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Abstract. Let R be a commutative complex Banach algebra with the
involution ·

⋆ and suppose that A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n. The

question of when the Riccati equation

PBB
⋆
P − PA− A

⋆
P − C

⋆
C = 0

has a solution P ∈ R
n×n is investigated. A counterexample to a previous

result in the literature on this subject is given, followed by sufficient
conditions on the data guaranteeing the existence of such a P . Finally,
applications to spatially distributed systems are discussed.

1. Introduction

If A ∈ Cn×n, B ∈ Cn×m and C ∈ Cp×m, then the Riccati equation is

PBB∗P − PA−A∗P − C∗C = 0

in the unknown P ∈ Cn×n. This is a fundamental equation associated with
the problem of optimal control of linear control systems with a quadratic
cost, and the following is a well known result about the existence of solutions.

Proposition 1.1. Let A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n be such that
(A,B) is stabilizable and (A,C) is detectable. Then there is a unique positive
semidefinite solution P ∈ Cn×n to the Riccati equation

PBB∗P − PA−A∗P − C∗C = 0,

such that A − BBP ∗ is exponentially stable, that is, Re(λ) < 0 for all
eigenvalues λ of A−BBP ∗.

(Recall that the pair (A,B) is stabilizable if there exists a F ∈ Cm×n such
that A+BF is asymptotically stable, and the pair (A,C) is detectable if the
pair (A∗, C∗) is stabilizable.)

There has been old (see [3]) and recent (see [4]) renewed interest in the
following question: if the data A,B,C have entries in a Banach algebra,
then does there exist a solution P also with entries from the same Banach
algebra? In this article, we investigate this question. We begin by fixing
some notation.
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Notation 1.2. Throughout the article, R will denote a commutative, unital,
complex, semisimple Banach algebra, which possesses an involution ·⋆.

On the other hand, the usual adjoint of a matrix M = [mij ] ∈ Cp×m will
be denoted by M∗ ∈ Cm×p, that is, M∗ = [mji].

M(R) will denote the maximal ideal space of R, equipped with the weak-∗
topology. For x ∈ R, we will denote its Gelfand transform by x̂, that is,

x̂(ϕ) = ϕ(x), ϕ ∈ M(R), x ∈ R.

For a matrix M ∈ Rp×m, whose entry in the ith row and jth column is
denoted by mij, we define M⋆ ∈ Rm×p to be the matrix whose entry in the

ith row and jth column is m⋆
ji. Also by M̂ we mean the p × m matrix,

whose entry in the ith row and jth column is the continuous function m̂ij

on M(R). Summarizing, if M = [mij] ∈ Rp×m, then

M⋆ =
[
m⋆

ji

]
∈ Rm×p,

M̂ =
[
m̂ij

]
∈
(
C(M(R);C)

)p×m

,
(
M̂(ϕ)

)∗
=

[
m̂ji(ϕ)

]
∈ Cp×m.

The following claim was made in [3, Theorem 2.2, p.248].

Claim 1.3. Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n be such that for all

ϕ ∈ M(R), (Â(ϕ), B̂(ϕ)) and (Â⋆(ϕ), Ĉ⋆(ϕ)) are controllable. Then there
exists a solution P ∈ Rn×n such that

PBB⋆P − PA−A⋆P − C⋆C = 0. (1.1)

(Recall that for matrices A ∈ Cn×n and B ∈ Cn×m, the pair (A,B) is
said to be controllable if rank

[
B AB A2B . . . An−1B

]
= n.)

However, in Section 2, we will see a counterexample to Claim 1.3, showing
that this is not true in general, without invoking extra assumptions, and this
is our main result:

Theorem 1.4. Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n satisfy the following:
for all ϕ ∈ M(R),

(A1) (̂A⋆)(ϕ) = (Â(ϕ))∗,

(A2) (̂BB⋆)(ϕ) = B̂(ϕ)(B̂(ϕ))∗,

(A3) (̂C⋆C)(ϕ) = (Ĉ(ϕ))∗Ĉ(ϕ),

(A4) (Â(ϕ), B̂(ϕ)) is stabilizable,

(A5) (Â(ϕ), Ĉ(ϕ)) is detectable.

Then there exists a P ∈ Rn×n such that

(1) PBB⋆P − PA−A⋆P − C⋆C = 0,
(2) A−BB⋆P is exponentially stable, and

(3) for all ϕ ∈ M(R), P̂ (ϕ) is positive semidefinite.

In the following we define what is meant by ”exponentially stable”.
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Definition 1.5. Let R be a commutative, unital, complex, semisimple Ba-
nach algebra. If A ∈ Rn×n, let MA : Rn → Rn be the multiplication map
by the matrix A, that is, v 7→ Av (v ∈ Rn). Then Rn×n is a unital complex
Banach algebra (for example) with the norm

‖A‖ := ‖MA‖L(Rn) (A ∈ Rn×n)

where L(Rn) denotes the set of all continuous linear transformations from
Rn to Rn, and Rn is the Banach space equipped (for example) with the
norm

‖x‖ = max{‖xk‖ : 1 ≤ k ≤ n} for x =




x1
...
xn


 ,

and L(Rn) is equipped with the usual operator norm:

‖MA‖L(Rn) = sup{‖Av‖ : v ∈ Rn with ‖v‖ ≤ 1}.

For A ∈ Rn×n, we define

eA =

∞∑

k=0

1

k!
Ak.

The absolute convergence of this series is established just as in the scalar
case.

A ∈ Rn×n is said to be exponentially stable if there exist positive constants
C and ǫ such that

‖etA‖ ≤ Ce−ǫt for all t ≥ 0.

Lemma 1.6. Let A ∈ Rn×n. Then the following are equivalent:

(1) λ belongs to the spectrum of A ∈ Rn×n.
(2) λ belongs to the spectrum of MA ∈ L(Rn).

(3) λ belongs to the spectrum of Â(ϕ) for some ϕ ∈ M(R).

Proof. The equivalence of (1) and (3) follows from the fact [8, Theorem 8.1,
p.830] that A ∈ Rn×n is invertible in the Banach algebra Rn×n if and only

if the matrix R̂(ϕ) is invertible in Cn×n for each ϕ ∈ M(R). For A ∈ Rn×n,
it can be seen that A is invertible in Rn×n if and only if MA is invertible
in L(Rn). Indeed, the ‘only if’ part is trivial, since if AA−1 = I = A−1B,
then MAMA−1 = I = MA−1MA. Vice versa, if MAT = I = TMA for some
T ∈ L(Rn), then set

A−1
: =

[
Te1 . . . T en

]
∈ Rn×n,

where ek (k = 1, . . . , n) denotes the vector in Rn with 1 in the kth position
and zeros elsewhere. Then MA−1ek = Tek for all k = 1, . . . , n, and so
MA−1v = Tv for all v ∈ Rn. Hence (1) and (2) are equivalent. �

The following gives a characterization of exponential stability.
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Proposition 1.7. Let A ∈ Rn×n. Then A is exponentially stable if and
only if

sup{Re(λ) : λ is an eigenvalue of Â(ϕ) for some ϕ ∈ M(R)} < 0.

Proof. We recall the result in semigroup theory that the semigroup generated
by a continuous linear transformation on a Banach space is exponentially
stable if and only if the supremum of the real parts of points in the spectrum
of the operator is strictly negative [6, Corollary IV.2.4, p.252 and Proposi-
tion V.1.7, p.299]. Using this, we see that A is exponentially stable if and
only if sup{Re(λ) : λ belongs to the spectrum of MA ∈ L(Rn)} is negative.
The proof is now finished by using Lemma 1.6. �

The proof in Section 3 of our main result above is similar to the approach
in [3], where we first take Gelfand transform of our equation, and show
that the pointwise solution is continuous. Then we use the Banach algebra
operational calculus to ensure that this continuous solution is actually the
Gelfand transform of a matrix with entries from the Banach algebra.

In Section 4 we discuss the applications of this result to the control of
spatially invariant systems.

2. Counterexample to Claim 1.3

Example 2.1. Consider the Banach algebra C1(T) of all continuously dif-
ferentiable functions on the unit circle with pointwise operations and the
norm

‖f‖C1(T) = ‖f‖∞ + ‖f ′‖∞,

with the understanding that f ′(eiθ) := dF
dθ

(θ), where F (θ) := f(eiθ) (θ ∈ R).

Then C1(T) is a semisimple commutative unital complex Banach algebra.
Every point z on T gives rise to the complex homomorphism

f 7→ f(z) : C1(T) → C.

Also, all complex homomorphisms arise in this manner, and this can be seen
as follows. If ϕ is a complex homomorphism which is not a point evaluation
at any point of T, then given any z ∈ T, there is a corresponding f ∈ C1(T)
such that ϕ(f) = 0, but f(z) 6= 0. So in fact for w’s belonging to a small
neighbourhood of this z, we have |f(w)| ≥ δz > 0. But T is compact, and
so there exist finitely many functions f1, . . . , fn such that ϕ(fi) = 0 for each
i, and for every point on the unit circle, at least one of the functions fi
(1 ≤ i ≤ n) is nonzero there. Thus the function

g := f1f1 + · · ·+ fnfn

is in C1(T), it satisfies ϕ(f) = 0, and is nonzero on T. But being nonzero
on T, g is invertible as an element of C1(T), a contradiction to the fact that
a maximal ideal cannot contain units. Hence the maximal ideal space of
C1(T) can be identified with the unit circle T.
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The Banach algebra C1(T) possesses the involution ·⋆ defined by

f⋆(z) = f(z) (z ∈ T), for f ∈ C1(T).

Now consider the following A,B,C ∈ C1(T):

A(z) = z, B(z) = 1, C(z) = 1, (z ∈ T).

Then we have that A = A⋆, B = B⋆ = C = C⋆.

For each z ∈ T, (Â(ϕ), B̂(ϕ)) = (z, 1) = (Â⋆(ϕ), Ĉ⋆(ϕ)) is controllable.
Thus all the hypotheses of the Claim 1.3 are satisfied. But we will show
below that the corresponding Riccati equation has no solution in the Banach
algebra C1(T).

The Riccati equation is P 2 − 2zP − 1 = 0. Let us suppose that this has
a solution P ∈ C1(T). Then we obtain

(P̂ (z))2 − 2zP̂ (z) − 1 = 0 (z ∈ T),

that is (P̂ (z) − z)2 = z2 + 1 (z ∈ T). We will now show the following:

Claim: There is no Q ∈ C1(T) such that (Q̂(z))2 = z2 + 1 (z ∈ T).

It is not hard to see that the function g given by

g(eiθ) :=

{ √
2
√
cos θei

θ
2 if cos θ ≥ 0,√

2
√
− cos θei

(θ+π)
2 if cos θ < 0

does satisfy (g(z))2 = z2 + 1 (z ∈ T). As the function g is not differentiable
when θ = π

2 , it follows that g 6∈ C1(T). Since g has two roots on T, namely

at i and at −i, it follows from Q2 = g2, that Q is either g or −g or hg or
−hg, where

h(z) :=

{
1 if Re(z) ≥ 0,
−1 if Re(z) < 0.

But none of these functions is differentiable when θ = π
2 . This completes

the proof of the fact that there is no Q ∈ C1(T) such that (Q̂(z))2 = z2 + 1
(z ∈ T).

So we conclude that the Claim 1.3 is false. ♦

3. Proof of the main result

We will need the following two results. The first one says that if we
consider the classical Riccati equation with constant complex matricial data
A,B,C, then the solution P depends continuously on the A,B,C; see [12,
Theorem 1.2.1, p.260].

Proposition 3.1. With the same notation as in Proposition 1.1, the max-
imal Hermitian solution P (A,B,C) of the Riccati equation is a continuous
function of (A,B,C). (Here P (A,B,C) is viewed as a function on a subset

of Cn2 × Cnm × Cpn with the usual topology).

The next result we will need is the following (see [10, p.155]), and this
will be used to pass from continuous functions on M(R) to elements of R.
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Proposition 3.2. Let h1, . . . , hs be continuous functions on M(R). Suppose
that f1, . . . fℓ in R and G1(z1, . . . , zs+ℓ), . . . , Gt(z1, . . . , zs+ℓ) are holomorphic
functions with t ≥ s defined on a neighbourhood of the joint spectrum

σ(h1, . . . , hs, f1, . . . , fℓ) := {(h1(ϕ), . . . , hs(ϕ), f̂1(ϕ), . . . , f̂ℓ(ϕ)) : ϕ ∈ M(R)},
such that

Gk(h1, . . . , hs, f̂1, . . . , f̂ℓ) = 0 on M(R) for 1 ≤ k ≤ t. (3.1)

If the rank of the Jacobi matrix
∂(G1, . . . , Gt)

∂(z1, . . . , zs)
is s on σ(h1, . . . , hs, f1, . . . , fℓ),

then there exist elements g1, . . . , gs in R such that

ĝ1 = h1, . . . , ĝs = hs.

We are now ready to prove our main result.

Proof of Theorem 1.4. If we fix a ϕ ∈ M(R), then owing to the assumptions
(A4) and (A5), we know that there is a unique solution in Cn×n, which we
will denote by Π(ϕ), such that it is positive semidefinite,

Π(ϕ)B̂(ϕ)(B̂(ϕ))∗Π(ϕ)−Π(ϕ)Â(ϕ)− (Â(ϕ))∗Π(ϕ) − (Ĉ(ϕ))∗Ĉ(ϕ) = 0,
(3.2)

and Â(ϕ)− B̂(ϕ)(B̂(ϕ))∗Π(ϕ) is exponentially stable.
Moreover, from Proposition 3.1, it follows that the map ϕ 7→ Π(ϕ) is

continuous on M(R).
Finally we will apply Proposition 3.2. We have in our case s = n2,

t = n2, the hi’s are the components of Π and the fi’s are the components of
A,A⋆, BB⋆, C⋆C (which are totally ℓ = n2+n2+n2+n2 = 4n2 in number).
The maps G1, . . . Gt=n2 are the n2 components of the map

(Θ, U, V,W,X) 7→ ΘWΘ−ΘU − VΘ−X.

(In the above we have the replacements of A,A∗, BB∗, CC∗ by the complex
variables which are the components of U, V,W,X, respectively. The replace-
ments of the P in the Riccati equation is by the complex variables which
are the components of Θ.) Clearly the above map is holomorphic not just

on the joint spectrum, but rather in the whole of Cs+ℓ = Cn2+4n2
.

In light of the assumptions (A1)-(A3) and and (3.2), we know that there
is a continuous solution Π on the maximal ideal space such that for all k,

Gk(Π, Â, Â⋆, B̂B⋆, Ĉ⋆C) = 0 (3.3)

on M(R) (that is, condition (3.1) in Proposition 3.2 is satisfied).
So we now investigate the Jacobian with respect to the variables in Θ.

The Jacobian with respect to the Θ variables at the point
(
Π(ϕ), Â(ϕ), (Â(ϕ))∗, B̂B⋆(ϕ)= B̂(ϕ)(B̂(ϕ))∗, Ĉ⋆C(ϕ)= (Ĉ(ϕ))∗Ĉ(ϕ)

)

is the following linear transformation Λ from Cn2 → Cn2
:

Θ 7→ ΘB̂(ϕ)(B̂(ϕ))∗Π(ϕ) + Π(ϕ)B̂(ϕ)(B̂(ϕ))∗Θ−ΘÂ(ϕ) − (Â(ϕ))∗Θ,
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that is,

Θ 7→ −
((

Â(ϕ)−B̂(ϕ)(B̂(ϕ))∗Π(ϕ)
)∗

Θ+Θ
(
Â(ϕ)−B̂(ϕ)(B̂(ϕ))∗Π(ϕ)

))

The set of eigenvalues of Λ consists of the numbers

−(λ+ µ),

where λ, µ belong to the set of eigenvalues of Â(ϕ) − B̂(ϕ)(B̂(ϕ))∗Π(ϕ);

see for example [2, Proposition 7.2.3]. But since Â(ϕ) − B̂(ϕ)(B̂(ϕ))∗Π(ϕ)
is exponentially stable, all its eigenvalues have a negative real part. Hence
−(λ + µ) 6= 0 for all λ, µ belonging to the set of eigenvalues of the matrix

Â(ϕ)−B̂(ϕ)(B̂(ϕ))∗Π(ϕ). Consequently, the map Λ is invertible from Cn2
to

Cn2
, and its rank is n2 = s. So by Proposition 3.2, there exists a P ∈ Rn×n

such that P̂ (ϕ) = Π(ϕ) for all ϕ ∈ M(R). From (3.3), it follows (using the
fact that R is semisimple) that

PBB⋆P − PA−A⋆P − C⋆C = 0.

From the property possessed by the pointwise solutions Π(ϕ) (ϕ ∈ M(R))
of the constant complex matricial Riccati equations (3.2), we have that for

all ϕ ∈ M(R), all eigenvalues of ̂(A−BB⋆P )(ϕ) have a negative real part.
But the set-valued map taking a square complex matrix of size n × n to
its spectrum (a set of n complex numbers) is a continuous map; see for
example [11, II,§5, Theorem 5.14, p.118]. Since M(R) is compact in the
Gelfand topology (the weak-∗ topology induced on M(R) considered as a
subset of L(R;C)), it follows that

sup{Re(λ) : λ is an eigenvalue of ̂(A−BB⋆P )(ϕ) for some ϕ ∈ M(R)} < 0.

From Proposition 1.7, it follows that A − BB⋆P is exponentially stable.
Finally, again by the property possessed by the pointwise solution Π, we

have that for all ϕ ∈ M(R), P̂ (ϕ) is positive semidefinite. This completes
the proof of Theorem 1.4. �

Example 3.3 (Example 2.1 revisited). Let us check what went wrong with
our example considered earlier. Recall that the Banach algebra was C1(T),
the involution ·⋆ was given by

f⋆(z) = f(z) (z ∈ T),

and the Riccati equation data was given by A = z, B = C = 1. We see
that in Theorem 1.4, for this particular example, although the assumptions
(A2)-(A5) are satisfied, (A1) fails to hold. Indeed,

A⋆(z) = z (z ∈ T)

and so for z ∈ T \ {−1, 1}, we have

(̂A⋆)(z) = z 6= z = (Â(z))∗.

So it is no surprise that a solution does not exist to the Riccati equation.
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If instead, we consider the following new A, given by

A(z) = z +
1

z
(z ∈ T),

then

(̂A⋆)(z) = z +
1

z
= z +

1

z
= (Â(z))∗ (z ∈ T).

With the same B = C = 1 considered earlier, we see that the assumptions
(A1)-(A5) in Theorem 1.4 are all satisfied now, and the Riccati equation

PBB⋆P − PA−A⋆P − C⋆C = P 2 − 2
(
z +

1

z

)
P − 1 = 0

has a solution P ∈ C1(T), given by:

P (eiθ) = 2 cos θ +
√

(2 cos θ)2 + 1 (θ ∈ R).

Clearly, P (eiθ) is positive semidefinite (as it is ≥ 0). Moreover,

̂(A−BB⋆P )(eiθ) = −
√
(2 cos θ)2 + 1 ≤ −1,

and so A−BB⋆P is exponentially stable by Proposition 1.7. ♦

We observe that whether or not assumptions (A1)-(A3) in Theorem 1.4
hold is intimately related to the choice of the involution ·⋆ in the Banach
algebra R. For some commutative Banach algebras with involutions, this is
automatic, namely if it is symmetric.

Definition 3.4. A unital Banach algebra R with an involution ·⋆ is said to
be symmetric if for every x ∈ R, the spectrum of xx⋆ (as an element of R) is
contained in [0,+∞). Equivalently, R is symmetric if and only if for every
x ∈ R satisfying x = x⋆ implies that the spectrum of x is real; see [9, §2.3,
p.2700]. The involution is then called a symmetric involution.

In the case when R is commutative, this is equivalent to the following (see
[7, Definition 2, §I.8, p.57]).
Proposition 3.5. Let R be a commutative unital complex semisimple Ba-
nach algebra with an involution ·⋆. Then the following are equivalent:

(1) R is symmetric.

(2) For each x ∈ R, ϕ(x⋆) = ϕ(x) (ϕ ∈ M(R)).
(3) For each x ∈ R, 1 + x⋆x is invertible in R.

Proof. The equivalence of (2) and (3) is precisely [7, Theorem 2, p.59].
Let us now show that (1) and (2) are equivalent. Suppose that (1) holds.

Let x ∈ R. Then using the fact that the spectrum of an element is the range
of its Gelfand transform, it follows that

̂(1 + x⋆x)(ϕ) = 1 + x̂⋆x(ϕ) ≥ 1,

and in particular, ̂(1 + x⋆x)(ϕ) 6= 0 for all ϕ ∈ M(R). Thus 1 + x⋆x is
invertible as an element of R. So (3), and consequently also (2), holds.
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Now suppose that (2) holds. Let x ∈ R. We have that

x̂⋆x(ϕ) = ϕ(x⋆x) = ϕ(x⋆)ϕ(x) = ϕ(x)ϕ(x) = |ϕ(x)|2 ≥ 0.

Since the spectrum of x⋆x is the range of its Gelfand transform, it follows
that the spectrum of x⋆x is contained in the half line [0,+∞). Thus R is
symmetric. �

In particular, all C∗-algebras are symmetric.
We have the following consequence of our main result.

Corollary 3.6. Let R be a commutative unital complex semisimple sym-
metric Banach algebra with a symmetric involution ·⋆. Let A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n satisfy the following: for all ϕ ∈ M(R),

(i) (Â(ϕ), B̂(ϕ)) is stabilizable,

(ii) (Â(ϕ), Ĉ(ϕ)) is detectable.

Then there exists a P ∈ Rn×n such that

(1) PBB⋆P − PA−A⋆P − C⋆C = 0,
(2) A−BB⋆P is exponentially stable, and
(3) P = P ⋆ and the spectrum of P (as an element of the Banach algebra

Rn×n) is contained in [0,+∞).

Proof. This is an immediate consequence of Theorem 1.4 since (A1)-(A3)
are satisfied automatically owing to the symmetry of the Banach algebra
R. Also (3) above follows from the conclusion (3) of Theorem 1.4 and the
symmetry property of R. Indeed we have that for all ϕ ∈ M(R),

P̂ ⋆(ϕ) = (P̂ (ϕ))∗ = P̂ (ϕ),

where the first equality follows from the symmetry of R and the second
equality follows from Theorem 1.4.(3). Thus P ⋆ = P . The spectrum of P

coincides with the set containing the eigenvalues of P̂ (ϕ) (ϕ ∈ M(R)) and

since for each ϕ ∈ M(R), P̂ (ϕ) is positive semidefinite, it follows that the
spectrum of P is contained in [0,+∞). �

Example 3.7 (Example 2.1 revisited). Consider the same Banach algebra
C1(T) as in Example 2.1, and the same Riccati equation data A,B,C given
there, namely A = z, B = C = 1, but now with a new involution on C1(T),
given simply by

f⋆(z) = f(z) (z ∈ T).

Now the A does satisfy assumption (A1) from Theorem 1.4, since

(̂A⋆)(z) = z = (Â(z))∗ (z ∈ T).

Also, as before the assumptions (A2)-(A5) are satisfied. The corresponding
Riccati equation is

PBB⋆P − PA−A∗P − C⋆C = P 2 − (z + z)P − 1 = 0,
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and it has a solution P ∈ C1(T), given by:

P (eiθ) = cos θ +
√

(cos θ)2 + 1 (θ ∈ R).

Clearly, P (eiθ) is positive semidefinite (as it is ≥ 0). Moreover, from

̂(A−BB⋆P )(ϕ) = −
√

(cos θ)2 + 1 ≤ −1,

it follows that that A−BB⋆P is exponentially stable. ♦

4. Application to spatially invariant systems

In this section we discuss the applications of our results to control prob-
lems for spatially invariant systems introduced in [1]. The analysis of spa-
tially invariant systems can be greatly simplified by taking Fourier trans-
forms, see [1], [5]. This yields systems described by multiplication opera-
tors with symbols A,B,C ∈ (L∞(T))n×n. The Linear Quadratic Regulator
(LQR) control design is to use the feedback F = −BB∗P , where P is the
bounded, self-adjoint, stabilizing solution to the LQR Riccati equation (1.1)
on the Hilbert space (L2(T))n. For the design of implementable controllers
it is important that the gain operator have a spatially decaying property
(see [1]). This translates into the mathematical question of when the LQR
Riccati equation (1.1) has a stabilizing solution in a suitable subalgebra (for
example, (L1(T))n×n is a subalgebra of L((L2(T))n) = (L∞(T))n×n). So the
spatially decaying property now translates into finding suitable subalgebras
of (L∞(T))n×n, in particular, the weighted Wiener algebras. From our re-
sults in the previous sections it suffices to identify the symmetric Wiener
algebras for the case n = 1. In the following example we show that a large
class of Wiener subalgebras of L∞(T) do have this property.

Example 4.1 (Even-weighted Wiener algebras). Let α = (αk)k∈Z be any
sequence of even weights, that is, the αk’s are positive real numbers satisfying

α−k = αk (k ∈ Z).

Suppose, moreover that

αk+l ≤ αkαl (k, l ∈ Z).

Consider the even-weighted Wiener algebra Wα(T) of the unit circle T given
by

Wα(T) =
{
f : f(z) =

∑

k∈Z

fkz
k (z ∈ T) and

∑

k∈Z

αk|fk| < +∞
}
,

with pointwise operations, and the norm

‖f‖Wα(T) =
∑

k∈Z

αk|fk|, f(z) =
∑

k∈Z

fkz
k (z ∈ T).

Then this is a Banach algebra; see [7, §19.4, p.118-120]. The maximal
ideal space of such even-weighted Wiener algebras can be identified with
the annulus

A(ρ) = {z ∈ C : 1/ρ ≤ |z| ≤ ρ},



RICCATI EQUATIONS IN BANACH ALGEBRAS 11

where ρ := inf
k>0

k
√
αk = lim

k→∞

k
√
αk. The Gelfand transform is given by

f̂(z) =
∑

k∈Z

fkz
k (z ∈ A(ρ)).

When ρ = 1 the weights given by α are said to satisfy the Gelfand-Raikov-
Shilov condition and the annulus A(ρ) degenerates to the circle T. Examples
that occur in the applications are subexponential weights

αk = eα|k|
β

, α > 0, 0 ≤ β < 1,

and polynomial weights

αk = (1 + |k|)s, s ≥ 0.

Consider the following involution:

f⋆(z) = f

(
1

z

)
(z ∈ A(ρ), f ∈ Wα(T)).

Note that under the Gelfand-Raikov-Shilov condition the involution ·⋆ re-
duces to the following:

f⋆(z) = f(z) (z ∈ T, f ∈ Wα(T)),

and with this involution Wα(T) is a symmetric Banach algebra. Then for
matrices A,B,C with entries from Wα(T) the assumptions (A1)-(A3) of
Theorem 1.4 are automatically satisfied. ♦

We remark that if the Gelfand-Raikov-Shilov condition is not satisfied,
then Wα(T) is not a symmetric algebra with the involution considered in
the previous example.

In the case of spatially invariant systems when the spatial argument is
continuous (rather than discrete), the state space is (L2(R))n (as opposed
to (L2(T))n or (ℓ2(Z))n in the discrete case of the previous example), and
the spatially decaying property reduces to asking that the Riccati equation
solution belong to appropriate subalgebras of (L∞(R))n×n. In this context,
the following example is relevant.

Example 4.2 (Even-weighted Wiener algebra of the line). Let the weight
w : R → (0,+∞) be a continuous function satisfying

w(t+ τ) ≤ w(t)w(τ) and w(−t) = w(t) (t, τ ∈ R).

Let L1(R, w) be the set of all Lebesgue measurable complex valued functions
on R such that

‖f‖L1(R,w) =

∫

R

|f(t)|w(t)dt < +∞.

Then L(R, w) is a Banach algebra with this norm, with pointwise addition
and scalar multiplication, and with the multiplication operation taken to be
convolution:

(f ∗ g)(t) =
∫

R

f(t− τ)g(τ)dτ (t ∈ R).
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We adjoin a unit to the Banach algebra L1(R, w) to obtain its unitization,
denoted by L1(R, w) + C (see for instance [14, p.246]), and the norm of an
element (f, ζ) ∈ L1(R, w) + C is given by

‖(f, ζ)‖ = ‖f‖L1(R,w) + |ζ|.

It can be shown that (see [8, (vii), p.816])

τ := inf
t<0

logw(t)

−t
= lim

t→−∞

logw(t)

−t
(≥ 0)

and that every complex homomorphism ϕ on L1(R, w) + C is either of one
of the following types:

1◦ L1(R, w) ⊂ kerϕ. In this case,

ϕ((f, ζ)) = ϕ∞((f, ζ)) := ζ (f ∈ L1(R, w), ζ ∈ C).

2◦ It is not the case that L1(R, w) ⊂ kerϕ. In this case, ϕ is a nontrivial
multiplicative linear functional on L1(R;w), and so (see [13, p.74]),
there exists a complex number λ such that −τ ≤ Im(λ) ≤ τ and

ϕ((f, 0)) =

∫

R

f(t)eiλtdt (f ∈ L1(R, w)).

Consequently,

ϕ((f, ζ)) = ϕλ((f, ζ)) :=

∫

R

f(t)eiλtdt+ ζ (f ∈ L1(R, w), ζ ∈ C).

The Gelfand transform of (f, ζ) is given by

(̂f, ζ)(ϕ) =





∫

R

f(t)eiλtdt+ ζ if ϕ = ϕλ, −τ ≤ Im(λ) ≤ τ,

ζ if ϕ = ϕ∞.

Consider the involution given by

(f, ζ)⋆ = (f(−·), ζ).

The weight w is said to satisfy the Gelfand-Raikov-Shilov condition if τ = 0.
In this case, it is easy to check that

(̂f, ζ)⋆(ϕ) = (̂f, ζ)(ϕ),

for all ϕ ∈ M(L1(R, w)+C), f ∈ L1(R, w) and ζ ∈ C. Thus L1(R, w)+C is a
symmetric Banach algebra with this involution. Hence for matrices A,B,C
with entries from L1(R, w) +C, the assumptions (A1)-(A3) of Theorem 1.4
are then automatically satisfied. ♦
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