
AN ABSTRACT NYQUIST CRITERION

CONTAINING OLD AND NEW RESULTS

AMOL SASANE

Abstract. We prove an abstract Nyquist criterion in a general set up.
As applications, we recover various versions of the Nyquist criterion,
some of which are new.

1. Introduction

Harry Nyquist, in his fundamental paper [17], gave a criterion for the sta-
bility of a feedback system, which is one of the basic tools in the frequency
domain approach to feedback control. This test, which is expressed in terms
of the winding number around zero of a certain curve in the complex plane,
is well known for finite dimensional systems; see for example [26] or The-
orem 5.2 in this article. There are several extensions of this test for other
classes of systems as well; see for example [3], [5], [6]. Thus the problem of
obtaining a Nyquist criterion encompassing the different transfer function
classes of systems is a natural one; see [14], [19, p.65].

In this article, we will prove an “abstract Nyquist theorem”, where we only
start with a commutative ring R (thought of as the class of stable transfer
functions of a linear control system) possessing certain properties, and then
give a criterion for the stability of a closed loop feedback system formed by
a plant and a controller (which have transfer functions that are matrices
with entries from the field of fractions of R). We then specialize R to
several classes of stable transfer functions and obtain various versions of the
Nyquist criterion. In the section on applications, we have given references
to the known results; all other results seem to be new.

The article is organized as follows:

(1) In Section 2, we describe the basic objects in our abstract set up
in which we will prove our abstract Nyquist criterion. The starting
point will be a commutative ring R. We will also give a systematic
procedure to build the other basic objects starting from R in teh
case when R is a Banach algebra.

(2) In section 3, we will recall the standard definitions from the factor-
ization approach to feedback control theory.

(3) In Section 4, we prove our main result, the abstract Nyquist criterion,
in Theorem 4.1.
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(4) Finally in various subsections of Section 5, we recover some old ver-
sions of the Nyquist criterion as well as obtain new ones, as special
instances of our abstract Nyquist criterion.

2. General setup and assumptions

Our set up is a triple (R,S, ι), satisfying the following:

(A1) R be a unital commutative ring.
(A2) S is a unital commutative Banach algebra such that R ⊂ S. The

invertible elements of S will be denoted by inv S.
(A3) There exists a map ι : inv S → G, where (G, ⋆) is an Abelian group

with identity denoted by ◦, and ι satisfies

ι(ab) = ι(a) ⋆ ι(b) (a, b ∈ inv S).

The function ι will be called an abstract index.
(A4) x ∈ R ∩ (inv S) is invertible as an element of R iff ι(x) = ◦.

Typically, one has R available. So the natural question which arises is:
How does one find S and ι that satisfy (A1)-(A4)? We outline a systematic
procedure for doing this below when R is a commutative unital complex
Banach algebra (or more generally a full subring of such a Banach algebra;
the definition of a full subring is recalled below).

Definition 2.1. Let R1, R2 be commutative unital rings, and let R1 be a
subring of R2. Then R1 is said to be a full subring of R2 if for every x ∈ R1

such that x is invertible in R2, there holds that x is invertible in R1.

2.1. A choice of ι. If expS denotes the connected component in inv S
which contains the identity element of S, then we can take G as the (discrete)
group (inv S)/(expS), and ι can be taken to be the natural homomorphism
ιS from inv S to (inv S)/(expS). Then (A3) holds; see [7, Proposition 2.9].

2.2. A choice of S. On the other hand, one possible construction of an S
is as follows. First we recall a definition from [15].

Definition 2.2. Let XR denote the maximal ideal space of a unital com-
mutative Banach algebra R. A closed subset Y ⊂ XR is said to satisfy the
generalized argument principle for R if whenever a ∈ R and log â is defined
continuously on Y , then a is invertible in R. (Here â denotes the Gelfand
transform of a, Y is equipped with the topology it inherits from XR and XR

has the usual Gelfand topology).

It was shown in [15, Theorem 2.2] that any Y satisfying the generalized
argument principle is a boundary for R and so it contains the Šilov bound-
ary of R. Moreover, given any R, there always exists a minimal closed
set YR of XR which satisfies the generalized argument principle for R [15,
Theorem 2.7].

So if we know a set Y ⊂ XR that satisfies the generalized argument
principle for R, then one can take S to be equal to SY := C(Y ). The
topology on C(Y ) is the one given by the supremum norm.
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Lemma 2.3. Let R be a commutative unital complex Banach algebra, and

let Y ⊂ XR satisfy the generalized argument principle for R. Let S := SY

and ι := ιSY
be as described in the previous two subsections. Let f ∈ inv S.

Then f has a continuous logarithm iff ι(f) = ◦. In particular the triple

(R,S, ι) satisfies (A1)-(A3) and the ‘if ’ part of (A4).

Proof. Suppose that f has a continuous logarithm. Then f = eg for some
g ∈ C(S). But then by the definition of ι, ι(f) = ◦.

Conversely, suppose that ι(f) = ◦. This means that f = eg for some
g ∈ C(S). Hence f has a continuous logarithm.

(A1) is trivial. Given f ∈ R, we see that f̂ |Y ∈ C(Y ). Moreover the map

f 7→ f̂ |Y is one-to-one since Y contains the Šilov boundary of R. Indeed if

f̂ |Y = 0, then we have

max
ϕ∈XR

|f̂(ϕ)| = max
ϕ∈Y

|f̂(ϕ)| = 0,

and so f̂ ≡ 0, that is f = 0. Hence (A2) holds as well. (A3) follows from
the definition of ι. Finally we show (A4) below.

Suppose that f ∈ R ∩ inv S. If ι(f) = ◦, then we know that f has
a continuous logarithm on Y . But Y satisfies the generalized argument
principle for R. Thus f is invertible as an element of R. �

For the ‘only if’ part, we will need a stronger property on Y than the
generalized argument principle.

Definition 2.4. A closed subset Y ⊂ XR is said to satisfy the strong gen-

eralized argument principle for R if a ∈ R is invertible as an element in R
iff log â is defined continuously on Y .

Lemma 2.5. Let R be a commutative unital complex Banach algebra, and

let Y ⊂ XR satisfy the strong generalized argument principle for R. Let

S := SY and ι := ιSY
be as described in the previous subsection. Then the

triple (R,S, ι) satisfies (A1)-(A4).

Proof. (A1)-(A3) and the ‘if’ part of (A4) have been verified already in
Lemma 2.3. We just verify the ‘only if’ part of (A4). So suppose that
f ∈ R ∩ inv C(Y ) and that f is invertible as an element of R. Then f has
a continuous logarithm on Y , and so ι(f) = ◦, again by Lemma 2.3. �

In Subsection 5.1 and 5.2, in the case of the disk algebra A(D) and the
analytic almost periodic algebra AP+, we will see that our choices of S and
ι are precisely of the type described above.

3. Feedback stabilization

We recall the following definitions from the factorization approach to control
theory.



4 AMOL SASANE

Definition 3.1. The field of fractions of R will be denoted by F(R). Let
P ∈ (F(R))p×m and let P = ND−1, where N,D are matrices with entries
from R. Here D−1 denotes a matrix with entries from F(R) such that
DD−1 = D−1D = I. The factorization P = ND−1 is called a right coprime

factorization of P if there exist matrices X,Y with entries from R such that

XN + Y D = Im. Similarly, a factorization P = D̃−1Ñ , where Ñ , D̃ are
matrices with entries from R, is called a left coprime factorization of P if

there exist matrices X̃, Ỹ with entries from R such that ÑX̃ + D̃Ỹ = Ip.
Given P ∈ (F(R))p×m with right and left factorizations

P = ND−1 and P = D̃−1Ñ ,

respectively, we introduce the following matrices with entries from R:

GP =

[
N
D

]
and G̃P =

[
−Ñ D̃

]
.

We denote by S(R, p,m) the set of all P ∈ (F(R))p×m that possess a right
coprime factorization and a left coprime factorization.

Given P ∈ (F(R))p×m and C ∈ (F(R))m×p, define the closed loop transfer

function

H(P,C) :=

[
P
I

]
(I − CP )−1

[
−C I

]
∈ (F(R))(p+m)×(p+m).

C is said to stabilize P if H(P,C) ∈ R(p+m)×(p+m), and P is called stabiliz-

able if {C ∈ (F(R))m×p : H(P,C) ∈ R(p+m)×(p+m)} 6= ∅. If P ∈ S(R, p,m),
then P is a stabilizable; see for example [26, Chapter 8]. Thus

S(R, p,m) =

{
P ∈ (F(R))p×m

∣∣∣∣
∃C ∈ (F(R))m×p such that

H(P,C) ∈ R(p+m)×(p+m)

}
.

It was shown in [18, Theorem 6.3] that if the ring R is projective free, then
every stabilizable P admits a right coprime factorization and a left coprime
factorization.

We will use the following in order to prove our main result in the next
section.

Lemma 3.2. Suppose that F ∈ Rm×m. Then F is invertible as an element

of Rm×m iff detF ∈ inv S and ι(detF ) = ◦.

Proof. Using Cramer’s rule, we see that F is invertible as an element of
Rm×m iff detF is invertible as an element of R. The result now follows from
(A4). �

4. Abstract Nyquist criterion

Theorem 4.1. Let (A1)-(A4) hold. Suppose that P ∈ S(R, p,m) and that

C ∈ S(R,m, p). Moreover, let P = NPD
−1
P be a right coprime factorization

of P , and let C = D̃−1
C ÑC be a left coprime factorization of C. Then the

following are equivalent:
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(1) C stabilizes P .

(2) (a) det(I − CP ),detDP ,det D̃C ∈ inv S and

(b) ι(det(I − CP )) ⋆ ι(detDP ) ⋆ ι(det D̃C) = ◦.

Proof. We note that

H(P,C) =

[
P
I

]
(I −CP )−1

[
−C I

]

=

[
NPD

−1
P

I

]
(I − D̃−1

C ÑCNPD
−1
P )−1

[
−D̃−1

C ÑC I
]

=

[
NP

DP

]
(D̃CDP − ÑCNP )−1

[
−ÑC D̃C

]

= GP (G̃CGP )−1G̃C .

So if (G̃CGP )−1 ∈ Rp×p, then H(P,C) ∈ R(p+m)×(p+m) . Conversely, using

the fact that there exist matrices Θ and Θ̃ with R entries such that ΘGP = I
and G̃CΘ̃ = I, it follows from the above that if H(P,C) ∈ R(p+m)×(p+m),

then (G̃CGP )−1 ∈ Rp×p. So C stabilizes P iff (G̃CGP )−1 ∈ Rp×p. We will
use this fact below.

(1)⇒(2): Suppose that C stabilizes P . Then (G̃CGP )−1 ∈ Rp×p. So

det(G̃CGP ) is invertible as an element of R. By (A4), it follows that

det(G̃CGP ) is invertible as an element of S and ι(det(G̃CGP )) = ◦. But

G̃CGP = D̃CDP − ÑCNP = D̃C(I − CP )DP .

Thus det(G̃CGP ) = (det D̃C) · (det(I − CP )) · (detDP ) and so (det D̃C) ·

(det(I − CP )) · (detDP ) ∈ inv S. Hence det D̃C , det(I − CP ), detDP are
each invertible elements of S. From (A3) we obtain

◦ = ι(det(G̃CGP )) = ι(det D̃C) ⋆ ι(det(I − CP )) ⋆ ι(detDP ).

(2)⇒(1): Suppose that det(I − CP ),detDP ,det D̃C ∈ inv S and that

ι(det(I − CP )) ⋆ ι(detDP ) ⋆ ι(det D̃C) = ◦.

Then retracing the above steps in the reverse order, we see that det(G̃CGP )
is invertible in S, and moreover,

ι(det(G̃CGP )) = ι(det D̃C) ⋆ ι(det(I − CP )) ⋆ ι(detDP ) = ◦.

From (A4) it follows that det(G̃CGP ) is invertible as an element of R. Thus

G̃CGP is invertible as an element of Rp×p. Consequently C stabilizes P . �

5. Applications

Now we specialize R to several classes of stable transfer functions and
obtain various versions of the Nyquist criterion. In particular, we begin
with Subsection 5.1, where we recover the classical Nyquist criterion.



6 AMOL SASANE

5.1. The disk algebra. Let

D := {z ∈ C : |z| < 1}, D := {z ∈ C : |z| ≤ 1}, T := {z ∈ C : |z| = 1}.

The disk algebra A(D) is the set of all functions f : D → C such that f is
holomorphic in D and continuous on D. Let C(T) denote the set of complex-
valued continuous functions on the unit circle T. For each f ∈ inv C(T), we
can define the winding number w(f) ∈ Z of f as follows:

w(f) =
1

2π
(Θ(2π) − Θ(0)),

where Θ : [0, 2π] → R is a continuous function such that

f(eit) = |f(eit)|eiΘ(t), t ∈ [0, 2π].

The existence of such a Θ can be proved; see [24, Lemma 4.6]. Also, it can
be checked that w is well-defined and integer-valued. Geometrically, w(f) is
the number of times the curve t 7→ f(eit) : [0, 2π] → C winds around the
origin in a counterclockwise direction. Also, [24, Lemma 4.6.(ii)] shows that
the map w : inv C(T) → R is locally constant. Here the local constancy
of w means continuity relative to the discrete topology on R, while C(T) is
equipped with the usual sup-norm.

Lemma 5.1. Let

R = a unital full subring of A(D),

S := C(T),

G := Z,

ι := w.

Then (A1)-(A4) are satisfied.

Proof. (A1) and (A2) are clear. (A3) is evident from the definition of w.
Finally, we will show below that (A4) holds.

Suppose that f ∈ R ∩ (inv C(T)) is invertible as an element of R. Then
obviously f is also invertible as an element of A(D). Hence it has no zeros or
poles in D. For r ∈ (0, 1), define fr ∈ A(D) by fr(z) = f(rz) (z ∈ D). Then
fr also has no zeros or poles in D, and has a holomorphic extension across
T. From the Argument Principle (applied to fr), it follows that w(fr) = 0.
But ‖fr − f‖∞ → 0 as r ր 1. Hence w(f) = lim

r→1
w(fr) = lim

r→1
0 = 0.

Suppose, conversely, that f ∈ R ∩ (inv C(T)) is such that w(f) = 0. For
all r ∈ (0, 1) sufficiently close to 1, we have that fr ∈ inv C(T). Also, by the
local constancy of w, for r sufficiently close to 1, w(fr) = w(f) = 0. By the
Argument principle, it then follows that fr has no zeros in D. Equivalently,
f has no zeros in rD. But letting r ր 1, we see that f has no zeros in D.
Moreover, f has no zeros on T either, since f ∈ inv C(T). Thus f has no
zeros in D. Consequently, we conclude that f is invertible as an element of
A(D). (Indeed, f is invertible as an element of C(D, and it is also then clear
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that this inverse is holomorphic in D.) Finally, since R is a full subring of
A(D), we can conclude that f is invertible also as an element of R. �

Besides A(D) itself, some other examples of such R are:

(1) P, the set of all polynomial functions in the variable z ∈ C.
(2) RH∞(D), the set of all rational functions without poles in D.
(3) The Wiener algebra W+(D) of all functions f ∈ A(D) that have an

absolutely convergent Taylor series about the origin:
∞∑

n=0

|fn| < +∞, where f(z) =

∞∑

n=0

fnz
n (z ∈ D).

(4) ∂−nH∞(D), the set of f : D → C such that f, f (1), f (2), . . . , f (n)

belong to H∞(D). Here H∞(D) denotes the Hardy algebra of all
bounded and holomorphic functions on D.

An application of our main result (Theorem 4.1) yields the following Nyquist
criterion. We note that invertibility of f in C(T) just means that f belongs
to C(T) and it has no zeros on T.

Corollary 5.2. Let R be a unital full subring of A(D). Let P ∈ S(R, p,m)
and C ∈ S(R,m, p). Moreover, let P = NPD

−1
P be a right coprime factor-

ization of P , and C = D̃−1
C ÑC be a left coprime factorization of C. Then

the following are equivalent:

(1) C stabilizes P .

(2) (a) det(I − CP ) belongs to C(T),

(b) det(I − CP ), detDP , det D̃C have no zeros on T, and

(c) w(det(I − CP )) + w(detDP ) + w(det D̃C) = 0.

It can be shown that Y = T satisfies the generalized argument principle for
A(D); see [15, Corollary 1.25]. Moreover, we know that if a function in A(D)
is invertible, then by considering the map r 7→ fr|T : [0, 1] → inv C(T), we
see that f belongs to the connected component of inv C(T) that contains 1.
So it is of the form f |T = eg for some g ∈ C(T). Hence f |T has a continuous
logarithm on T. So we can take S = C(T). Moreover, if expC(T) denotes
the connected component in inv C(T) which contains the constant function
1 on T, then G = (inv C(T)/(expC(T)) is isomorphic to Z (see for example
[7, Corollary 2.20]), and ι can be taken as the the natural homomorphism
from inv C(T) to Z given by the winding number.

Remark 5.3. P, RH∞(D) are projective free rings since they are both
Bezout domains. Also A(D), W+(D), or ∂−nH∞(D) are projective free
rings, since their maximal ideal space is D, which is contractible; see [1].
Thus if R is one of P, RH∞(D), A(D), W+(D) or ∂−nH∞(D), then the
set S(R, p,m) of plants possessing a left and a right coprime factorization
coincides with the class of plants that are stabilizable by [18, Theorem 6.3].

The result in Corollary 5.2 was known in the special cases when R is P,
RH∞(D) or A(D); see [26].
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5.2. Almost periodic functions. The algebra AP of complex valued (uni-
formly) almost periodic functions is the smallest closed subalgebra of L∞(R)
that contains all the functions eλ := eiλy. Here the parameter λ belongs to
R. For any f ∈ AP , its Bohr-Fourier series is defined by the formal sum

∑

λ

fλe
iλy, y ∈ R, (1)

where

fλ := lim
N→∞

1

2N

∫

[−N,N ]
e−iλyf(y)dy, λ ∈ R,

and the sum in (1) is taken over the set σ(f) := {λ ∈ R | fλ 6= 0}, called the
Bohr-Fourier spectrum of f . The Bohr-Fourier spectrum of every f ∈ AP
is at most a countable set.

The almost periodic Wiener algebra APW is defined as the set of all AP
such that the Bohr-Fourier series (1) of f converges absolutely. The almost
periodic Wiener algebra is a Banach algebra with pointwise operations and

the norm ‖f‖ :=
∑

λ∈R

|fλ|. Set

AP+ = {f ∈ AP | σ(f) ⊂ [0,∞)}

APW+ = {f ∈ APW | σ(f) ⊂ [0,∞)}.

Then AP+ (respectively APW+) is a Banach subalgebra of AP (respectively
APW ). For each f ∈ inv AP , we can define the average winding number

w(f) ∈ R of f as follows:

w(f) = lim
T→∞

1

2T

(
arg(f(T )) − arg(f(−T ))

)
.

See [13, Theorem 1, p. 167].

Lemma 5.4. Let

R := a unital full subring of AP+

S := AP,

G := R,

ι := w.

Then (A1)-(A4) are satisfied.

Proof. (A1) and (A2) are clear. (A3) follows from the definition of w. Fi-
nally, (A4) follows from [3, Theorem 1, p.776] which says that f ∈ AP+

satisfies

inf
Im(s)≥0

|f(s)| > 0 (2)

iff inf
y∈R

|f(y)| > 0 and w(f) = 0. But

inf
y∈R

|f(y)| > 0
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is equivalent to f being an invertible element of AP by the corona the-
orem for AP (see for example [9, Exercise 18, p.24]). Also the equiva-
lence of (2) with that of the invertibility of f as an element of AP+ follows
from the Arens-Singer corona theorem for AP+ (see for example [2, Theo-
rems 3.1, 4.3]). Finally, the invertibility of f ∈ R in R is equivalent to the
invertibility of f as an element of AP+ since R is a full subring of AP+. �

Remark 5.5. Specific examples of such R are AP+ and APW+. More
generally, let Σ ⊂ [0,+∞) be an additive semigroup (if λ, µ ∈ Σ, then
λ+ µ ∈ Σ) and suppose 0 ∈ Σ. Denote

APΣ = {f ∈ AP | σ(f) ⊂ Σ}

APWΣ = {f ∈ APW | σ(f) ⊂ Σ}.

Then APΣ (respectively APWΣ) is a unital Banach subalgebra of AP+

(respectively APW+). Let YΣ denote the set of all maps θ : Σ → [0,+∞]
such that θ(0) = 0 and θ(λ + µ) = θ(λ) + θ(µ) for all λ, µ ∈ Σ. Examples
of such maps θ are the following. If y ∈ [0,+∞), then θy, defined by

θy(λ) = λy, λ ∈ Σ, belongs to YΣ. Another example is θ
∞

, defined as
follows:

θ
∞

(λ) =

{
0 if λ = 0,
+∞ if λ 6= 0.

So in this way we can consider [0,+∞] as a subset of YΣ.
The results [2, Proposition 4.2, Theorem 4.3] say that if YΣ ⊂ [0,+∞],

and f ∈ APΣ (respectively APWΣ), then f ∈ inv APΣ (respectively ∈
inv APWΣ) iff (2) holds. So in this case APΣ and APWΣ are unital full
subalgebras of AP+.

An application of our main result (Theorem 4.1) yields the following
Nyquist criterion. We note that invertibility of f in AP just means that
f belongs to AP and is bounded away from zero on R again by the corona
theorem for AP .

Corollary 5.6. Let R be a unital full subring of AP+. Let P ∈ S(R, p,m)
and C ∈ S(R,m, p). Moreover, let P = NPD

−1
P be a right coprime factor-

ization of P , and C = D̃−1
C ÑC be a left coprime factorization of C. Then

the following are equivalent:

(1) C stabilizes P .

(2) (a) det(I − CP ) belongs to AP ,

(b) det(I − CP ), detDP , det D̃C are bounded away from 0 on R,

(c) w(det(I − CP )) + w(detDP ) + w(det D̃C) = 0.

Finally, in the case of the analytic almost periodic algebra AP+, we show
below that the choices of S and ι are precisely of the type described in
Subsections 2.1 and 2.2. Let RB denote the Bohr compactification of R.
Then XAP+ contains a copy of RB (since XAP = RB, and AP+ ⊂ AP ),
and we show below that Y := RB satisfies the strong generalized argument
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principle for AP+. Thus we can take S = C(RB) = AP , and we will also
show that the ιAP coincides with the average winding number defined above.

Lemma 5.7. RB satisfies the strong generalized argument principle for

AP+.

Proof. First of all, suppose that f ∈ AP+ has a continuous logarithm on
RB. Then f = eg for some g ∈ C(RB) = AP . But then since g ∈ AP , we
have that Im(g) is bounded on R.

w(f) = lim
T→∞

1

2R

(
arg(f(T )) − arg(f(−T ))

)

= lim
T→∞

1

2T

(
Im(g(T )) − Im(g(−T ))

)
= 0.

But by (A4) (shown in Lemma 5.4), it follows that f is invertible as an
element of AP+.

Conversely, suppose that

f =

∞∑

n=1

fne
iλn·

is invertible as an element of AP+. Consider the map Φ : [0, 1] → inv AP

given by Φ(t) = f(· − i log(1 − t)) if t ∈ [0, 1) and Φ(1) = f0. Thus f̂ |RB

belongs to the connected component of inv AP that contains the constant

function 1. Hence f̂ |RB
= eg for some g ∈ C(RB). This shows that f̂ has a

continuous logarithm on RB . �

Moreover, ιAP coincides with the average winding number. Indeed, the
result [13, Theorem 1, p. 167] says that if f ∈ inv AP , then there exists a
g ∈ AP such that arg f(t) = w(f)t+ g(t) (t ∈ R). Hence

f = |f |ei(w(f)t+g) = elog |f |+i(w(f)t+g) = elog |f |+igeiw(f)t.

Since log |f |+ ig ∈ AP , it follows that ιAP (f) = ιAP (eiw(f)t). But now with

the association ιAP (eiw(f)t) ↔ w(f), we see that the maps ιAP and w are
the same.

So AP and w are precisely SY and ιC(Y ), respectively, described in Sub-
sections 2.1 and 2.2 when Y = RB .

Remark 5.8. It was shown in [1] that AP+ and APW+ are projective
free rings. Thus if R = AP+ or APW+, then the set S(R, p,m) of plants
possessing a left and a right coprime factorization coincides with the class
of plants that are stabilizable by [18, Theorem 6.3].

Corollary 5.6 was known in the special case when R = APW+; see [3].

5.3. Algebras of Laplace transforms of measures without a singular

nonatomic part. Let C+ := {s ∈ C | Re(s) ≥ 0} and let A+ denote the
Banach algebra
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A+ =

{
s(∈ C+) 7→ f̂a(s) +

∞∑

k=0

fke
−stk

∣∣∣∣
fa ∈ L1(0,∞), (fk)k≥0 ∈ ℓ1,
0 = t0 < t1, t2, t3, . . .

}

equipped with pointwise operations and the norm:

‖F‖ = ‖fa‖L
1 + ‖(fk)k≥0‖ℓ

1 , F (s) = f̂a(s) +
∞∑

k=0

fke
−stk (s ∈ C+).

Here f̂a denotes the Laplace transform of fa, given by

f̂a(s) =

∫ ∞

0
e−stfa(t)dt, s ∈ C+.

Similarly, define the Banach algebra A as follows ([11]):

A=

{
iy(∈ iR) 7→ f̂a(iy) +

∞∑

k=−∞

fke
−iytk

∣∣∣∣
fa ∈ L1(R), (fk)k∈Z ∈ ℓ1,
. . . , t−2, t−1 <0= t0< t1, t2, . . .

}

equipped with pointwise operations and the norm:

‖F‖ = ‖fa‖L
1 + ‖(fk)k∈Z‖ℓ

1 , F (iy) := f̂a(iy) +

∞∑

k=−∞

fke
−iytk (y ∈ R).

Here f̂a is the Fourier transform of fa, f̂a(iy) =

∫ ∞

−∞
e−iytfa(t)dt, (y ∈ R).

It can be shown that L̂1(R) is an ideal of A.

For F = f̂a +
∞∑

k=−∞

fke
−i·tk ∈ A, we set FAP (iy) =

∞∑

k=−∞

fke
−iytk (y ∈ R).

If F = f̂a + FAP ∈ inv A, then it can be shown that FAP (i·) ∈ inv AP as
follows. First of all, the maximal ideal space of A contains a copy of the
maximal ideal space of APW in the following manner: if ϕ ∈ M(APW ),

then the map Φ : A → C defined by Φ(F ) = Φ(f̂a + FAP ) = ϕ(FAP (i·)),
(F ∈ A), belongs to M(A). So if F is invertible in A, in particular for
every Φ of the type describe above, 0 6= Φ(F ) = ϕ(FAP (i·)). Thus by the
elementary theory of Banach algebras, FAP (i·) is an invertible element of
AP .

Moreover, since L̂1(R) is an ideal in A, F−1
AP f̂a is the Fourier transform of

a function in L1(R), and so the map y 7→ 1 + (FAP (iy))−1f̂a(iy) = F (iy)
FAP (iy)

has a well-defined winding number w around 0. Define W : inv A → R × Z

by W (F ) = (w(FAP ), w(1 + F−1
AP f̂a)), where F = f̂a + FAP ∈ inv A, and

w(FAP ) := lim
R→∞

1

2R

(
arg

(
FAP (iR)

)
− arg

(
FAP (−iR)

))
,

w(1 + F−1
AP f̂a) :=

1

2π

(
arg

(
1 + (FAP (iy)

)−1
f̂a(iy))

∣∣∣∣
y=+∞

y=−∞

)
.

Lemma 5.9. F = f̂a + FAP ∈ A is invertible iff for all y ∈ R, F (iy) 6= 0
and inf

y∈R

|FAP (iy)| > 0 .

Proof. The ‘only if’ part is clear. We simply show the ‘if’ part below.
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Let F = f̂a + FAP ∈ A be such that

inf
y∈R

|FAP (iy)| > 0.

Thus F (i·) is invertible as an element of AP . Hence F = FAP (1 + f̂aF
−1
AP )

and so it follows that (1 + f̂aF
−1
AP )(iy) 6= 0 for all y ∈ R. But by the corona

theorem for

W := L̂1(R) + C

(see [10, Corollary 1, p.109]), it follows that 1 + f̂aF
−1
AP is invertible as an

element of W an in particular, also as an element of A. This completes the
proof. �

Lemma 5.10. Let

R := a unital full subring of A+,

S := A,

G := R × Z,

ι := W.

Then (A1)-(A4) are satisfied.

Proof. (A1) and (A2) are clear. (A3) follows from the definition of i as

follows. Let F = f̂a + FAP and G = ĝa +GAP . Then we have

w(FAPGAP ) = w(FAP ) + w(GAP )

from the definition of w. Thus

W (FG) = W ((f̂a + FAP )(ĝa +GAP )

= W (f̂aĝa + f̂aGAP + ĝaFAP + FAPGAP )

= (w(1 + (FAPGAP )−1(f̂aĝa + f̂aGAP + ĝaFAP ), w(FAPGAP ))

= (w((1 + F−1
AP f̂a)(1 +G−1

AP ĝa)), w(FAP ) + w(GAP ))

= (w(1 + F−1
AP f̂a) + w(1 +G−1

AP ĝa), w(FAP ) +w(GAP ))

= W (f̂a + FAP ) +W (ĝa +GAP ).

So (A3) holds.

Finally we check that (A4) holds. Suppose that F = f̂a + FAP belonging
to (A+) ∩ (inv A), is such that W (F ) = 0. Since F is invertible in A, it
follows that FAP (i·) is invertible as an element of AP . But w(FAP ) = 0,
and so FAP (i·) ∈ AP+ is invertible as an element of AP+. But this implies

that 1 + F−1
AP f̂a belongs to the Banach algebra

W+ := ̂L1(0,∞) + C.

Moreover, it is bounded away from 0 on iR since

1 + F−1
AP f̂a =

F

FAP
,
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and F is bounded away from zero on iR. Moreover w(1 + F−1
AP f̂a) = 0,

and so it follows that 1 + F−1
AP f̂a is invertible as an element of W+, and in

particular in A+. Since F = (1 +F−1
AP f̂a)FAP and we have shown that both

(1 + F−1
AP f̂a) as well as FAP are invertible as elements of A+, it follows that

F is invertible in A+. �

An example of such a R (besides A+) is the algebra

̂L1(0,+∞)+APWΣ(i·) := {f̂a +FAP : fa ∈ L1(0,+∞), FAP (i·) ∈ APWΣ},

where Σ is as described in Remark 5.5.
An application of our main result (Theorem 4.1) yields the following

Nyquist criterion. We note that invertibility of f in A just means that
f ∈ A, it is nonzero on iR and the almost periodic part of f is bounded
away from zero on iR by Lemma 5.9.

Corollary 5.11. Let R be a unital full subring of A+. Let P ∈ S(R, p,m)
and C ∈ S(R,m, p). Moreover, let P = NPD

−1
P be a right coprime factor-

ization of P , and C = D̃−1
C ÑC be a left coprime factorization of C. Then

the following are equivalent:

(1) C stabilizes P .

(2) (a) det(I − CP ) ∈ A,

(b) det(I − CP ), detDP , det D̃C are all nonzero on iR and their

almost periodic parts are bounded away from zero on iR, and

(c) W (det(I − CP )) +W (detDP ) +W (det D̃C) = (0, 0).

Remark 5.12. It was shown in [1] that A+ is a projective free ring. Thus
the set S(A+, p,m) of plants possessing a left and a right coprime factor-
ization coincides with the class of plants that are stabilizable by [18, Theo-
rem 6.3].

Corollary 5.11 was known in the special case when R = A+; see [3].

5.4. The complex Borel measure algebra. Let M denote the set of
all complex Borel measures on R. Then M+ is a complex vector space
with addition and scalar multiplication defined as usual, and it becomes
a complex algebra if we take convolution of measures as the operation of
multiplication. With the norm of µ taken as the total variation of µ, M is
a Banach algebra. Recall that the total variation ‖µ‖ of µ is defined by

‖µ‖ = sup

∞∑

n=1

|µ(En)|,

the supremum being taken over all partitions of R, that is over all countable
collections (En)n∈N of Borel subsets of R such that En

⋂
Em = ∅ whenever

m 6= n and R =
⋃

n∈N
En. Let M+ denote the Banach subalgebra of M

consisting of all measures µ ∈ M whose support is contained in the half-line
[0,+∞). The following result was obtained in [23]:
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Proposition 5.13. If µ is an invertible measure in M, then there exist an

integer n ∈ Z, a real number c ∈ R and a measure ν ∈ M such that

µ = ρn ∗ eν ∗ δc.

Here δc denotes the Dirac measure supported at c. The measure ρ is given

by dρ(t) = dδ0(t) + 21[0,∞)(t)e
−tdt, where 1[0,+∞) is the indicator function

of the interval [0,+∞).

We now define I : inv M → R × Z as follows:

I(µ) = (c, n),

where µ = ρn ∗eν ∗ δc ∈ inv M. It can be shown that I is well-defined, since
in any such decomposition, the n, ν and c are unique.

Lemma 5.14. Let

R := be a unital full subring of M+,

S := M,

G := R × Z,

ι := I.

Then (A1)-(A4) are satisfied.

Proof. (A1) and (A2) are clear. (A3) follows from the definition of I, since
ρn ∗ ρen = ρn+en for all integers n,m and δc ∗ δec = δc+ec.

Finally we check that (A4) holds. Suppose that µ ∈ R ∩ (inv M) is such
that I(µ) = 0. Then from Proposition 5.13 above, µ = ρ0 ∗ eν ∗ δ0 = eν for
some ν ∈ M. But this implies that ν also has support in [0,+∞), which can
be seen as follows. Write ν = ν1 + ν2, where ν1 has support in [0,+∞) and
ν2 has support in (−∞, 0]. It follows from µ = eν that µ ∗ e−ν1 = eν2. But
µ∗e−ν1 has support in [0,+∞), while eν2 has support in (−∞, 0]. Hence the
support of ν2 must be contained in {0}, and so ν has support in [0,+∞).
But then clearly e−ν ∈ M+ is an inverse of µ. As R is a full subring of M+,
we conclude that µ is invertible in R as well.

Conversely, suppose that µ ∈ R ∩ (inv M) is invertible as an element of
R. Then µ is also invertible as an element of M+. Consider the Toeplitz
operatorWµ : L2(0,+∞) → L2(0,+∞) given byWµf = P (µ∗f), where P is
the canonical projection from L2(R) onto L2(0,+∞). Since µ is in invertible
element of M+, it is immediate that Wµ is invertible. In particular, Wµ is
Fredholm with Fredholm index 0. But [8, Theorem 2, p.139] says that for
ν ∈ inv M, Wν is Fredholm iff I(ν) = (0, n) for some integer n, and moreover
the Fredholm index of Wν is then −n. Applying this result in our case, we
obtain that I(µ) = (0, 0). This completes the proof. �

An application of our main result (Theorem 4.1) yields the following
Nyquist criterion.
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Corollary 5.15. Let R be a unital full subring of M+. Let P ∈ S(R, p,m)
and C ∈ S(R,m, p). Moreover, let P = NPD

−1
P be a right coprime factor-

ization of P , and C = D̃−1
C ÑC be a left coprime factorization of C. Then

the following are equivalent:

(1) C stabilizes P .

(2) (a) det(I − CP ), detDP , det D̃C belong to inv M, and

(b) I(det(I − CP )) + I(detDP ) + I(det D̃C) = (0, 0).

Remark 5.16. It was shown in [1] that M+ is a projective free ring. Thus
the set S(M+, p,m) of plants possessing a left and a right coprime fac-
torization coincides with the class of plants that are stabilizable by [18,
Theorem 6.3].

5.5. The Hardy algebra. Let H∞(D) denote the Hardy algebra of all
bounded and holomorphic functions f : D → C. Let H2(D) denote the
Hardy Hilbert space. For f ∈ L∞(T), we denote by Tf the Toeplitz operator
corresponding to f , that is, Tfϕ = P+(Mfϕ), ϕ ∈ H2(D). Here Mf denotes
the pointwise multiplication map by f , taking ϕ ∈ L2(T) to fϕ ∈ L2(T),
while P+ : L2(T) → H2(D) is the canonical orthogonal projection.

If f ∈ inv (H∞(D) + C(T)), then Tf is a Fredholm operator; see [7,
Corollary 7.34]. In this case, let ind Tf denote the index of the Fredholm
operator Tf .

Recall the definition of the harmonic extension of an L∞(T)-function.

Definition 5.17. If z = reit is in D and f ∈ L∞(T), then we define

F (z) =
∞∑

n=−∞

anr
|n|eint =

1

2π

∫ 2π

0
f(eiθ)kr(t− θ)dθ,

where kr(θ) =
1 − r2

1 − 2r cos θ + r2
and an =

1

2π

∫ 2π

0
f(eiθ)e−2πinθdθ.

We will also use the result given below; see [7, Theorem 7.36].

Proposition 5.18. If f ∈ H∞(D) + C(T), then Tf is Fredholm iff there

exist δ, ǫ > 0 such that

|F (reit)| ≥ ǫ for 1 − δ < r < 1,

where F is the harmonic extension of f to D. Moreover, in this case the

index of Tf is the negative of the winding number with respect to the origin

of the curve F (reit) for 1 − δ < r < 1.

Lemma 5.19. Let

R := H∞(D),

S := H∞(D) + C(T),

G := Z,

ι := −ind T•.
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Then (A1)-(A4) are satisfied.

Proof. (A1) and (A2) are clear. (A3) follows from the fact that the index of
the product of two Fredholm operators is the sum of their respective indices;
see for example [16, Exercise 2.5.1.(f)]. The ‘only if’ part of (A4) is immedi-
ate, since if f is invertible as an element of H∞(D), then Tf is invertible, and
so ind Tf = 0. The ‘if’ part of (A4) follows from Proposition 5.18. Suppose
that f ∈ H∞(D), that f is invertible as an element of H∞(D) + C(T) and
that ind Tf = 0. By Proposition 5.18, it follows that there exist δ, ǫ > 0
such that |F (reit)| ≥ ǫ for 1− δ < r < 1, where F is the harmonic extension
of f to D. But since f ∈ H∞(D), its harmonic extension F is equal to f .
So |f(reit)| ≥ ǫ for 1 − δ < r < 1. Also since ι(f) = 0, the winding number
with respect to the origin of the curve f(reit) for 1− δ < r < 1 is equal to 0.
By the Argument principle, it follows that f cannot have any zeros inside
rT for 1− δ < r < 1. In light of the above, we can now conclude that there
is an ǫ′ > 0 such that |f(z)| > ǫ′ for all z ∈ D. It follows from the corona
theorem for H∞(D) that f is invertible as an element of H∞(D). �

An application of Theorem 4.1 yields the following Nyquist criterion.

Corollary 5.20. Let P ∈ S(H∞(D), p,m) and C ∈ S(H∞(D),m, p). More-

over, let P = NPD
−1
P be a right coprime factorization of P , and C = D̃−1

C ÑC

be a left coprime factorization of C. Then the following are equivalent:

(1) C stabilizes P .

(2) (a) det(I − CP ) ∈ H∞(D) + C(T).
(b) Let F1, F2, F3 be the harmonic extensions to D, of

f1 := det(I − CP ), f2 := detDP , f3 := det D̃C ,

respectively. There exist δ, ǫ > 0 such that

|Fi(re
it)| ≥ ǫ, 1 − δ < r < 1, i = 1, 2, 3.

(c) ι(det(I − CP )) + ι(detDP ) + ι(det D̃C) = 0.

Remark 5.21. It was proved by Inouye [12] that the set S(H∞(D), p,m)
of plants possessing a left and a right coprime factorization coincides with
the class of plants that are stabilizable.

5.6. The polydisk algebra. Let

D
n := {(z1, . . . , zn) ∈ C

n : |zi| < 1 for i = 1, . . . , n},

Dn := {(z1, . . . , zn) ∈ C
n : |zi| ≤ 1 for i = 1, . . . , n},

T
n := {(z1, . . . , zn) ∈ C

n : |zi| = 1 for i = 1, . . . , n}.

The polydisk algebra A(Dn) is the set of all functions f : Dn → C such that
f is holomorphic in Dn and continuous on Dn.

If f ∈ A(Dn), then the function fd defined by z 7→ f(z, . . . , z) : D → C

belongs to the disk algebra A(D), and in particular also to C(T). The map

f 7→ (f |Tn , fd) : A(Dn) → C(Tn) × C(T)
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is a ring homomorphism. This map is also injective, and this is an immediate
consequence of Cauchy’s formula; see [20, p.4-5]. We recall the following
result; see [20, Theorem 4.7.2, p.87].

Proposition 5.22. Suppose that Ψ = (ψ1, . . . , ψn) is a continuous map

from D into Dn, which carries T into Tn and the winding number of each

ψi is positive. Then for every f ∈ A(Dn), f(Ψ(D) ∪ Tn) = f(Dn).

Lemma 5.23. Let

R = a unital full subring of A(Dn),

S := C(Tn) × C(T),

G := Z,

ι := ((g, h) 7→ w(h)).

Then (A1)-(A4) are satisfied.

Proof. (A1) and (A2) are clear. (A3) was proved earlier in Subsection 5.1.
Finally, we will show below that (A4) holds, following [6].

Suppose that f ∈ A(Dn) is such that f |Tn ∈ inv C(Tn), fd ∈ inv C(T) and
that w(fd) = 0. We use Proposition 5.22, with Ψ(z) := (z, . . . , z) (z ∈ D).
Then we know that f will have no zeros in Dn if f(Ψ(D)) does not contain
0. But since fd ∈ inv C(T) and w(fd) = 0, it follows that fd is invertible as
an element of A(D) by the result in Subsection 5.1. But this implies that
f(Ψ(D)) does not contain 0.

Now suppose that f ∈ A(Dn) with f |Tn ∈ inv C(Tn), fd ∈ inv C(T), and
that it is invertible as an element of A(Dn). But then in particular, fd is an
invertible element of A(D), and so again by the result in Subsection 5.1, it
follows that w(fd) = 0. �

Besides A(Dn) itself, some other examples of such R are:

(1) P, the set of all polynomials p : Cn → C,
(2) RH∞(Dn), the set of all rational functions without poles in Dn.

An application of our main result (Theorem 4.1) yields the following Nyquist
criterion.

Corollary 5.24. Let R be a unital full subring of A(Dn). Let P ∈ S(R, p,m)
and C ∈ S(R,m, p). Moreover, let P = NPD

−1
P be a right coprime factor-

ization of P , and C = D̃−1
C ÑC be a left coprime factorization of C. Then

the following are equivalent:

(1) C stabilizes P .

(2) (a) det(I−CP ), detDP , det D̃C belong to inv (C(Tn)×C(T)), and

(b) ι(det(I − CP )) + ι(detDP ) + ι(det D̃C) = 0.

Remark 5.25. By [1], it follows that A(Dn) is a projective free ring, since
its maximal ideal space the polydisk Dn is contractible. Thus the set
S(A(Dn), p,m) of plants possessing a left and a right coprime factorization
coincides with the class of plants that are stabilizable by [18, Theorem 6.3].
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Corollary 5.24 was known in the special case when R = P; see [6].
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area.

References

[1] A. Brudnyi and A.J. Sasane. Sufficient conditions for the projective freeness of Banach
algebras. Journal of Functional Analysis, in press.
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