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Abstract. Let AR denote the set of functions from the disk algebra
having real Fourier coefficients. Generalizing a result of A. Quadrat
we show that every unstabilizable multi-input multi-output plant is as
close as we want to a stabilizable multi-input multi-output plant in the
product topology.

1. Introduction

The fractional representation approach to analysis and synthesis problems
was developed in the 1980s in order to express in a unique mathematical
framework several questions on stabilization problems. In that framework,
we can study internal stabilization (existence of an internally stabilizing
controller), parametrization of all stabilizing controllers, strong stabilization
(possibility of stabilizing a plant by means of a stable controller), simultane-
ous stabilization (possibility of a stabilizing a set of plants by means of a sin-
gle controller), etc. See [11] for more details. In a recent paper, A. Quadrat
proposed a generalisation of the well-known Youla-Kucera parametrization
for stabilizable plants which do not necessarily admit a doubly coprime fac-
torization. Consequently using the concept of topological stable rank, A.
Quadrat showed that every unstable single input single output plant, de-
fined by the transfer function p = n/d, with 0 6= d, n ∈ H∞(D), is as close
as we want to a stabilizable plant in the product topology, see 3.2.

The purpose of this research note is twofold: Unfortunately, Quadrat’s
transfer functions need not be real on the real axis, so no physically meaning
can be given to his approximating plants. In the meantime this difficulty has
been overcome, because the topological stable rank (Definition see below)
of the algebra of real bounded analytic functions is 2, see [10]. Moreover, in
[13], the authors proved the same for the real disk algebra.
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In this note, we generalize this approximation result to multi-input multi-
output systems.

The notion of stable rank of a ring (which we call Bass stable rank) was
introduced by H. Bass [2] to facilitate computations in algebraic K-theory.
We recall the definition of the Bass stable rank of a ring below.

Definition 1.1 Let A be a commutative ring with identity 1. Let n ∈ N.
An element a = (a1, . . . , an) ∈ An is called unimodular if there exists an
element b = (b1, . . . , bn) ∈ An such that

n∑

k=1

bkak = 1.

We denote by Un(A) the set of unimodular elements of An.
The element a = (a1, . . . , an) ∈ Un(A) is reducible, if there exist elements

h1, . . . , hn−1 ∈ A such that (a1 + h1an, . . . , an−1 + hn−1an) ∈ Un−1(A). The
Bass stable rank of A, denoted by bsr(A), is the least integer n such that
every a ∈ Un+1(A) is reducible, and is defined to be infinite if no such n
exists.

The Bass stable rank is a purely algebraic notion, but when studying
commutative Banach algebras of functions, analysis also plays a role. In
[12], M. Rieffel introduced the notion of topological stable rank (abbreviated
tsr), analogous to the K-theoretic concept of Bass stable rank. We recall
this definition below.

Definition 1.2 Let A denote a (real or complex) commutative unital normed
algebra. The topological stable rank of A is the minimum integer n such that
Un(A) is dense in An (and it is infinite if no such integer exists).

The determination of the Bass and topological stable ranks of AR plays
an important role in control theory, in the problem of stabilization of linear
systems. We refer the reader to Quadrat [11] for background on the connec-
tion between stable ranks and control theory; in particular, see Corollary
6.4 on page 2279 and Proposition 7.4 on page 2281. We briefly explain this
in the last section of this note.

In applications in control theory, the linear systems and transfer functions
have real coefficients, and so in this context it is important to consider real

algebras, since otherwise the controllers obtained are physically meaningless.
It was conjectured by Brett Wick in [17] that the Bass stable rank of the
real disk algebra is equal to 2, and in [13] we prove this.

Jones, Marshall and Wolff showed that the Bass stable rank of the complex
disk algebra A is equal to 1 (see [7]), and Rieffel showed that its topological
stable rank is equal to 2 (see [12]). Recall that the disk algebra is the
Banach algebra of all complex valued functions defined on the closed unit
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disk D that are holomorphic in the open unit disk D and continuous on D,
equipped with the supremum norm: ‖f‖∞ = supz∈D

|f(z)|.
In this paper we show that the topological stable rank of the real disk

algebra AR (defined below) is equal to 2. From this result it follows, that
the Bass stable rank of the real disk algebra is also 2, see [13].

Definition 1.3 The real disk algebra, denoted by AR, is the set of all func-
tions of A having real Fourier coefficients. Equivalently,

AR = {f ∈ A | ∀z ∈ D, f(z) = f(z)}.

The real algebra AR is a Banach algebra with the supremum norm ‖ · ‖∞.
The real Wiener algebra, denoted by W+

R
, is the set of all functions of the

Wiener algebra W+ having real Fourier coefficients, that is

W+
R

=

{
f(z) =

∞∑

k=0

akz
k

∣∣∣∣∣ all ak real,

∞∑

k=0

|ak| < ∞

}
.

The real algebra W+
R

is a Banach algebra with the norm ‖f‖ :=
∑

∞

k=0 |ak|.
The real algebra of bounded analytic functions, denoted by H∞

R
, is given

by all bounded analytic functions on the unit disk D having real Fourier
coefficients

H∞
R =

{
f(z) =

∞∑

k=0

akz
k

∣∣∣∣ all ak real, f bounded

}
.

The real algebra H∞
R

is a Banach algebra when given the supremum norm
‖f‖

∞
:= supz∈D|f(z)|.

All stable rational transfer fuctions belong to the real disk algebra, either
in context of discrete systems or by using the well-known transformation of
the extended right half plane to the closed unit disk. The transition to the
uniform limits allows for a much wider class of transfer functions.

The functions in the real Wiener algebra represent the set of all l∞-stable
(bounded input bounded output stability), shift-invariant causual digital
filters.

After the usual transformation to the right half plane the real bounded
analytic functions are useful as transfer functions of certain PDEs, for ex-
ample, the wave equation with inputs [5].

We make the observation that the polynomials with real coefficients are
dense in AR. Indeed, given f ∈ AR, f has real Fourier coefficients, which
are the same as coefficients in the Taylor expansion of the analytic function
f about the point 0 in D. Since f is continuous on the circle, and its
negative Fourier coefficients vanish, the Cesàro means of the Fourier series
for f comprise a sequence of trigonometric polynomials with real coefficients
which converge uniformly to f . The corresponding polynomials in z give the
desired sequence uniformly converging to f in AR.
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To make this exposition self-contained, we include the proofs of the stable
range results given in [13].

2. Topological stable rank

Theorem 2.1 The topological stable rank of the Banach algebra AR is equal

to 2.

Proof. First of all we note that U1(AR) is not dense in AR. Indeed, U1(AR)
is the set of units in AR, and f is invertible as an element in AR only if it has
no zero in D. But the uniform limit of such a sequence is either identically
zero or has no zeros in D (see Theorem 2, page 178 of [1]). So taking any
function with finitely many zeros in D, say z, we have a contradiction. So
tsr(AR) > 1.

Next we show that U2(AR) is dense in A2
R
. Take (f, g) ∈ A2

R
and approx-

imate f, g by polynomials p, q, respectively, having real coefficients. Since
p ∈ R[z], we have the following product representation for p:

p(z) = C
∏

(z − rj)
∏

(z2 + sjz + tj),

where C, rj , sj, tj are real numbers. If p and q have a common root in D,
then we replace rj , sj, tj by rj + ǫ, sj + ǫ, tj + ǫ with a sufficiently small real

ǫ so that the new polynomial p̃ has no common root with q in D, and so
(p̃, q) ∈ U2(AR). Consequently tsr(AR) ≤ 2. �

Remark 2.1 Theorem 2.1 (and Theorem 2.2) remain valid whenever we
have a real (or complex) normed algebra R such that:

(1) The inclusion in AR (or the complex disk algebra A, respectively) is
continuous, that is, ‖f‖∞ ≤ C‖f‖, (f ∈ R). (Here ‖f‖ denotes the
norm of f in R.)

(2) The polynomials are dense in R.

The proofs are the same, mutatis mutandis. For instance, we have that the
topological stable rank of the Wiener algebra W+ and the real-symmetric
Wiener algebra W+

R
are both equal to 2.

In [10], Mortini and Wick have proved that the topological stable rank of
H∞

R
is two.

We now give a matricial analogue of the above theorem, which is of inde-
pendent interest in control theory, as explained in the next section following
this result.

For a matrix M ∈ Ap×m
R

, the transpose of M will be denoted by M⊤ in
the sequel, and

‖M‖ := sup
z∈D

‖M(z)‖Cp×m .
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Theorem 2.2 If N ∈ Ap×m
R

and D ∈ Am×m
R

, then for every ǫ > 0, there

exist Nǫ ∈ Ap×m
R

and Dǫ ∈ Am×m
R

such that ‖Nǫ − N‖ < ǫ, ‖Dǫ − D‖ < ǫ

and
[

Nǫ Dǫ

]⊤
has a left inverse with entries in AR.

Proof. Since the polynomials with real coefficients are dense in AR, we can
approximate N,D by polynomial matrices P ∈ R[z]p×m and Q ∈ R[z]m×m.

Let G :=
[

P Q
]⊤

. By the Smith decomposition of G (see for instance [3,

Theorem 4.3.2, p. 127]), there exist invertible matrices U ∈ R[z](p+m)×(p+m),
V ∈ R[z]m×m, and polynomials p1, . . . , pm ∈ R[z] such that G = UΣV ,
where

Σ =




p1

. . .

pm

0p×m


 .

Now we perturb the roots of the polynomials p1, . . . , pm (preserving sym-
metry with respect to the real line), so that with the new polynomials

p̃1, . . . , p̃m, no two polynomials have a common root in D. Let Σ̃ denote
the matrix obtained by replacing the pks in Σ by the corresponding p̃ks,
and by replacing one of the row of zeros in the 0p×m block of Σ by the row[

ǫ′ . . . ǫ′
]
, where ǫ′ > 0. Then we note that

(1) ∀z ∈ D, rank(Σ̃(z)) = m.

We now show that (1) implies that Σ̃ has a left inverse with entries in AR.
Let S(m, p+m) denote the set of all strictly increasing m-tuples taken from
{1, . . . ,m}. For each m-tuple J ∈ S(m,p + m), let FJ denote the m × m

submatrix of Σ̃ corresponding to the rows with indices in J . Define fJ to be
detFJ . From (1), it follows that for all z ∈ D, there exists a J ∈ S(m,p+m)
such that fJ(z) 6= 0. Hence by the corona theorem for AR [17], it follows
that the minors fJ , J ∈ S(m,p + m), together generate AR, that is, there
exist gJ ∈ AR, J ∈ S(m, p + m), such that

∑

J∈S(m,p+m)

gJfJ = 1.

Next for each J = (j1, . . . , jm) ∈ S(m,p + m), we construct a matrix BJ ∈

A
m×(p+m)
R

as follows:

(1) Let GJ be the adjoint of FJ .
(2) Let g1

J , . . . , gm
J be the rows of GJ .

(3) Define BJ to be the m × (p + m) matrix whose rows with indices
j1, . . . , jm are equal to g1

J , . . . , gm
J , respectively, while all the other

rows of BJ are zero.
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Then by construction BJ Σ̃ = GJFJ = fJIm. Now define

B =
∑

J∈S(m,p+m)

gJBJ .

Then BΣ̃ = Im.
Consequently, defining the p×m and m×m matrices Nǫ and Dǫ, respec-

tively, by
[

Nǫ Dǫ

]⊤
= U Σ̃V , we have that

[
Nǫ Dǫ

]⊤
has a left inverse

with entries in AR and moreover by choosing the ǫ′ and the perturbation of
the polynomial roots of p1, . . . , pm small enough at the outset, we can also
ensure that ‖Nǫ −N‖ < ǫ and ‖Dǫ −D‖ < ǫ. This completes the proof. �

Of course this result also holds for the real Wiener algebra W+
R

; see Re-
mark 2.1.

Example 2.1 Let

N =
[

z2 0
]
,

D =

[
0 z
0 0

]
.

Then the matrix

Σ(z) :=
[

N(z) D(z)
]

=




z2 0
0 z
0 0




is not left invertible. Indeed, if there were a matrix P with entries in AR

such that P (z)Σ(z) = I2, then putting z = 0, we arrive at the contradiction
that 0 = I.

Now suppose that any ǫ > 0 has been given. Following the procedure
given in the proof above, we construct the matrices Nǫ, Dǫ as follows:

Nǫ =
[

z2 + ǫ 0
]
,

Dǫ =

[
0 z
ǫ ǫ

]
.

Then

‖N − Nǫ‖ = ‖
[

ǫ 0
]
‖ ≤ ǫ,

‖D − Dǫ‖ =

∥∥∥∥
[

0 0
ǫ ǫ

]∥∥∥∥ ≤ ǫ.

Furthermore, the matrix

[
Nǫ(z) Dǫ(z)

]
=




z2 + ǫ 0
0 z
ǫ ǫ






ON THE DENSITY OF STABILIZABLE PLANTS IN THE CLASS OF UNSTABILIZABLE PLANTS7

is left invertible in AR, since

[
1
ǫ

z
ǫ

− z2

ǫ2

−1
ǫ

− z
ǫ

z2

ǫ2
+ 1

ǫ

]


z2 + ǫ 0
0 z
ǫ ǫ


 = I2.

♦

3. Control theoretic consequences

Finally, we give consequences for systems theory of the results established
in the previous section.

We consider unstable transfer functions which we write as a ratio of ele-
ments from AR.

Definition 3.1 Matrices with entries in AR will be denoted by Mat(AR). If
N,D ∈ Mat(AR), then the pair (N,D) is called right coprime (with respect
to AR) if there exist X,Y ∈ Mat(AR) such that the matrix Bézout identity
holds: XN +Y D = I. A left coprime pair of matrices is defined analogously.

We now consider unstable transfer functions that can be expressed as a
quotient of two elements from AR. Since AR is an integral domain, we can
consider its field of fractions. We recall this notion below.

Definition 3.2 If R is an integral domain, then a fraction is a symbol
N
D

, where N,D ∈ R and D 6= 0. Define the relation ∼ on the set of all

fractions as follows: N1

D1
∼ N2

D2
if N1D2 = N2D1. The relation ∼ is an

equivalence relation on the set of all fractions. The equivalence class of N
D

is

denoted by [N
D

]. The field of fractions, denoted by F(R), is the set F(R) =

{[N
D

] | N,D ∈ R and D 6= 0}, of equivalence classes of the relation ∼, with

addition and multiplication defined as follows: [N1

D1
] + [N2

D2
] = [N1D2+N2D1

D1D2
]

and [N1

D1
][N2

D2
] = [N1N2

D1D2
]. F(R) is then a field with these operations.

Matrices with entries in F(AR) will be denoted by Mat(F(AR)). If P ∈
Mat(F(AR)), then P is said to have a right coprime factorization if there
exists a pair (N,D) with N,D ∈ Mat(AR) such that D is a square matrix,
det(D) 6= 0, P = ND−1, and (N,D) is right coprime. A left coprime fac-

torization is defined analogously. A transfer function having a right coprime
factorization and a left coprime factorization is said to have a doubly coprime

factorization.

It can be shown that in the case of AR, a plant P has a right coprime
factorization iff it has a left coprime factorization. This is a consequence of
the fact that the ring AR is Hermite; see [9] and [15, Theorem 66, p. 347].

Coprime factorization plays an important role in stabilizing a plant using
a factorization approach, where by ‘stabilization’, we mean the following.
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Definition 3.3 Let P,C ∈ Mat(F(AR)). The pair (P,C) is said to be stable

if

(2) H(P,C) =

[
(I + PC)−1 −P (I + PC)−1

C(I + PC)−1 (I + PC)−1

]

is well defined, and belongs to Mat(AR). We define

S(P ) = {C ∈ Mat(F(AR)) | (P,C) is a stable pair}.

P ∈ F(AR)p×m is said to be stabilizable if S(P ) 6= ∅.

u1

u2

e1

e2

P

C

+

+

+

+

Figure 1. Closed loop interconnection of the plant P and
the controller C.

As shown in Figure 1, H(P,C) in (2) is the transfer function of
[

u1

u2

]
7→

[
e1

e2

]
.

The stabilization problem for a plant is solved completely once a transfer
function has a doubly coprime factorization. We recall the following well-
known result from Vidyasagar [15, Theorem 12, p. 364]:

Theorem 3.1 Let P ∈ Mat(F(AR)) have a right coprime factorization

(Nr,Dr) and a left coprime factorization (Dl,Nl). Let Xr, Yr,Xl, Yl ∈
Mat(AR) be such that XrNr + YrDr = I and NlXl + DlYl = I. Then

S(P ) = {(Yr − QNl)
−1(Xr + QDl) | Q ∈ Mat(AR), det(Yr − QNl) 6= 0}

= {(Xl + DrQ)(Yl − NrQ)−1 | Q ∈ Mat(AR), det(Yl − NrQ) 6= 0}.

We now recall the result of A. Quadrat, see [11, Proposition 7.4, p. 2281]:

Theorem 3.2 If (R, ‖ · ‖) is a Banach algebra such that tsr(R) = 2, then

for every single input single output plant defined by the transfer function

p = n/d, n ∈ R, 0 6= d ∈ R, and for given ǫ > 0 there exist nǫ, dǫ ∈ R such

that

‖nǫ − n‖ < ǫ, ‖dǫ − d‖ < ǫ,

and pǫ := nǫ

dǫ
admits a coprime factorization.
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Theorem 2.1 now implies that this approximation property holds for the
real algebras AR and W+

R
, whereas the result by Mortini and Wick implies

it for H∞
R

.
Not every P ∈ Mat(F(AR)) has a coprime factorization; see page 249 of

[8], where an explicit construction of a finitely generated, non-principal ideal
is given in terms of Blaschke products; this has the consequence that the
ring AR is not a Bézout domain, which implies that not every element in
F(AR) has a coprime factorization.

However, Theorem 2.2 rescues this undesirable situation in the following
sense: even if the given “system” G does not have a coprime factorization,
it can be replaced by a new system Gǫ having a coprime factorization Gǫ =
NǫD

−1
ǫ , and the new system Gǫ can be chosen to be arbitrarily “close” to

G.

Corollary 3.3 Let P = ND−1 ∈ Mat(F(AR)), with N,D ∈ Mat(AR) and

detD 6= 0. Given any ǫ > 0, there exist Nǫ ∈ Mat(AR) and Dǫ ∈ Mat(AR)
such that detDǫ 6= 0, ‖N − Nǫ‖ < ǫ and ‖D − Dǫ‖ < ǫ, and moreover

(Nǫ,Dǫ) is right coprime.

Again this holds also for W+
R

, see Remark 2.1.

4. Open Problem

Does Corollary 3.3 hold in case of H∞
R

?
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