ω) · 1 · (Fν [k])(ω) = (Fµ[k])(ω) · (Fν [k])(ω)

= (F(µ[k] ∗ ν [k]))(ω) = 1 · (F(µ[k] ∗ ν [k]))(ω)

= (Fδ1
0)(w1) · (F(µ[k] ∗ ν [k]))(ω)

= (F(δ1
0 ⊗ (µ[k] ∗ ν [k])))(w1, ω).

Taking the inverse Fourier transform, the claim follows. �

Proposition 2.4. If µ, ν ∈ M(H[k]), then for all θ ∈ [0, 1], (µ ∗ ν)θ = µθ ∗ νθ.

Proof. Let us first suppose that θ ∈ [0, 1). If E is a Borel subset of H, then

(µ ∗ ν)θ(E) =

∫

E

(1 − θ)t1d(µ ∗ ν)(t) =

∫∫
σ+τ∈E

σ,τ∈H[k]

(1 − θ)σ1+τ1dµ(σ)dν(τ).

On the other hand,

(µθ ∗ νθ)(E) =

∫

τ∈H[k]

µθ(E − τ)dνθ(τ) =

∫

τ∈H[k]




∫
σ∈E−τ

σ∈H[k]

(1 − θ)σ1dµ(σ)


 dνθ(τ)

=

∫∫
σ+τ∈E

σ,τ∈H[k]

(1 − θ)σ1+τ1dµ(σ)dν(τ).



6 AMOL SASANE

Now consider the case when θ = 1. If k = 1, the claim follows immediately, since

(µ ∗ ν)1 = (µ ∗ ν)({0})δ1
0 = µ({0}) · ν({0})δ1

0 = (µ({0})δ1
0 ) ∗ (ν({0})δ1

0) = µ1 ∗ ν1.

If k > 1, then

µ1 ∗ ν1 = (δ1
0 ⊗ µ[k−1]) ∗ (δ1

0 ⊗ ν [k−1]) = δ1
0 ⊗ (µ[k−1] ∗ ν [k−1]) = δ1

0 ⊗ (µ ∗ ν)[k−1] = (µ ∗ ν)1.

This completes the proof. �

The following result says that for a fixed µ ∈ M(H[k]), the map θ 7→ µθ : [0, 1] → M(H[k])
is continuous.

Proposition 2.5. If µ ∈ M(H[k]) and θ0 ∈ [0, 1], then lim
θ→θ0

µθ = µθ0 in M(H[k]).

Proof. 1◦ Consider first the case when θ0 ∈ [0, 1). Let θ ∈ [0, 1). There exists a Borel

measurable function w such that d(µθ − µθ0)(t) = e−iw(t)d|µθ − µθ0 |(t). Thus

‖µθ − µθ0‖ = |µθ − µθ0|(H
[k]) =

∫

H[k]

eiw(t)d(µθ − µθ0)(t)

=

∣∣∣∣
∫

H[k]

eiw(t)d(µθ − µθ0)(t)

∣∣∣∣ =

∣∣∣∣
∫

H[k]

eiw(t)((1 − θ)t1 − (1 − θ0)
t1)dµ(t)

∣∣∣∣.

Given an ǫ > 0, first choose an R > 0 large enough so that |µ|(B) < ǫ, where

B = {t ∈ H
[k] | ‖t‖2 ≤ R}.

Hence

‖µθ − µθ0‖ ≤

∣∣∣∣
∫

B

eiw(t)((1−θ)t1−(1−θ0)
t1)dµ(t)

∣∣∣∣+
∣∣∣∣
∫

H[k]\B
eiw(t)((1−θ)t1−(1−θ0)

t1)dµ(t)

∣∣∣∣

≤

(
max
t∈B

∣∣(1 − θ)t1 − (1 − θ0)
t1

∣∣
)
|µ|(B) + 2|µ|(H[k] \ B)

≤

(
max
t∈B

∣∣(1 − θ)t1 − (1 − θ0)
t1

∣∣
)
|µ|(H[k]) + 2ǫ.

But by the mean value theorem applied to the function θ 7→ (1 − θ)t1 ,

(1 − θ)t1 − (1 − θ0)
t1 = (θ − θ0) · t1 · (1 − c)t1−1 = (θ − θ0) · t1 ·

(1 − c)t1

1 − c
,

for some c (depending on t = t1, θ and θ0) in between θ and θ0. Since c lies between θ and
θ0, and since both θ and θ0 lie in [0, 1), and 0 ≤ t1 ≤ R, it follows that (1 − c)t1 ≤ 1 and

1

1 − c
≤ max

{
1

1 − θ
,

1

1 − θ0

}
.

Thus using the above, and the fact that 0 ≤ t1 ≤ R,

max
t∈B

∣∣(1 − θ)t1 − (1 − θ0)
t1

∣∣ = max
t∈B

|θ − θ0| · |t1| · |(1 − c)t1 | ·
1

|1 − c|

≤ |θ − θ0| · R · 1 · max

{
1

1 − θ
,

1

1 − θ0

}
.
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Hence

lim sup
θ→θ0

‖µθ − µθ0‖ ≤ lim sup
θ→θ0

((
max
t∈B

∣∣(1 − θ)t1 − (1 − θ0)
t1

∣∣
)
|µ|(H[k]) + 2ǫ

)

≤ lim sup
θ→θ0

(
|θ − θ0| · R · max

{
1

1 − θ
,

1

1 − θ0

}
· |µ|(H[k])

)
+ 2ǫ

= 0 · R ·
1

1 − θ0
|µ|(H[k]) + 2ǫ = 0 + 2ǫ = 2ǫ.

Since ǫ > 0 was arbitrary, it follows that lim sup
θ→θ0

‖µθ − µθ0‖ = 0. Also ‖µθ − µθ0‖ ≥ 0, and so

lim
θ→θ0

‖µθ − µθ0‖ = 0.

2◦ Now consider the case when θ0 = 1. Assume first that k > 1 and µ[k−1] = 0. We will show
that lim

θ→1
µθ = 0 in M(H[k]). Given an ǫ > 0, first choose a r > 0 small enough so that with

B := {t ∈ H
[k] | ‖t‖2 ≤ r},

we have |µ|(B) < ǫ. (This is possible, since µ[k−1] = 0.) There exists a Borel measurable

function w such that dµθ(t) = e−iw(t)d|µθ|(t). Thus

‖µθ‖ = |µθ|(H
[k]) =

∫

H[k]

eiw(t)dµθ(t) =

∫

H[k]

eiw(t)(1 − θ)t1dµ(t) =

∣∣∣∣
∫

H[k]

eiw(t)(1 − θ)t1dµ(t)

∣∣∣∣

≤

∣∣∣∣
∫

B

eiw(t)(1 − θ)t1dµ(t)

∣∣∣∣ +

∣∣∣∣
∫

H[k]\B
eiw(t)(1 − θ)t1dµ(t)

∣∣∣∣

≤ |µ|(B) + (1 − θ)r · |µ|(H[k] \ B) ≤ ǫ + (1 − θ)r · |µ|(H[k]).

Consequently, lim sup
θ→1

‖µθ‖ ≤ ǫ. But ǫ > 0 was arbitrary, and so lim sup
θ→1

‖µθ‖ = 0. Since

‖µθ‖ ≥ 0, it follows that lim
θ→1

‖µθ‖ = 0.

If µk−1 6= 0, then define ν := µ − δ1
0 ⊗ µ[k−1] ∈ M(H[k]). It is clear that ν [k−1] = 0 and

νθ = µθ − δ1
0 ⊗ µ[k−1]. From the above, lim

θ→1
νθ = 0, and so lim

θ→1
µθ = δ1

0 ⊗ µ[k−1] = µ1 in

M(H[k]).

3◦ The case when θ0 = 1 and k = 1 is analogous to 2◦ above. �

Finally we prove that every Banach subalgebra R of M(H[n]) is semisimple.

Proof of Proposition 1.9. If s ∈ C, Re(s) ≥ 0, and k ∈ {1, . . . , n}, then Φ
[k]
s , given by

Φ[k]
s (µ) =

∫

{t | t=(0,τ)∈Rk×H[n−k]}
e−stkdµ(t) (µ ∈ R),

is an element of X(R), and so the kernel of Φ
[k]
s is a maximal ideal in R. But if Φ

[k]
s (µ) = 0

for all s and all k, then µ is zero on H[n]. So the radical of R is 0. �
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3. Contractibility of X(R)

In this section we will prove our main result.

Proof of Theorem 1.5. Define H : X(R) × [0, 1] → X(R) as follows. If θ ∈ [0, 1], Φ ∈ X(R)
and µ ∈ R, then

(H(Φ, θ))(µ) =





Φ(µnθ) 0 ≤ θ < 1
n
,

Φ(δk
0 ⊗ µ

[n−k]
nθ−k) k

n
≤ θ < k+1

n
, k = 1, . . . , n − 1,

Φ(µ({0})δn
0 ) = µ({0}) θ = 1.

We show that H is well-defined. From the definition, H(Φ, 1) ∈ X(R) for all Φ ∈ X(R). If
θ ∈ [0, 1), then the linearity of H(Φ, θ) : R → C is obvious. Continuity of H(Φ, θ) follows from
the fact that Φ is continuous and ‖µθ‖ ≤ ‖µ‖ for θ ∈ [0, 1]. That H(Φ, θ) is multiplicative
is a consequence of Proposition 2.4, and the fact that Φ respects multiplication. Finally
(H(Φ, θ))(δn

0 ) = Φ((δn
0 )θ) = Φ(δn

0 ) = 1.
It is obvious that H(·, 0) is the identity map and H(·, 1) is a constant map.
Finally, we show below that H is continuous. Since X(M(H[n])) is equipped with the

Gelfand topology, we just have to prove that for every convergent net (Φi, θi)i∈I with limit

(Φ, θ) in X(M(H[n])) × [0, 1], there holds that (H(Φi, θi))(µ) → (H(Φ, θ))(µ). We have

|(H(Φi, θi))(µ)− (H(Φ, θ))(µ)| ≤ |(H(Φi, θi))(µ)− (H(Φi, θ))(µ)|+ |(H(Φi, θ)−H(Φ, θ))(µ)|,

and from the definition of H, it is immediate that |(H(Φi, θ) − H(Φ, θ))(µ)| → 0. So it
remains to show that |(H(Φi, θi))(µ) − (H(Φi, θ))(µ)| → 0. There is no loss of generality in
assuming that all the θi’s belong to one of the intervals

[
0, 1

n

)
,

[
1
n
, 2

n

)
, . . . ,

[
n−1

n
, 1

)
. But

then Proposition 2.5 yields the desired result: for example if θi ∈ [ k
n
, k+1

n
) and θ = k+1

n
, then

|(H(Φi, θi))(µ) − (H(Φi, θ))(µ)| = |Φi(δ
k
0 ⊗ µ

[n−k]
nθi−k − δk

0 ⊗ (δ1
0 ⊗ µ[n−k−1]))|

≤ ‖Φi‖ · ‖δ
k
0‖ · ‖µ

[n−k]
nθi−k − δ1

0 ⊗ µ[n−k−1]‖

≤ 1 · 1 · ‖µ
[n−k]
nθi−k − δ1

0 ⊗ µ[n−k−1]‖ → 0.

This completes the proof. �

3.1. Remarks about the conditions (P) and (P̂) and the proof of Theorem 1.5.
Our definition of the map H is based on the following consideration, in the case of n = 1,
when H[n] = H[1] = [0,+∞).

The result given below can be thought of as a generalization of the Riemann-Lebesgue
Lemma for functions fa ∈ L1(0,+∞) (that the limit as s → +∞ of the Laplace transform of
fa is 0):

Proposition 3.1. If µ ∈ M(H[1]), then lim
s→+∞

∫ +∞

0
e−stdµ(t) = µ({0}).

The set X(M(H[1])) contains the half plane C≥0 := {s ∈ C | Re(s) ≥ 0} in the sense that

each s ∈ C≥0, gives rise to the corresponding complex homomorphism Φs : M(H[1]) → C,
given simply by point evaluation of the Laplace transform of µ at s:

µ 7→ Φs(µ) =

∫ +∞

0
e−stdµ(t), µ ∈ M(H[1]).
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If we imagine s tending to +∞ along the real axis we see from Proposition 3.1, that Φs starts
looking more and more like the complex homomorphism Φ+∞ given by

µ 7→ Φ+∞(µ) := µ({0}), µ ∈ M(H[1]).

So we may define H(Φs, θ) = Φs−log(1−θ), which would suggest that at least the part C≥0

of X(M(H[1])) is contractible to Φ+∞. But we see that we can view the action of H(Φs, θ)
defined above as follows:

(H(Φs, θ))(µ) = Φs−log(1−θ)(µ)

=

∫ +∞

0
e−(s−log(1−θ))tdµ(t) =

∫ +∞

0
e−st(1 − θ)tdµ(t)

= Φs(ν),

where ν is the measure such that dν(t) = (1 − θ)tdµ(t). This motivates the definition of µθ

given in (1), and the definition of H in the proof of Theorem 1.5.
We note that the map µ 7→ µθ is just a particular translation in the “frequency domain”,

that is, by taking Laplace transforms. Indeed, we have

µ̂θ(s) =

∫ +∞

0
e−st(1 − θ)tdµ(t) =

∫ +∞

0
e−(s−log(1−θ))tdµ(t) = µ̂(s − log(1 − θ)).

This explains the relation between the conditions (P) and (P̂).

3.2. The condition (P) or (P̂) is not necessary for contractibility. In this subsection,

we will give an example of a unital Banach subalgebra of M̂(H[1]) that has a contractible

maximal ideal space, but fails to possess the property (P̂). The example can be adapted

also to get a counterexample for the necessity of (P̂) for the contractibility of the maximal

ideal space of M̂(H[n]) for n > 1. By taking inverse Laplace transforms, we then also get the

analogous result in the case of M(H[n]).

The subalgebra R of M̂(H[1]). Consider the element µ̂ ∈ M̂(H[1]), given by

µ̂(s) =
s(s − 1)

(s + 1)2
, s ∈ C≥0 := {s ∈ C | Re(s) ≥ 0}.

Thus µ ∈ M(H[1]) is given by dµ(t) = (δ1
0−3e−t+2te−t)dt. Consider the subalgebra R = [1, µ̂]

of M̂(H[1]) generated by the identity element 1 (namely the map s 7→ 1) and the element

µ̂, that is, R is the closure in M̂(H[1]) of all polynomials in µ̂. In other words, R is the

closure in M̂(H[1]) of elements of the form p(µ̂) := a01 + a1µ̂ + a2(µ̂)2 + · · · + an(µ̂)n, where
a1, a1, a2, . . . , an are complex scalars, and n denotes any nonnegative integer.

Contractibility of X(R). The following result is known; see [5, Theorem 1.4, page 68]:

Proposition 3.2. Let B be a finitely generated Banach algebra, generated by x1, . . . , xm.
Then the joint spectrum of x1, . . . , xm in B, namely the set

σB(x1, . . . , xm) = {(x̂1(ϕ), . . . , x̂m(ϕ)) | ϕ ∈ X(B)} (⊂ C
m),

is homeomorphic to the maximal ideal space X(B). (Here ·̂ denotes the Gelfand transform.)
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So in our case, it suffices to show that the joint spectrum of 1 and µ̂ in R is contractible.
We observe that

σR(1, µ̂) = {(1, µ̂(ϕ)) | ϕ ∈ X(R)} = {1} × {µ̂(ϕ) | ϕ ∈ X(R)} = {1} × σR(µ̂). (2)

Hence it is enough to show that σR(µ̂) is contractible. We recall the following result, which
relates the spectrum of an element x of a subalgebra of a Banach algebra with the spectrum
of x in the Banach algebra; see [11, Theorem 10.18, page 238].

Proposition 3.3. Let B be a unital Banach algebra, and S be a Banach subalgebra of B that
contains the unit of B. If x ∈ S, then σS(x) is the union of σB(x) and a (possibly empty)
collection of bounded components of the complement of σB(x).

We apply the above with

B = ̂L1(0,∞) + Cδ1
0 =

{
s 7→

∫ ∞

0
e−stfa(t)dt + α

∣∣∣∣ fa ∈ L1(0,∞) and α ∈ C

}
,

S = R, and x = µ̂ ∈ R ⊂ ̂L1(0,∞) + Cδ1
0 . The maximal ideal space of ̂L1(0,∞) + Cδ1

0 can
be identified with {s ∈ (C ∪ {∞}) | and Re(s) ≥ 0}; see [6, pages 112-113]. Consequently,

σ ̂L1(0,∞)+Cδ1
0

(µ̂) =

{
s(s − 1)

(s + 1)2

∣∣∣∣ s ∈ (C ∪ {∞}) and Re(s) ≥ 0

}
(s= 1+z

1−z )
=

{
z + z2

2

∣∣∣∣ |z| ≤ 1

}
.

It can be shown that this last set is the closure of the interior of a simple closed curve C; see
Figure 1.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

00.51

Figure 1. The simple closed curve C is depicted by the bold line. The bold

line C together with the dotted line is the curve θ 7→ eiθ+e2iθ

2 : [0, 2π] → C.

Thus the complement of σ ̂L1(0,∞)+Cδ1
0

(µ̂) has no bounded components, and so by Proposi-

tion 3.3 we conclude that σR(µ̂) = σ ̂L1(0,∞)+Cδ1
0

(µ̂). Hence σR(µ̂) is contractible and from (2)

it follows that also σR(1, µ̂) = {1} × σR(µ̂) is contractible. Finally, by Proposition 3.2, X(R)
is contractible.
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(P̂) does not hold. Now we show that the map

s 7→ µ̂(s − log(1 − θ)) =: µ̂θ(s) (s ∈ C≥0)

does not belong to R for a particular choice of θ ∈ [0, 1), demonstrating that (P̂) does not
hold. In fact we take θ = 1 − 1

e
, so that − log(1 − θ) = 1. Suppose on the contrary that

µ̂θ ∈ R. Then by the density of polynomials in µ̂ in R, it follows that given ǫ = 1
10 , there

exists a nonnegative integer n and scalars a1, a1, a2, . . . , an such that

‖µ̂θ − (a01 + a1µ̂ + a2(µ̂)2 + · · · + an(µ̂)n)‖ < ǫ. (3)

But for every ν ∈ M(H[1]), we have that

|ν̂(s)| =

∣∣∣∣
∫ ∞

0
e−stdν(t)

∣∣∣∣ =

∣∣∣∣
∫ ∞

0
e−iw(t)e−std|ν|(t)

∣∣∣∣ ≤
∫ ∞

0
1 · d|ν|(t) = ‖ν‖ (s ∈ C≥0),

where in the above, w denotes a Borel measurable function such that d|ν|(t) = eiw(t)dν(t). In
light of this, we have from (3) that

|µ̂(s + 1) − (a01(s) + a1µ̂(s) + a2(µ̂(s))2 + · · · + an(µ̂(s))n)| < ǫ (s ∈ C≥0).

Now putting s = 0 and s = 1, respectively, we obtain the inequalities∣∣∣∣
(0 + 1)(0 + 1 − 1)

(0 + 1 + 1)2
− a0

∣∣∣∣ = |a0| < ǫ and

∣∣∣∣
(1 + 1)(1 + 1 − 1)

(1 + 1 + 1)2
− a0

∣∣∣∣ =

∣∣∣∣
2

9
− a0

∣∣∣∣ < ǫ.

Adding these, we obtain 2
9 ≤

∣∣2
9 − a0

∣∣ + |a0| < 2ǫ = 2
10 , a contradiction.

4. Examples

As specific examples of R in Theorem 1.5 and Theorem 1.6, we have the following:

4.1. The algebra L1(H[n])+Cδn
0 . Consider the Banach subalgebra L1(H[n])+Cδn

0 of M(H[n]),
consisting of all complex Borel measures of the type µa + αδn

0 , where µa is absolutely contin-
uous (with respect to the Lebesgue measure) and α ∈ C. It can be checked that this Banach

subalgebra of M(H[n]) has the property (P) in the statement of Theorem 1.5.

4.2. The algebra A(H[n]). The Banach subalgebra A(H[n]) of M(H[n]) consists of all com-
plex Borel measures that do not have a singular non-atomic part. Then it can be verified
that A(H[n]) also possesses the property (P). (So in the case when n = 1, we recover the main
result in [13], but this time without recourse to the explicit description of the maximal ideal
space.)

4.3. Algebras of almost periodic functions. The algebra APn of complex valued (uni-
formly) almost periodic functions is, by definition, the smallest closed subalgebra of L∞(Rn)

(with all operations defined pointwise), that contains all the functions eλ(x) := ei〈λ,x〉. Here
the variable x = (x1, . . . , xn), the parameter λ = (λ1, . . . , λn) ∈ Rn, and 〈λ, x〉 :=

∑n
k=1 λkxk.

For any f ∈ APn, its Bohr-Fourier series is defined by the formal sum
∑

λ fλei〈λ,x〉 (x ∈ Rn),
where

fλ := lim
N→∞

1

(2N)n

∫

[−N,N ]n
e−i〈λ,x〉a(x)dx, λ ∈ R

n,

and the sum
∑

λ fλei〈λ,x〉 is taken over the set σ(f) := {λ ∈ Rn | fλ 6= 0}, called the Bohr-
Fourier spectrum of f . The Bohr-Fourier spectrum of every f ∈ APn is at most a countable
set.



12 AMOL SASANE

The almost periodic Wiener algebra APW n is defined as the set of all APn such that
the Bohr-Fourier series

∑
λ fλei〈λ,x〉 of f converges absolutely. The almost periodic Wiener

algebra is a Banach algebra with pointwise operations and the norm ‖f‖ :=
∑

λ∈Rn |fλ|. Let
∆ be a nonempty subset of Rn. Denote

APn
∆ = {f ∈ APn | σ(f) ⊂ ∆}

APW n
∆ = {f ∈ APW n | σ(f) ⊂ ∆}.

If ∆ is an additive subset of Rn, then APn
∆ (respectively APW n

∆) is a Banach subalgebra of
APn (respectively APW n). Moreover, if 0 ∈ ∆, then APn

∆ and APW n
∆ are also unital.

Let Σ ⊂ H[n] be an additive semigroup (if λ, µ ∈ Σ, then λ + µ ∈ Σ) and suppose 0 ∈ Σ.
The Banach algebra APW n

Σ is isometrically isomorphic to the following Banach subalgebra

R of M(H[n]):

R =

{ ∑

λ

fλδn
0 (λ)

∣∣∣∣
∑

λ

fλei〈λ,x〉 ∈ APW n
Σ

}
.

Then APW n
Σ = R̂. In the above, δn

0 (λ) ∈ M(H[n]) denotes the Dirac measure supported at

λ ∈ H[n], that is,

(δn
0 (λ))(E) =

{
1 if λ ∈ E,

0 if λ 6∈ E,

where E is any Borel subset of H[n]. It can be seen that the subalgebra R has the property

(P), and R̂ has the property (P̂). Thus the maximal ideal space of APW n
Σ is contractible.

The maximal ideal spaces of APn
Σ and APW n

Σ are homeomorphic as topological spaces; see
for example [1, Theorem 3.1]. So the maximal ideal space of APn

Σ is contractible as well.

Thus we recover the main result from [10]. (In [10], instead of the canonical half space H[n],
more general half spaces S were considered. There a subset S of Rn was called a half space
in Rn if it satisfied the properties S ∪ (−S) = Rn, S ∩ (−S) = {0}, x + y ∈ S for all x, y ∈ S,
αx ∈ S for all x ∈ S and α ≥ 0. However, it was shown in [10, Proposition 1.2] that any such

half space S is of the form ZH[n] for an invertible matrix Z ∈ Rn×n.)
Summarizing the results of this section, we have shown Corollary 1.11 as a particular

consequence of our main results in Theorems 1.5 and 1.6.

5. Open question

We have seen that the condition (P) is sufficient but not necessary for the contractibility
of the maximal ideal space of the unital Banach subalgebra R of M(H[n]). The following
natural question then arises:

Can the condition (P) be replaced by a weaker condition (P′) so that the new condition
(P′) is necessary and sufficient for the contractibility of the maximal ideal space of a unital

Banach subalgebra of M(H[n]) in Theorem 1.5?
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