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SYSTEMS∗

JOSEPH A. BALL† , KALLE M. MIKKOLA‡ , AND AMOL J. SASANE§

Abstract. We obtain state-space formulas for the solution of the Nehari–Takagi/suboptimal
Hankel norm approximation problem for infinite-dimensional systems with a nonexponentially stable
generator, via the method of J-spectral factorization. We make key use of a purely frequency-domain
solution of the problem.
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1. Introduction. The Hankel norm approximation problem has received a lot
of attention, both in the mathematical and engineering literature (see Adamjan, Arov,
and Krĕın [1], Ball and Helton [4], Ball and Ran [7], Glover [19], and Doyle, Glover,
and Zhou [17]). Its importance in control theory is due to its connections with the
model reduction problem (see [19]).

In order to state the suboptimal Hankel norm approximation problem, we will
need a few preliminaries. First we recall the definition of the (frequency-domain)
Hankel operator corresponding to a symbol G ∈ L∞(iR,Cp×m) and the definition of
its singular values. Let C+ := {s ∈ C | Re(s) > 0} and C− := {s ∈ C | Re(s) < 0}.

Let H2(C+,C
k) denote the set of all analytic functions f : C+ → C

k such that

‖f‖2 := sup
ζ>0

(
1

2π

∫ ∞

−∞
‖f(ζ + iω)‖2dω

) 1
2

< ∞.

Analogously one defines H2(C−,C
k). For G ∈ L∞ (iR,Cp×m) we define the Hankel

operator with symbol G, denoted by HG, acting from H2 (C−,C
m) to H2 (C+,C

p), as
follows:

HGf = PH2(C+,Cp)(MGf) for f ∈ H2 (C−,C
m) ,

where MG is the multiplication map on L2(iR,Cm) induced by G, and PH2(C+,Cp)

is the orthogonal projection operator from L2(iR,Cp) onto H2(C+,C
p). The Hankel

operator is bounded, that is, HG ∈ L(H2(C−,C
m), H2(C+,C

p)).
Now we recall the notion of singular values of a bounded linear operator from a

Hilbert space H1 to a Hilbert space H2. For k ∈ {1, 2, . . . } the kth singular value
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(denoted by σk(H)) of an operator H ∈ L(H1,H2) is defined to be the distance with
respect to the norm in L(H1,H2) of H from the set of operators in L(H1,H2) of
rank at most k − 1. Thus σ1(H) = ‖H‖, and σ1(H) ≥ σ2(H) ≥ σ3(H) ≥ · · · ≥ 0.
For G ∈ L∞(iR,Cp×m), we refer to the singular values of HG simply as the Hankel
singular values of G.

Let H∞,k(C−,C
p×m) denote the set of all p×m matrix-valued functions K of a

complex variable defined in the open left half-plane such that K = Gf + F , where F
is an element in H∞(C−,C

p×m) and Gf is the transfer function of a finite-dimensional
system with order at most k, with all its poles in the open left half-plane. The set
H∞,k(C−,C

p×m) is a subset of L∞(iR,Cp×m).
We recall the following well-known result of Adamjan, Arov, and Krĕın [1],

adapted here to the right half-plane setting: If G ∈ L∞(iR,Cp×m), then

inf
K∈H∞,k(C−,Cp×m)

‖G(i·) + K(i·)‖∞ = σk+1(G).

We are now ready to give the statement of the suboptimal Hankel norm approximation
problem, which is also known as the Nehari–Takagi problem. The suboptimal Hankel
norm approximation problem is the following: Let G(i·) ∈ L∞(R,Cp×m). If σk+1 <
σ < σk, then find K ∈ H∞,k(C−,C

p×m) such that ‖G(i·) + K(i·)‖∞ ≤ σ. In fact,
the authors of [1], working with Schmidt pairs of the Hankel operator, also gave a
linear-fractional description for the set of all solutions of the suboptimal Hankel norm
approximation problem; later work of Ball and Helton [4] obtained such a linear-
fractional description, but via an indefinite-metric Beurling–Lax theorem combined
with some Krĕın-space projective geometry.

Now suppose that G is in fact the transfer function of some well-posed linear
system; that is, G is not simply an L∞ function, but it has the special form G(s) =
C(sI − A)−1B, where (A,B,C) are the generators of the system. Then by a state-
space solution to the suboptimal Hankel norm approximation problem we mean a
K given explicitly in terms of the A,B,C operators. For the case of rational G(s)
with system-generators (A,B,C) equal to finite matrices, a state-space solution of
the Hankel norm approximation problem has been obtained by Kung and Lin [29],
Glover [19], Ball and Ran [7], and Ball, Gohberg, and Rodman [3, Chapter 20].

In Curtain and Sasane [14, 13], state-space solutions to the suboptimal Han-
kel norm approximation problem were given for two classes of infinite-dimensional
state-linear systems, but under the assumption that A generates an exponentially
stable, strongly continuous semigroup. Recall that a semigroup {T (t)}t≥0 on a
Hilbert space X is said to be exponentially stable if there exist positive constants
M and ε such that

‖T (t)‖ ≤ Me−εt for all t ≥ 0.

However, there exists an important class of systems with a transfer function G ∈
H∞(C−,C

p×m) for which A does not generate an exponentially stable semigroup
(see, for example, Oostveen [33]), for example, if A is the generator of a strongly
stable semigroup, that is, a semigroup satisfying

T (t)x → 0 as t → ∞ for all x ∈ X.

Roughly speaking, the rate of convergence to zero is not uniform but depends on the
choice of the element in the Hilbert space. An elementary example of a semigroup
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which is strongly stable but not exponentially stable is given by etA on �2, where

A =

⎡⎢⎢⎢⎣
−1

− 1
2

− 1
3

. . .

⎤⎥⎥⎥⎦ ∈ L(�2).

In this article, we consider an even weaker notion of stability, the so-called nonexpo-
nentially stable semigroup, namely, a semigroup whose generator has a nonnegative
growth bound. Clearly this class encompasses both strongly stable semigroups and
(hence surely) exponentially stable semigroups; thus we emphasize that the prefix
“non” is really short for “not necessarily.”

Earlier work on the problem for infinite-dimensional systems includes the work of
Curtain and Ran [12], which handled the case of Pritchard–Salamon systems, and of
Glover, Curtain, and Partington [20], where approximating solutions to the optimal
Hankel norm approximation problem were obtained without assuming exponential
stability, but only for the case that the Hankel operator is nuclear, a rather strong
assumption. In this paper, we give solutions to the suboptimal Hankel norm approx-
imation problem for infinite-dimensional systems having a nonexponentially stable
semigroup. Our solution depends on a preliminary result which obtains the linear-
fractional parameterization of the set of all solutions in purely frequency-domain terms
via the solution Θ of a certain J-spectral factorization problem. The fact that Θ may
be unbounded in our general setting makes the analysis much more delicate. We give
three proofs of this key frequency-domain result in order to point out the close con-
nections with results already existing in the literature. The first proof shows how the
result can be reduced to the result of Adamjan, Arov, and Krĕın in [1]. The second
proof revisits the proof of Ball and Helton [4] with special care given to the details
required to handle the general case where Θ may be unbounded. The third proof
revisits the homotopy argument appearing in [3, 40]. The standard homotopy argu-
ment works well in case the coefficients of the linear-fractional parameterization and
the free parameter are continuous up to the boundary. We show how an approxima-
tion argument can be used to reduce the general case here to the classical situation,
at least for the proof that every admissible free parameter leads to a solution of the
Nehari–Takagi problem. The proof that any solution of the Nehari–Takagi problem
necessarily is of the linear-fractional form follows the ideas appearing in the second
proof.

The outline of the paper is as follows. In section 2, we give the key frequency-
domain result (the reduction of the parameterization of the set of all solutions of
the suboptimal Hankel norm approximation problem to solving a certain J-spectral
factorization problem), along with our three proofs of this result. In section 3 we use
this frequency-domain result to parameterize all solutions to the suboptimal Hankel
norm approximation problem for infinite-dimensional state-space systems for which
the generator is not necessarily exponentially stable. Finally in the last section, we
give state-space solutions for well-posed linear systems by applying the result in sec-
tion 3 to the associated reciprocal system.

2. The key frequency-domain result.
Theorem 2.1. Let G ∈ H∞(C+,C

p×m) and let HG : H2(C−,C
m) �→ H2(C+,C

p)
denote the corresponding Hankel operator, with the singular values σ1 ≥ σ2 ≥ · · · (≥
0). Suppose that σk > σ > σk+1. Then there exists a matrix function Λ: C− �→
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C
(p+m)×(p+m), uniquely determined up to a (p + m) × (p + m)-matrix right constant

factor U satisfying U∗[ Ip 0
0 −Im

]
U =

[ Ip 0
0 −Im

]
, such that

S1. Λ(iω)∗
[ Ip 0

0 −Im

]
Λ(iω) =

[
Ip G(iω)
0 Im

]∗[ Ip 0

0 −σ2Im

][
Ip G(iω)
0 Im

]
for ω ∈ R;

S2. 1
·−1Λ ∈ H2(C−,C

(p+m)×(p+m));

S3. Λ is invertible (i.e., there exists a V : C− �→ C
(p+m)×(p+m) such that Λ(s)V (s) =

Ip+m for s ∈ C−) and 1
·−1V ∈ H2(C−,C

(p+m)×(p+m)).
Define

Θ(iω)

(
=

[
Θ11(iω) Θ12(iω)
Θ21(iω) Θ22(iω)

])
=

[
Ip G(iω)
0 Im

]
V (iω) for ω ∈ R.

Then we have the following: K : C− �→ C
p×m such that K ∈ H∞,k(C−,C

p×m) and
‖G(i·) + K(i·)‖∞ ≤ σ if and only if

G(iω) + K(iω) = (Θ11(iω)Q(iω) + Θ12(iω))(Θ21(iω)Q(iω) + Θ22(iω))−1 for ω ∈ R

(2.1)

for some Q : C− �→ C
p×m such that Q ∈ H∞(C−,C

p×m) and ‖Q(i·)‖∞ ≤ 1.
For the application of Theorem 2.1 in section 3, we note that a sufficient condition

for the validity of S2 is the existence of a constant Λ(∞) ∈ C
(p+m)×(p+m) such that

Λ − Λ(∞) ∈ H2(C−,C
(p+m)×(p+m)).

By using the transformation

f(s) �→ f̃(z) := f

(
1 − z

1 + z

)
and observing (via the Jacobi change-of-variable formula) that∫

T

|f̃(z)|2 |dz| =

∫
iR

|f(s)|2 |ds|
1 + |s|2 ,

we see that Theorem 2.1 is exactly equivalent to the following discrete-time version.
Here D denotes the unit disk, De denotes the exterior of the unit disk (including the
point at infinity), and T denotes the unit torus (equal to the boundary of D).

Theorem 2.2. Let G ∈ H∞(De) and let HG : H2(D,Cm) �→ H2(D,Cp)⊥ be the
associated Hankel operator, with singular values σ1 ≥ σ2 ≥ · · · (≥ 0). Suppose that
σk > σ > σk+1. Then there exists a unique matrix function Λ: D �→ C

(p+m)×(p+m),
uniquely determined up to a (p+m)×(p+m)-matrix right constant factor U satisfying

U∗[ Ip 0
0 −Im

]
U =

[ Ip 0
0 −Im

]
, such that

S′1. Λ(ζ)∗
[ Ip 0

0 −Im

]
Λ(ζ) =

[
Ip G(ζ)
0 Im

]∗[ Ip 0

0 −σ2Im

][
Ip G(ζ)
0 Im

]
for ζ ∈ T;

S′2. Λ ∈ H2(D,C(p+m)×(p+m));
S′3. Λ is invertible (i.e., there exists a V : D �→ C

(p+m)×(p+m) such that Λ(z)V (z) =
Ip+m for z ∈ D) and V ∈ H2(D,C(p+m)×(p+m)).

Define

Θ(ζ)

(
=

[
Θ11(ζ) Θ12(ζ)
Θ21(ζ) Θ22(ζ)

])
=

[
Ip G(ζ)
0 Im

]
V (ζ) for ζ ∈ T.(2.2)

Then we have the following: K : D �→ C
p×m is such that K ∈ H∞,k(D,Cp×m) and

‖(G + K)|T‖∞ ≤ σ if and only if

G(ζ) + K(ζ) = (Θ11(ζ)Q(ζ) + Θ12(ζ))(Θ21(ζ)Q(ζ) + Θ22(ζ))
−1 for ζ ∈ T(2.3)

for some Q : D �→ C
p×m such that Q ∈ H∞(D,Cp×m) and ‖Q‖∞ ≤ 1.
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We next indicate several proofs of Theorem 2.2 based on various different points
of view. We first need to lay out a few preliminaries.

2.1. Preliminaries. For p and m positive integers we let C
p×m be the space of

complex p×m matrices M with norm ‖M‖ equal to the induced operator norm:

‖M‖ = sup
x∈Cm : ‖x‖2≤1

‖Mx‖2,

where ‖x‖2 is the standard Euclidean 2-norm on C
m. The trace norm Tr(M) of a

p×m matrix M is defined by

Tr(M) = tr(M∗M)1/2,

where the trace tr(A) of an m×m matrix A is defined by

tr(A) =

p∑
k=1

〈Aek, ek〉,

where {e1, . . . , en} is any orthonormal basis for C
p—a good reference for the natural

infinite-dimensional setting for this material is [21, Chapter VII]. We let L∞(T,Cp×m)
denote the space of measurable p × m matrix-valued functions on the unit circle T

with finite essential supremum (supremum up to sets of measure zero) norm uniformly
bounded:

‖F‖∞ = ess-sup
ζ∈T

‖F (ζ)‖ < ∞.

We let L1(T,C
m×p) be the space of measurable m × p matrix-valued functions f on

T with integrable trace norm:

‖f‖1 =
1

2π

∫
T

Tr(f(ζ))|dζ|.

It is well known (see, e.g., [38, page 197]) that the Banach space L∞(T,Cp×m) can
be identified as the dual of the Banach space L1(T,C

m×p) under the duality pairing

[F, f ] =
1

2π

∫
T

tr(F (ζ)f(ζ)) d|ζ| for F ∈ L∞(T,Cp×m) and f ∈ L1(T,C
m×p).

Therefore, in addition to its norm topology, L∞(T,Cp×m) carries a weak-∗ topology
induced by its duality with respect to L1(T,C

p×m). We shall have use of the following
facts concerning this weak-∗ topology.

Proposition 2.3.

(1) A subspace S of L∞(T,Cp×m) is closed in the weak-∗ topology of L∞(T,Cp×m)
if and only if whenever {Fn}n=1,2,... is a sequence of elements of S converging
weak-∗ to F ∈ L∞(T,Cp×m), then in fact F ∈ S.

(2) Suppose that {Fn}n=1,2,... is a sequence of elements of L∞(T,Cp×m) converg-
ing pointwise boundedly to the element F ∈ L∞(T,Cp×m), i.e.,

lim
n→∞

Fn(ζ) = F (ζ) for almost all ζ ∈ T, and

‖Fn(ζ)‖ ≤ M for some M < ∞ for all n = 1, 2, . . . .

Then Fn converges to F in the weak-∗ topology of L∞(T,Cp×m).
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Proof. By the Krĕın–Šmulian theorem (see [42, Theorem 10.1, page 173]), a
subspace S of L∞(T,Cp×m) (or more generally, a convex subset) is weak-∗ closed if
and only if S ∩{F : ‖F‖∞ ≤ r} is weak-∗ closed for each r > 0. Since S is a subspace,
by homogeneity it suffices to consider only the case r = 1. As L∞(T,Cp×m) is the
dual of the separable space L1(T,C

m×p), it follows that the weak-∗ topology on the
unit ball of L∞(T,Cp×m) is metrizable (see [18, Theorem 102, page 174]). Hence, to
show that S is closed in the weak-∗ topology, it suffices to show that S is closed under
sequential weak-∗ limits as asserted. This proves part (1) of Proposition 2.3.

Suppose now that {Fn}n=1,2,... is a sequence of elements of L∞(T,Cp×m) con-
verging pointwise boundedly to F . To show that Fn converges to F in the weak-∗
topology, we must show that

lim
n→∞

[Fn, f ] = lim
n→∞

1

2π

∫
T

tr(Fn(ζ)f(ζ))|dζ| =
1

2π

∫
T

tr(F (ζ)f(ζ))|dζ|(2.4)

for each choice of f ∈ L1(T,C
m×p). Note that the assumptions imply that

lim
n→∞

tr(Fn(ζ)f(ζ)) = tr(Fn(ζ)f(ζ)) for almost all ζ ∈ T.

By the standard trace estimate

| tr(AB)| ≤ Tr(AB) ≤ ‖A‖Tr(B),

we have

| tr(Fn(ζ)f(ζ))| ≤ ‖Fn(ζ)‖Tr(f(ζ)) ≤ M Tr(f(ζ)),

where M Tr(f(·)) is integrable by the definition of f ∈ L1(T,C
p×m). It now follows

from the Lebesgue dominated convergence theorem (see, e.g., [37, Theorem 16, page
91]) that (2.4) follows as required. This completes the proof of part (2) of Proposition
2.3.

The subspace H∞(D,Cp×m) can be viewed as the subspace of L∞(D,Cp×m) con-
sisting of functions F ∈ L∞(T,Cp×m) such that the Fourier coefficients of negative
index vanish:

1

2π

∫
T

F (ζ)ζn|dζ| = 0 for n = −1,−2, . . . .

The subspace H∞(D,Cp×m) can also be viewed (via identification through nontangen-
tial-limit boundary values) as the space of analytic p×m matrix-valued functions on
the unit disk which are uniformly bounded there:

‖F‖∞ = sup
z∈D

‖F (z)‖ < ∞.

We define H∞,k(D,Cp×m) as consisting of all elements G of L∞(T,Cp×m) for which
the associated Hankel operator HG : H2(D,Cm) �→ H2(D,Cp)⊥ given by

HG : f �→ PH2(D,Cp)⊥MG|H2(D,Cm)

has rank equal to k. Here MG denotes the multiplication operator associated with G.
Equivalently, the Hankel matrix

[HG] =

⎡⎢⎢⎢⎣
g−1 g−2 g−3 . . .
g−2 g−3 g−4 . . .
g−3 g−4 g−5 . . .
...

...
...

⎤⎥⎥⎥⎦ : �2(Z+,C
m) �→ �2(Z+,C

p)
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based on the Fourier coefficients for G,

G(z) ∼
∞∑

n=−∞
gnz

n for z ∈ T,

has rank equal to k. In what follows we shall use the following result.
Proposition 2.4. For a given k ∈ {0, 1, 2, . . . }, the set⋃

k′ : k′≤k

H∞,k′(D,Cp×m)

is closed in the weak-∗ topology of L∞(T,Cp×m).
Proof. Let us suppose that Gn ∈ H∞,k′(D,Cp×m) for some k′ ≤ k for all

n = 1, 2, . . . , and that Gn converges to G ∈ L∞(T,Cp×m) in the weak-∗ topology.
By part (1) of Proposition 2.3, Proposition 2.4 follows if we are able to show that
necessarily the limit G is again in

⋃
k′ : k′≤k H∞,k′(D,Cp×m). For f ∈ H2(D,Cm) and

g ∈ H2(D,Cp)⊥ we then have

〈HGn
f, g〉H⊥

2
=

1

2π

∫
T

g(ζ)∗Gn(ζ)f(ζ)|dζ|

=
1

2π

∫
T

tr (Gn(ζ)f(ζ)g(ζ)∗) |dζ|.(2.5)

As f(ζ)g(ζ)∗ ∈ L1(T,C
m×p) and Gn converges weak-∗ to G by assumption, we con-

clude from (2.5) that

lim
n→∞

〈HGnf, g〉H⊥
2

=
1

2π

∫
T

tr (G(ζ)f(ζ)g(ζ)∗) |dζ|

= 〈HGf, g〉H⊥
2
,(2.6)

i.e., HGn converges to HG in the weak operator topology of L(H2(D,Cm), H2(D,Cp)⊥).
The fact that Gn ∈ H∞,k′(D,Cp×m) with k′ ≤ k means that

det[〈HGnej , f�〉H⊥
2

]j,l=1,...,k+1 = 0(2.7)

for all n = 1, 2, 3, . . . for any choice of k+1 linearly independent vectors {e1, . . . , ek+1}
in H2(D,Cm) and k + 1 linearly independent vectors {f1, . . . , fk+1} in H2(D,Cp)⊥.
Using (2.5) and taking limits in (2.7) then implies that

det[〈HGej , fl〉H⊥
2

]j,l=1,...,k+1 = 0(2.8)

for all such {e1, . . . , ek+1} and {f1, . . . , f+1}. This then implies that HG has rank at
most k, or, by definition, G ∈ H∞,k′(D,Cp×m) for some k′ ≤ k.

Sometimes it is of interest to focus on the “unit ball” of H∞,k(D,Cp×m), namely,
the set of functions G ∈ H∞,k(D,Cp×m) with ‖G‖∞ ≤ 1. This class is often given a
special name, namely, the generalized Schur class of index k, denoted as Sk(D,Cp×m).
The following result concerning the class Sk(D,Cp×m) originates in the work of Krĕın
and Langer (see [27, 28]).

Proposition 2.5. Let G ∈ L∞(T,Cp×m). Then the following are equivalent:
(1) G ∈ Sk(D,Cp×m).
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(2) G has a factorization G = F ·B−1, where F is in H∞(D,Cp×m) with ‖F‖∞ ≤
1 and B is an m × m Blaschke–Potapov product of degree k, and no such
representation G = f ′ · B′−1 is possible with B′ an m×m matrix Blaschke–
Potapov product of degree k′ < k.

(3) G has meromorphic continuation to D and, for any choice of vectors x1, . . . ,
xN ∈ C

p, points z1, . . . , zN ∈ ΩG (where ΩG ⊂ D is the domain of analyticity
for G), and N = 1, 2, 3, . . . , the Hermitian matrix[

x∗
i xj − x∗

iG(zi)G(zj)
∗xj

1 − zizj

]
(2.9)

has at most k negative eigenvalues, and there is at least one choice of x1, . . . ,
xN , z1, . . . , zN , and N for which (2.9) has exactly k negative eigenvalues.

We shall also need an asymptotic version of the maximum modulus theorem for
the generalized Schur class Sk(D,Cp×m) (with k < ∞).

Proposition 2.6. Suppose G is in the generalized Schur class Sk(D,Cp×m),
where k < ∞, and let s > 1. Then there exists an r < 1 so that

z ∈ D, r < |z| < 1 ⇒ z ∈ ΩG, and ‖G(z)‖ ≤ s.

Proof. Let G = F · B−1 be the Krĕın–Langer factorization G and suppose that
we are given a number s > 1. As F ∈ H∞(D,Cp×m) with ‖F‖∞ ≤ 1, we have
‖F (z)‖ ≤ 1 for all z ∈ D by the maximum modulus theorem for H∞. As B is a finite
matrix Blaschke–Potapov product, B is uniformly continuous on the closed disk D,
and B−1 is uniformly continuous on any annulus Ar = {z : r ≤ |z| ≤ 1} which misses
the zeros of B. As B−1 has norm 1 on the unit circle, we can therefore guarantee
that ‖B−1(z)‖ ≤ s (for any preassigned s > 1) as long as we restrict to an annulus
Ar with r sufficiently close to 1. The result now follows.

We also need the following elementary result.
Proposition 2.7. Suppose that G ∈ H∞(De,C

p×m) with Hankel singular values
σ1 ≥ σ2 ≥ · · · (≥ 0). If Q ∈ H∞,k(D,Cp×m), then ‖G + Q‖∞ ≥ σk+1.

Proof. The Hankel singular values are characterized by

σk+1(HG) = inf
X : rankX≤k

‖HG −X‖,

where X here is an operator from H2(D,Cm) to H2(D,Cp) (see, e.g., [21, Chapter
VI, Theorem 1.5, page 98]). In particular, if K ∈ H∞,k(D,Cp×m), then X = HK has
rank equal to k. Hence

‖G + K‖∞ ≥ ‖HG+K‖op = ‖HG + HK‖op ≥ inf
X : rankX≤k

‖HG + X‖op = σk+1,

and the assertion follows.

2.2. Existence of Λ and Θ in Theorem 2.2. In this section we point out
some general considerations which guarantee the existence of a function Λ: D �→
C

(p+m)×(p+m) satisfying conditions S′1, S′2, and S′3. It then remains to prove that
such a Λ leads to a parameterization of the set of all solutions of the Nehari–Takagi
problem as in Theorem 2.2. In practice, it then remains to compute Λ (and Θ) in
some explicit form in terms of known parameters in the application; this is what we do
in section 3 (for the setting of the left half-plane rather than of the unit disk), where
G(s) = C(sI − A)−1B is assumed to be the transfer function of a continuous-time
linear system having certain (nonexponential) stability properties.
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First we need to make a few general observations. The invertibility of H∗
GHG−σ2I

on L2(T,C
m) is equivalent to σ being in the resolvent set of [H∗

GHG]1/2, i.e., of σ
being in a gap of the spectrum of [H∗

GHG]1/2. It is well known that the singular
values σ1 > σ2 > · · · of HG consist of the points of the spectrum of [H∗

GHG]1/2 which
are isolated eigenvalues of finite multiplicity positioned to the right of the continuous
spectrum. The condition that σ is in a gap between Hankel singular values implies
in particular that σ is in a gap of the spectrum of [H∗

GHG]1/2, and hence implies the
invertibility of H∗

GHG−σ2I on L2(T,C
m). Further details on singular values in general

are given in Lemma 6.2 in Appendix B. For a given matrix function G ∈ L∞(T,Cp×m),
in addition to the notation HG : H2(D,Cm) �→ H2(D,Cp)⊥ for the Hankel operator
HG : f �→ PH2(D,Cp)⊥(G · f) associated with G, we let TG : H2(D,Cm) �→ H2(D,Cp)
denote the Toeplitz operator associated with G,

TG : f �→ PH2(D,Cp)(G · f) for f ∈ H2(D,Cm),

and we let MG : L2(T,C
m) �→ L2(T,C

p) denote the multiplication (sometimes also
called the Laurent) operator associated with G,

MG : f �→ G · f.

The next proposition gives a number of conditions equivalent to the invertibility of
H∗

GHG − σ2I on H2(D,Cm).
Proposition 2.8. Let G ∈ L∞(T,Cp×m) and set A =

[
I G
0 I

]
∈ L∞(T,

C
(p+m)×(p+m)). Then the following conditions are equivalent:

(1) H∗
GHG − σ2I is invertible.

(2) The Toeplitz operator TA∗JσA is invertible on H2(D,Cp+m).
(3) The singular integral operator S := MA∗JσAPH2(D,Cp+m) + PH2(D,Cp+m)⊥ is

invertible on L2(T,C
m).

Proof. To see that (1) ⇒ (2), note that

A∗JσA =

[
Ip G
0 Im

]∗ [
Ip 0
0 −σ2Im

] [
Ip G
0 Im

]
=

[
Ip G
G∗ G∗G− σ2Im

]
.

Taking Schur complements, we see that invertibility of TA∗JσA is equivalent to invert-
ibility of

TG∗G−σ2Im − TG∗TG = PH2
(MG∗MG −MG∗PH2

MG) |H2
− σ2IH2

= PH2
MG∗PH⊥

2
MG|H2

− σ2IH2

= H∗
GHG − σ2IH2 ,

and (1) ⇐⇒ (2) follows.

If we decompose L2(C
p+m) in the form L2(C

p+m) =
[ H2(D,Cp+m)

H2(D,Cp+m)⊥

]
, then the sin-

gular integral operator S := MA∗JσAPH2 +PH⊥
2

has the operator-block representation

S =

[
TA∗JσA 0
HA∗JσA IH⊥

2

]
.

From the triangular form of this block operator matrix, we see (2) ⇐⇒ (3).
Theorem VII.2.1 combined with Theorem VIII.4.1 from [10], adapted to our set-

ting, gives the following.
Theorem 2.9 (see [10, Theorem VII.2.1 and Theorem VIII.4.1] or [31]). Let

G ∈ L∞(D,Cp×m). Then the following are equivalent:



540 J. A. BALL, K. M. MIKKOLA, AND A. J. SASANE

(1) Any of the equivalent conditions (1), (2), or (3) in Proposition 2.8 holds.
(2) There exists a function Λ ∈ H2(D,C(p+m)×(p+m)) meeting the conditions

S′1, S′2, and S′3 of Theorem 2.2 and satisfying the additional condition: The
operator MV PH2MΛ (= MΛ−1PH2MΛ) defines a bounded projection operator
on L2(T,C

p+m). Moreover, Λ is uniquely determined up to a (p+m)×(p+m)-

matrix right constant factor U satisfying U∗[ Ip 0
0 −Im

]
U =

[ Ip 0
0 −Im

]
.

We point out that in fact conditions S′1, S′2, and S′3 already determine Λ uniquely
up to a constant (without the additional condition on the boundedness of MV PH2MΛ).
Indeed if Λ and Λ′ satisfy S′1, S′2, and S′3, then ΛΛ′−1(z) is analytic on D and satisfies

(ΛΛ′−1)∗(ζ)

[
Ip 0
0 −Im

]
(ΛΛ′−1)(ζ) =

[
Ip 0
0 −Im

]
for ζ ∈ T.(2.10)

We then use the formula
[ Ip 0

0 −Im

]
(ΛΛ′−1)∗−1(1/z)

[ Ip 0
0 −Im

]
to analytically continue

ΛΛ′−1 to the exterior of the unit disk. From (2.10) we see that the nontangential
boundary values from outside the disk agree with the nontangential boundary values
from inside the disk. By using Lemma 6.6 from [32, page 223], we see that the analytic
continuation passes through the unit circle as well. Then by Liouville’s theorem we see
that ΛΛ′−1 must be an invertible constant matrix U . Since Λ and Λ′ both satisfy S′1,
we see next that the constant matrix U must also satisfy U∗[ Ip 0

0 −Im

]
U =

[ Ip 0
0 −Im

]
.

We remark that the version of Theorem 2.9 as formulated in [10] uses the in-
vertibility of the singular integral operator (condition (3) in Proposition 2.8) as the
operator theory condition equivalent to the existence of the so-called canonical gen-
eralized factorization with respect to L2.

2.3. Proof of Theorem 2.2 via the Adamjan–Arov–Krĕın (AAK) the-
orem. The following result of Adamjan, Arov, and Krĕın (see [1]) also gives a pa-
rameterization of the set of all solutions of the (discrete-time) Nehari–Takagi problem
under the assumption that σk > σ > σk+1. A thorough recent treatment of the AAK
approach can be found in Peller [34].

Theorem 2.10. Let G ∈ H∞(De) and let HG : H2(D,Cm) �→ H2(D,Cp)⊥ be the
associated Hankel operator, with singular values σ1 ≥ σ2 ≥ · · · (≥ 0). Suppose that
σk > σ > σk+1. Define

Θ(ζ) =

[
Θ11(ζ) Θ12(ζ)
Θ21(ζ) Θ22(ζ)

]
∈ L2(T,C

(p+m)×(p+m))

by (viewed as an operator from C
p+m into L2(T,C

p+m))

Θ =

[
ζ · Z∗e

∗
∗γ∗ HGZe∗γ

ζ ·H∗
GZ∗e

∗
∗γ∗ Ze∗γ

]
,(2.11)

where e∗ : L2(T,Cp) �→ C
p, e : L2(T,Cm) �→ C

m, Z : H2(D,Cm) �→ H2(D,Cm),
Z∗ : H2(D,Cp) �→ H2(D,Cp), γ : C

m �→ C
m, and γ∗ : C

p �→ C
p are given by

e∗ :
∑∞

j=−∞ ζjfj �→ f−1, e :
∑∞

j=−∞ ζjgj �→ g0,

Z = (I − σ−2H∗
GHG)−1, Z∗ = (I − σ−2HGH

∗
G)−1,

γ = (eZe∗)−1/2, γ∗ = (e∗Z∗e
∗
∗)

−1/2.

Then the conclusion of Theorem 2.2 holds with Θ given by (2.11) rather than by (2.2).
In [4] it is argued that one way to compute a function Θ ∈ L2(D,C(p+m)×(p+m))

meeting the requirement in Theorem 2.2 is as follows: Θ should satisfy the conditions
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C′1. Θ(ζ)∗
[ Ip 0

0 −σ2Im

]
Θ(ζ) =

[ Ip 0
0 Iq

]
and

C′2. the columns of Θ should form a basis for the “wandering subspace” L asso-
ciated with the problem

Θ · Cp+m = L := M�Jσ ζ · M,

where we have set

M :=

[
Ip G
0 Im

]
·H2(D,Cp+m)

and where the notation �Jσ refers to the orthogonal difference in the indefinite
inner product 〈·, ·〉Jσ

on L2(T,C
p+m) induced by Jσ:

〈f, g〉Jσ
=

1

2π

∫
T

〈Jσf(ζ), g(ζ)〉Cp+m |dζ|.

In fact, this construction is very close to that in [10] for the construction of Wiener–
Hopf factors under the assumption that the associated singular integral operator is
invertible as discussed in section 2.2. Furthermore, in [2] it is verified that Θ as defined
in (2.11) meets the criteria C′1 and C′2. In this way we have a proof of Theorem 2.2
which ultimately rests on the main result from [1].

2.4. Proof of Theorem 2.2 via Krĕın-space projective geometry: The
Ball–Helton approach. This approach, originating in [4] (see also [39] and [2]),
relies on a projective geometry of Krĕın spaces. The method is reasonably straight-
forward in case the spectral factor Λ and its inverse V are bounded (and hence also Θ
is bounded), but there are some extra complications for the general case. Since these
extra complications remained a little obscure in the original exposition [4], we now re-
visit the ideas there in an attempt to make them more accessible for the system-theory
community. For basic background concerning Krĕın spaces, we refer to [9].

We first observe that the space L2(T,C
p+m) is a Krĕın space in the Jσ inner

product given by

〈f, g〉Jσ =
1

2π

∫
T

〈Jσf(ζ), g(ζ)〉Cp+m |dζ|.

A key role is played by the subspace M given by

M =

[
I G
0 I

]
·H2(D,Cp+m) ⊂ L2(T,C

p+m).(2.12)

In general a subspace M of a Krĕın space K is said to be regular if it has a good
orthogonal complement in the Krĕın space inner product (i.e., if K = M+̇M[⊥],
where +̇ indicates direct-sum decomposition), where M[⊥] indicates the orthogonal
complement in the indefinite Krĕın space inner product. We have the following char-
acterization of when the subspace M given by (2.12) is a regular subspace of the
Krĕın spaces (L2(T,C

p+m), 〈·, ·〉Jσ ).
Proposition 2.11. The subspace M given by (2.12) is a regular subspace of the

Krĕın space (L2(T,C
p+m), 〈·, ·〉Jσ

) if and only if any one of the equivalent conditions
in Proposition 2.8 holds.

Proof. Note that, for f, g ∈ H2(D,Cp+m), we have〈[
Ip G
0 Im

]
f, g

〉
Jσ

=

〈
Jσ

[
Ip G
0 Im

]
f, g

〉
L2(T,Cp+m)

= 〈TA∗JσAf, g〉L2(T,Cp+m) ,
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where A =
[
I G
0 I

]
is as in Proposition 2.8. Thus the map U : f �→

[ Ip G
0 Im

]
·f is unitary

from H2(D,Cp+m) with the inner product induced by the Toeplitz operator TA∗JσA

to M with the inner product induced by Jσ. A standard fact concerning Krĕın spaces
(see, e.g., [9]) is that a subspace of a Krĕın space K is regular if and only if it is itself
a Krĕın space in the inner product inherited from K. In the case at hand, by the
indefinite-metric unitary property of U , this happens if and only if H2(T,C

p+m) is a
Krĕın space in the inner product induced by TA∗JσA; this in turn is equivalent to the
invertibility of the Toeplitz operator TA∗JσA, i.e., condition (2) in Proposition 2.8.
Proposition 2.11 now follows.

When M is a regular subspace of (L2(T,C
p+m), 〈·, ·〉Jσ ), we denote by PM the

projection of L2(T,C
p+m) onto M along M[⊥]. Then PM is bounded as an operator

on L2(T,C
p+m) and is self-adjoint in the Jσ-inner product:

〈PMf, g〉Jσ = 〈f, PMg〉Jσ .

A key result from [4] is that when M is regular, then M has the following Beurling–
Lax-type representation.

Theorem 2.12 (see [4, 5]). Assume that the subspace M as in (2.12) is a regular
subspace of (L2(T,C

p+m), 〈·, ·〉Jσ
). Then there is a matrix function Θ ∈ L2(T,C

p+m)
such that

(1) M = L2(T,C
p+m)-closure of Θ ·H∞(D,Cp+m);

(2) Θ(ζ)∗JσΘ(ζ) = J1 :=
[ Ip 0

0 −Im

]
for almost all ζ ∈ T;

(3) the operator MΘPH2(D,Cp+m)M
−1
Θ defines a bounded operator, namely, the

Jσ-orthogonal projection PM of L2(T,C
p+m) onto M along M[⊥].

Moreover, Θ is uniquely determined up to a constant J-unitary factor on the right,
and in principle can be computed from the (J1, Jσ)-unitary property (2) above, along
with the condition that

Θ · Cp+m = M�Jσ
ζ · M.

Alternatively, Θ arises as Θ =
[ Ip G

0 Im

]
V , where V = Λ−1 and Λ is the spectral factor

for A∗JσA as in Theorem 2.9.
Remark 2.13. Note that if we set A =

[ Ip G
0 Im

]
(with then A−1 =

[ Ip −G
0 Im

]
), we

have

MΘPH2(D,Cp+m)MΘ−1 = MAMV PH2(D,Cp+m)MΛM
−1
A ,

where MA and its inverse M−1
A are bounded on L2(T,C

p+m). In this way we see that
the last part of condition (2) in Theorem 2.9 fits with condition (3) in Theorem 2.12.

The next step is to reformulate the Nehari–Takagi problem itself in terms of a
certain graph subspace of L2(T,C

p+m) instead of in terms of the matrix function
K ∈ H∞,k(T,C

p×m). We shall work with the Krĕın–Langer representation for an
element K of H∞,k(D,Cp×m). Specifically, a matrix function K ∈ L∞(T,Cp×m) is
in the class H∞,k(D,Cp×m) if and only if K has a representation as K = F · B−1,
where F ∈ H∞(D,Cp×m) and B ∈ H∞(D,Cm×m) is a Blaschke–Potapov product of
degree k, and k is the smallest nonnegative integer for which such a representation is
possible. Then we have the following reformulation of the Nehari–Takagi problem.

Proposition 2.14 (see [4, 2]). The angle-operator–graph correspondence induces
a one-to-one correspondence between solutions K ∈ H∞,k′(D,Cp×m) of the Nehari–
Takagi problem with datum G ∈ L∞(T,Cp×m) and with index k′ ≤ k, on the one
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hand, and subspaces G of the Krĕın space

K =

([
L2(T,C

p)
H2(D,Cm)

]
,
〈
·, ·
〉
Jσ

)
(2.13)

such that

(1) G ⊂ M :=
[ Ip 0

0 Im

]
·H2(D,Cp+m),

(2) G has codimension k in a maximal negative subspace of K, and
(3) G is shift invariant, i.e., ζ · G ⊂ G,

on the other hand, as follows. If K ∈ H∞,k′(D,Cp×m) has a representation as K =
FB−1, with F ∈ H∞(D,Cp×m) and with B ∈ H∞(D,Cm×m) a Blaschke–Potapov
product of degree k, and is such that ‖G + K‖∞ ≤ σ, and if we set

GK =

[
G + K

I

]
B ·H2(T,C

p×m) =

[
GB + F

B

]
·H2(D,Cp×m),(2.14)

then GK satisfies conditions (1), (2), and (3) listed above. Conversely, if G satisfies
conditions (1), (2), and (3) listed above, then necessarily there is a K ∈ H∞,k′(D,Cp×m)
with k′ ≤ k and with K = FB−1 for a Blaschke–Potapov product of degree k′ such
that ‖G + K‖∞ ≤ σ and G has the form GK as in (2.14).

Proof. We defer the proof to Appendix A (see section 5.1).

The next step is to note the geometric significance of the fact that σk > σ > σk+1.

Proposition 2.15. Assume that G ∈ L∞(T,Cp×m) has Hankel singular values
σ1 ≥ σ2 ≥ · · · with σk > σ > σk+1, and define subspaces M and K of L2(T,C

p+m)
as in (2.12) and (2.13). Then M is a regular subspace of K, and the Jσ-orthogonal
complement K �Jσ

M of M inside K has k negative squares.

Proof. One can compute that the relative Jσ-orthogonal complement K �Jσ M
is given by

K �Jσ
M =

[
I

σ−2H∗
G

]
H2(D,Cp)⊥.

Hence, the negative signature of K �Jσ
M is equal to the number of negative eigen-

values of the self-adjoint operator

[
I σ−2HG

] [Ip 0
0 −σ2Im

] [
I

σ−2H∗
G

]
= I − σ−2HGH

∗
G.

From the definition of singular values, we see that this quantity in turn is equal to k
if σk > σ > σk+1, and the assertion follows.

Proposition 2.15 enables us to adjust Proposition 2.14 to a more useful form as
follows.

Proposition 2.16. Assume that G ∈ L∞(T,Cp×m) has Hankel singular values
σ1 ≥ σ2 ≥ · · · satisfying σk > σ > σk+1 as in Proposition 2.15. Then the angle-
operator–graph correspondence as sketched in Proposition 2.14 induces a one-to-one
correspondence between solutions K ∈ H∞,k(D,Cp×m) of the Nehari–Takagi problem
with datum G ∈ L∞(T,Cp×m) and with index k, on the one hand, and subspaces G
of the Krĕın space K as in (2.13) such that

(1) G ⊂ M :=
[ Ip G

0 Im

]
·H2(D,Cp+m),
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(2) G is a maximal negative subspace as a subspace of M, and
(3) G is shift invariant, i.e., ζ · G ⊂ G,

on the other hand.
Proof. We defer the proof to Appendix A (see section 5.2).
Proposition 2.16 reduces the description of all solutions K of the Nehari–Takagi

problem to a description of all shift-invariant subspaces G of M which are maximal
negative as a subspace of M. The next proposition gives a characterization of these
subspaces; it is at this point that we use the Beurling–Lax representation of M given
in Theorem 2.12.

Proposition 2.17. Assume that K ∈ L∞(T,Cp×m) with Hankel singular values
σ1 > σ2 > · · · satisfying σk > σ > σk+1 as in Proposition 2.16. As in (2.12), let M
be considered as a Krĕın space in the Jσ-inner product, and let Θ ∈ L2(T,C

p×m) be
the Jσ-Beurling–Lax representer for M as in Theorem 2.12. Then a subspace G of
M satisfies conditions (1), (2), and (3) in Proposition 2.16 if and only if there is a
matrix function Q ∈ H∞(T,Cp×m) such that

G = L2(T,C
p+m)-closure of Θ

[
Q
I

]
·H∞(D,Cm)(2.15)

for a uniquely determined matrix function Q ∈ H∞(D,Cp×m) with ‖Q‖∞ ≤ 1.
Proof. The proof is deferred to Appendix A (see section 5.3).
We are now ready to put all the pieces together to complete the proof of Theo-

rem 2.2
Proof of Theorem 2.2. By combining Propositions 2.14 and 2.16 with Proposition

2.17, we see that K solves the Nehari–Takagi problem if and only if K has a Krĕın–
Langer factorization Q = FB−1 (where F ∈ H∞(D,Cp×m) and B ∈ H∞(D,Cm×m)
is a Blaschke–Potapov product of degree k) such that[

G + K
Im

]
B ·H2(D,Cm) ∩ Θ ·H∞(D,Cp+m) = Θ

[
Q
Im

]
·H∞(D,Cm)

for a uniquely determined Q ∈ H∞(D,Cp×m) with ‖Q‖∞ ≤ 1. In particular, we see
that for each of the standard basis vectors e1, . . . , em in C

m there must be correspond-
ing vector functions f1, . . . , fm ∈ BH2(D,Cm) so that[

G + K
Im

]
fj = Θ

[
Q
Im

]
ej ,

or, in operator form, [
G + K
Im

]
F =

[
Θ11Q + Θ12

Θ21Q + Θ22

]
.

From the bottom component we read off that F = Θ21Q+ Θ22; then the top compo-
nent gives

(G + K)(Θ21Q + Θ22) = Θ11Q + Θ12.

Once we confirm that F (ζ)−1 = (Θ21(ζ)Q(ζ) + Θ22(ζ))
−1 makes sense for almost all

ζ ∈ T, we can solve for G + K and arrive at the formula (2.3) for G + K. As all the
analysis is necessary and sufficient, this will then complete the proof of Theorem 2.2.
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We can see that Θ21(ζ)Q(ζ) + Θ22(ζ) is invertible for almost all ζ ∈ T by the
following geometric argument; for those readers who would prefer an analytic argu-
ment, we also give an analytic proof of the same point in the next section. By our
construction we have that the linear manifold[

G + K
Im

]
F ·H∞(D,Cm)

is dense in a shift-invariant subspace GG+K of K =
[ L2(T,C

p)
H2(D,Cm)

]
which has codimen-

sion k in a maximal Jσ-negative subspace of K. By the angle-operator–graph cor-
respondence for Jσ-negative subspaces, equivalently ‖G + K‖∞ ≤ σ and the L2-
closure of FH∞(D,Cm) has the form BH2(D,Cm) for a Blaschke–Potapov prod-
uct in H∞(D,Cm×m) of degree k. For this to occur, it is necessarily the case that
detF (ζ) �= 0 for almost all ζ ∈ T. The proof of Theorem 2.2 (via Krĕın-space projec-
tive geometry) is now complete.

2.5. Proof of Theorem 2.2 via a winding number argument. It is also
possible to bypass the Krĕın-space geometry ideas and give a more analytic, less
geometric proof for most of the content of Theorem 2.2, as we now show. The main
idea for this approach comes from [6]; it can also be considered as a purely frequency-
domain version of the state-space solution given in [3] for the rational case. One key
point of Theorem 2.2 is that every solution of the Nehar–Takagi problem arises from
a contractive H∞-free parameter via the linear-fractional map; for the proof of this
part we translate the ideas from the Grassmannian approach to the more analytic
setting here.

The starting point for this alternative derivation is still the Beurling–Lax repre-
sentation for the subspace M given in Theorem 2.12. Under the assumption that M
is a regular subspace of (L2(T,C

p+m), 〈·, ·〉Jσ ), we know that L2(T,C
p+m) has a direct

sum decomposition

L2(T,C
p+m) = M[⊥]+̇M,

and hence there is a bounded projection operator PM from L2(T,C
p+m) onto M along

the Jσ-orthogonal complement M[⊥] of M. In addition, in this setup the projection
operator PM is Jσ-self-adjoint in the sense that

〈PMf, g〉Jσ = 〈f, PMg〉Jσ for all f, g ∈ L2(T,C
p+m).

In addition, we shall have use for the operator P ∗
−PMP− on H2(D,Cm), where we

have set

P− =

[
0p×m

Im

]
: H2(D,Cm) �→ L2(T,C

p+m).

Note that then

P ∗
− =

[
0m×p PH2(D,Cm)

]
: L2(T,C

p+m) �→ H2(D,Cm).

Proposition 2.18. Assume that M as in (2.12) is regular and that M has the
Jσ-Beurling–Lax representation M = L2-closure of Θ ·H∞(D,Cp+m) as in Theorem
2.12. Then the following hold:
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(1) Jσ-orthogonal projection of L2(T,C
p+m) onto M can be computed either in

terms of G as

PM =

[
PH2(D,Cp) 0

0 0

]
+

[
HG

I

] (
H∗

GHG − σ2Im
)−1 [

H∗
G −σ2Im

]
(2.16)

or in terms of Θ as

PM = MΘPH2(D,Cp+m)M
−1
Θ .(2.17)

(2) The operator P ∗
−PMP− can be expressed in two ways:

P ∗
−PMP− = −σ2(H∗

GHG − σ2Im)−1(2.18)

= −σ2M[Θ21 Θ22]PH2(D,Cp+m)M[Θ21 −Θ22]∗ .(2.19)

(3) The number k of negative eigenvalues of the self-adjoint operator P ∗
−PMP−

on H2(D,Cm) can be expressed either as

k = the number of Hankel singular values > σ(2.20)

or as the number of negative squares of the kernel

Θ22(z)Θ22(w)∗ − Θ21(z)Θ21(w)∗

1 − zw
.(2.21)

Consequently, the matrix function Θ−1
22 Θ21 ∈ H∞,k(D,Cm×p) with ‖Θ−1

22 ·
Θ21‖∞ ≤ 1, and Θ22 has outer-inner factorization Θ22 = F · B, where F ∈
H2(D,Cm×m) is outer and B ∈ H∞(D,Cm×m) is a Blaschke–Potapov product
of degree k.

Proof. To prove (2.16) note that M has Jσ-orthogonal decomposition

M =

[
H2(D,Cp)

0

]
⊕Jσ

[
HG

Im

]
H2(D,Cm).(2.22)

The Jσ
-orthogonal projection onto im

[
HG

Im

]
can be computed as

P
im
[
HG

I

] =

[
HG

Im

]([
HG

I

][∗] [
HG

Im

])−1 [
HG

I

][∗]
.(2.23)

Here we view
[
HG

Im

]
as an operator acting from H2(D,Cm) with the standard Hilbert

space inner product into L2(T,C
p+m) with the Jσ-inner product. Hence[

HG

Im

][∗]
=

[
HG

Im

]∗
Jσ =

[
H∗

G −σ2I
]
.(2.24)

Substituting (2.24) into (2.23) and using (2.22) then gives the formula (2.16) for PM.
Formula (2.17) for PM was already noted as condition (3) of Theorem 2.12.
Formula (2.18) now follows upon multiplying (2.16) on the left by [0 PH2(D,Cm)]

and on the right by
[

0
Im

]
(considered as acting from H2(D,Cm) into L2(T,C

p+m)).
Formula (2.20) for the number of negative eigenvalues of P ∗

−PMP− can now be
read off immediately from formula (2.18) for P−PMP−. To get formula (2.21) for the
number of negative eigenvalues of P ∗

−PMP−, we use (2.19) to compute, where we set
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kw(ζ) = 1
1−ζw equal to the kernel function for H2(D,C), for any w1, . . . , wN ∈ D and

x1, . . . , xN ∈ C
m,〈

P−PMP−

(
N∑
j=1

kwjxj

)
,

N∑
i=1

kwixi

〉
H2(D,Cm)

= −σ2
N∑

i,j=1

〈(
MΘ21PH2MΘ∗

21
−MΘ22PH2MΘ∗

22

)
kwjxj , kwixi

〉
H2(D,Cm)

= −σ2
N∑

i,j=1

x∗
i

Θ21(wi)Θ21(wj)
∗ − Θ22(wi)Θ22(wj)

∗

1 − wiwj
xj .

By the density of the span of the kernel functions {kwx : w ∈ D, x ∈ C
m}, the formula

(2.21) for the number of negative eigenvalues for P ∗
−PMP− now follows.

Finally, from the (J, Jσ)-unitary property of Θ we know that Θ(ζ)−1 = J1Θ(ζ)∗Jσ
for almost all ζ ∈ T, and hence

Θ(ζ)J1Θ(ζ)∗ = Jσ−1 .

In particular,

Θ21(ζ)Θ21(ζ)
∗ − Θ22(ζ)Θ22(ζ)

∗ = −σ−2Im

or

Θ22(ζ)Θ22(ζ)
∗ = Θ21(ζ)Θ21(ζ)

∗ + σ−2Im ≥ σ−2Im(2.25)

for almost all ζ ∈ T. Hence, for all such ζ, Θ22(ζ) is invertible and

0 ≤ Θ22(ζ)
−1Θ21(ζ)Θ21(ζ)

∗Θ22(ζ)
∗−1 = Im − σ−2Θ22(ζ)

−1Θ22(ζ)
∗−1 ≤ Im.(2.26)

We conclude that Θ−1
22 Θ21 ∈ L∞(T,Cm×p) with ‖Θ−1

22 Θ21‖ ≤ 1. Moreover, by con-
jugating the kernel in (2.21) by Θ−1

22 (multiplying by Θ22(z)
−1 on the left and by

Θ22(w)∗−1 on the right for the generic sets of z and w for which these are defined),
we see that the kernel

Im − (Θ−1
22 Θ21)(z)(Θ

−1
22 Θ21)(w)∗

1 − zw

also has k negative squares on D×D, i.e., Θ−1
22 Θ21 ∈ H∞,k(D,Cm×p) with ‖Θ−1

22 Θ21‖∞
≤ 1. Thus Θ−1

22 Θ21 has a left Krĕın–Langer factorization Θ−1
22 Θ21 = B−1F with B

an m × m Blaschke–Potapov product of degree k and F ∈ H∞(D,Cm×p). From
the fact that M = L2-closure of Θ · H∞(D,Cm+p) and the fact that

[
0 Im

]
M ⊂

H2(D,Cm), we see that the matrix entries of both Θ21 and Θ22 are in H2. From
Θ−1

22 Θ21 = B−1F we conclude that Θ22 must have outer-inner factorization of the
form Θ22 = Θ22,o · B with Θ22,o ∈ H2(D,Cm×m) outer and B ∈ H∞(D,Cm×m)
a Blaschke–Potapov product of degree k. This completes the proof of Proposition
2.18.

Winding number proof of Theorem 2.2. Suppose that Q ∈ H∞(D,Cp×m) with
‖Q‖∞ ≤ 1. From (2.25) and (2.26) we see that Θ22(ζ) is invertible and that
‖(Θ−1

22 Θ21)(ζ)‖ < 1 for almost all ζ ∈ T. Hence the quantity

Θ21(ζ)Q(ζ) + Θ22(ζ) = Θ22(ζ)(Im + Θ22(ζ)
−1Θ21(ζ)Q(ζ))
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is invertible for almost all ζ ∈ T. We may then define a p×m matrix-valued function
K on T by

K = (V11Q + V12)(Θ21Q + Θ22)
−1.(2.27)

We verify that K ∈ L∞(T,Cp×m) and in fact that ‖G + K‖∞ ≤ σ as follows. Note
that[
G + K
Im

]
(Θ21Q + Θ22) =

[
Ip G
0 Im

] [
K
Im

]
(Θ21Q + Θ22) =

[
Ip G
0 Im

] [
V11Q + V12

Θ21Q + Θ22

]
=

[
Ip G
0 Im

]
V

[
Q
Im

]
= Θ

[
Q
Im

]
.(2.28)

(Here we use that
[ Ip G

0 Im

]
· V = Θ and thus also

[
V21 V22

]
=
[
Θ21 Θ22

]
.) Conse-

quently, considering the various expressions below as functions on T, we have

(G + K)∗(G + K) − σ2Im =
[
(G + K)∗ Im

]
Jσ

[
G + K
Im

]
= (Θ21Q + Θ22)

∗−1
[
Q∗ Im

]
Θ∗JσΘ

[
Q
IM

]
(Θ21Q + Θ22)

−1

= (Θ21Q + Θ22)
∗−1(Q∗Q− Im)(Θ21Q + Θ22)

−1 ≤ 0,

where the last step follows from the assumption that ‖Q‖∞ ≤ 1. In particular, it
follows that

‖K‖∞ ≤ σ + ‖G‖∞ whenever K = (V11Q + V12)(Θ21Q + Θ22)
−1 with ‖Q‖∞ ≤ 1.

(2.29)

Moreover, from (2.28) we see that G + K is given in terms of Q, as in (2.3).
For the discussion in this paragraph we consider the special case ‖Q‖∞ < 1; in

the end we shall use this special case to arrive at the general case by an approximation
argument. We observed at the end of the proof of Proposition 2.18 that the matrix
entries of Θ21 and Θ22 are all in H2, and by Proposition 2.18 we know that Θ22 has
outer-inner factorization Θ22 = F · B with F outer and the inner factor B equal to
a Blaschke–Potapov product of degree k. For any function f analytic on the disk D

(with possibly finitely many exceptional points), set fr(z) = f(rz) for each r < 1.
Then Θ22,r still has the form F ′

r ·B′
r with F ′

r outer and B′
r a Blaschke–Potapov product

of degree k, as long as we take r < 1 sufficiently close to 1. Moreover, by Proposition
2.6, we know that there is an r0 < 1 such that, for all r subject to r0 ≤ r < 1, we
have ‖Θ−1

22,rΘ21,r‖∞ ≤ 1
2 (1 + ‖Q‖−1

∞ ), with the consequence that

‖Θ−1
22,rΘ21,rQr‖∞ ≤ 1

2
‖Qr‖∞(1 + ‖Q‖−1

∞ )

≤ 1

2
(‖Q‖∞ + 1) < 1 for all r0 ≤ r < 1.(2.30)

By the Neumann series estimate, it follows that (I + Θ−1
22,rΘ21,rQr) is invertible in

L∞(T,Cm×m) with

‖(I + Θ−1
22,rΘ21,rQr)

−1‖∞ ≤ 1

1 − 1
2 (1 + ‖Q‖∞)

=
2

1 − ‖Q‖∞
.(2.31)
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Another consequence of the estimate (2.30) is that the determinant of (I +Θ−1
22,rΘ21,r

Qr) has winding number around the unit circle equal to zero. As det Θ22,r = det(F ′
r) ·

detB′
r has winding number equal to k (since F ′

r is outer and B′
r is a matrix Blaschke–

Potapov product of degree k), it follows that the determinant of

Θ21,rQr + Θ22,r = Θ22,r

(
Θ−1

22,rΘ21,rQr + Im
)

has winding number equal to k around the unit circle. As Θ21,rQr+Θ22,r is in the disk
algebra (analytic on the open disk and continuous on the closed disk), we conclude
that (Θ21,rQr + Θ22,r)

−1 is in H∞,k(D,Cm×m).
We now return to the case of a general Q ∈ H∞(D,Cp×m) with ‖Q‖ ≤ 1. Let s

be a number with 0 < s < 1. Then the above analysis applies to the situation where
we have s ·Q in place of Q. Thus

‖(Θ−1
22,rΘ21,r(sQr) + I)−1‖∞ ≤ 2

1 − s‖Q‖∞
≤ 2

1 − s
(2.32)

for all r < 1 sufficiently close to 1. Also, from (2.26) we read off that ‖Θ−1
22 ‖∞ ≤ σ;

by Proposition 2.6 we then have ‖Θ−1
22,r‖∞ ≤ σ + ε for any given ε > 0 as long as we

take r < 1 sufficiently close to 1. Hence, for all r < 1 but sufficiently close to 1, we
have

‖(Θ21,r(sQr) + Θ22,r)
−1‖∞ = ‖(Θ−1

22,rΘ21,r(sQr) + I)−1Θ−1
22,r‖∞

≤
(

2

1 − s

)
· (σ + ε) < ∞.

We conclude that (Θ21,r(sQr) + Θ22,r)
−1 converges pointwise boundedly, and hence,

by part (2) of Proposition 2.3, also in the L∞(T,Cm×m)-weak-∗ topology, to (Θ21(sQ)
+Θ22)

−1 as r → 1. As we have seen above, each (Θ21,r(sQr)+Θ22,r)
−1 is in H∞,k(D,

C
m×m). By Proposition 2.4, we conclude that (Θ21(sQ)+Θ22)

−1 ∈ H∞,k′(D,Cm×m)
with k′ ≤ k. But then Ks := (V11(sQ) + V12)(Θ21(sQ) + Θ22)

−1 is in (H2(D,Cp×m) ·
H∞,k′) ∩ L∞, and hence is in fact in H∞,k′(D,Cp×m) for some k′ ≤ k. By (2.29), we
know that ‖Ks‖∞ ≤ σ + ||G‖∞ for all s < 1. Hence, by another application of part
(2) of Proposition 2.3 combined with Proposition 2.4, we may let s → 1 and conclude
that K = (V11Q + V12)(Θ21Q + Θ22)

−1 is in H∞,k′(D,Cp×m) for some k′ ≤ k. Since
we have already verified that ‖G + K‖∞ ≤ σ and we know by Proposition 2.7 that
k is the smallest possible index for a solution to the Nehari–Takagi problem to exist
for level σ if σk > σ > σk+1, we conclude that necessarily k′ = k. We have now
verified that the formula (2.3) provides a solution K to the Nehari–Takagi problem
as asserted in Theorem 2.2.

Conversely, suppose that K ∈ H∞,k(D,Cp×m) provides a solution of the Nehari–
Takagi problem. Then K has a Krĕın–Langer factorization K = F ′B′−1, where
F ′ ∈ H∞(D,Cp+m) and B′ ∈ H∞(D,Cm×m) is a Blaschke–Potapov product of degree
k. Then [

G + K
Im

]
B′ =

[
Ip G
0 Im

] [
K
Im

]
B′

= Θ · Λ ·
[
F ′

B′

]
= Θ ·

[
Λ11F

′ + Λ12B
′

Λ21F
′ + Λ22B

′

]
=: Θ ·

[
Q1

Q2

]
,(2.33)
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where Q1 := Λ11F
′+Λ12B

′ ∈ H2(D,Cp×m) and Q2 := Λ21F
′+Λ22B

′ ∈ H2(D,Cm×m).
Since ‖G + K‖∞ ≤ σ by assumption,

0 ≥ B′∗ ((G + K)∗(G + K) − σ2Im
)
B′

= B′∗ [(G + K)∗ Im
]
Jσ

[
G + K
Im

]
B′

=
[
Q∗

1 Q∗
2

]
Θ∗JσΘ

[
Q1

Q2

]
= Q∗

1Q1 −Q∗
2Q2(2.34)

a.e. on T. We conclude that

Q2(ζ)x(ζ) = 0 ⇒ Q1(ζ)x(ζ) = 0.(2.35)

From the definition of Q1 and Q2 in (2.33) we see that

B′ = Θ21Q1 + Θ22Q2.(2.36)

Hence (2.35) forces B′(ζ)x(ζ) = 0 as well, and hence x(ζ) = 0 for almost all ζ ∈ T.
We conclude that Q2(ζ) is invertible a.e. on T and Q(ζ) := Q1(ζ)Q2(ζ)

−1 makes
sense. The calculation (2.34) then implies that ‖Q‖∞ ≤ 1, while (2.33) shows that
we recover G + K from Q as in the representation (2.3).

It remains to show that Q ∈ H∞(D,Cp×m). For this piece of the argument we
borrow some ideas from the Grassmannian approach. If Q2H∞(C,Cm) is not dense
in H2(D,Cm), we may choose a nonzero h0 ∈ H∞(D,Cm) lying in H2(D,Cm) �
Q2H∞(D,Cm). Then [

0
h0

]
⊥J1

[
Q1

Q2

]
H∞(D,Cm).

Since Θ∗JσΘ = J1 on T, it then follows that

Θ

[
0
h0

]
=

[
Θ12h0

Θ22h0

]
⊥Jσ

Θ

[
Q1

Q2

]
H∞(D,Cm) =

[
G + K
Im

]
B′H∞(D,Cm) (by (2.33)).

Hence

‖Θ12h0 + (G + K)B′h‖2
2 ≤ ‖Θ22h0 + B′h‖2

2

for all h ∈ H2(D,Cm). Therefore there is a contraction operator X from D0 :=
span{Θ22h0} + B′H2(D,Cm) into L2(T,C

p) such that[
X
Im

]
(h0 + B′h) =

[
Θ12h0

Θ22h0

]
+

[
G + K
Im

]
B′h ∈

[
Ip G
0 Im

]
H2(D,Cp+m)(2.37)

for all h ∈ H2(D,Cm). Note that
[ Ip G

0 Im

]
H2(D,Cp+m) has a Jσ-orthogonal splitting[

Ip G
0 Im

]
H2(D,Cp+m) =

[
H2(D,Cp)

{0}

]
⊕Jσ

[
HG

Im

]
E+ ⊕Jσ

[
HG

Im

]
E−,(2.38)

where E+ = imE((σ,+∞)) and E− = imE([0, σ)) and where we have set E(·) equal
to the spectral projection for the self-adjoint operator (H∗

GHG)1/2. Note that the first
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two direct summands in (2.38) are uniformly Jσ-positive, while the last is uniformly
Jσ-negative. As ‖X‖ ≤ 1, the equality (2.37) forces the existence of a subspace E0

− of
E− so that [

X
Im

]
D0 =

{[
Y2e
0

]
+

[
HG

Im

]
Y1e +

[
HG

Im

]
e : e ∈ E0

−

}
(2.39)

for operators Y1 : E0
− �→ E+ and Y2 : E0

− �→ H2(D,Cp). In particular,

D0 = {Y1e + e : e ∈ E0
−}.(2.40)

But the subspace D0 = span{Θ22h0}+B′H2(D,Cm) has codimension k− 1 in H2(D,
C

m), while the subspace on the right in (2.40) has the same codimension in H2(D,Cm)
as does E0

−. As E0
− is a subspace of E− which has codimension k in H2(D,Cm), we

conclude that the right-hand side of (2.40) has codimension at most k in H2(D,Cm). In
this way we arrive at a contradiction and conclude that necessarily Q2 is outer. It now
follows that Q = Q1Q

−1
2 is of bounded type with no inner factor in the denominator.

This together with Q ∈ L∞(T,Cp×m) gives us finally that Q ∈ H∞(D,Cp×m), as
wanted.

Remark 2.19. The band method. A very flexible method for solving a variety
of interpolation and extension problems which has evolved into increasing levels of
sophistication over the past two decades is the so-called band method (see [22] for an
excellent overview and [35] for one of the latest variations). Recent work (see [26])
enhances this abstract scheme to handle the Nehari–Takagi problem (σk+1 < σ < σk

with k ≥ 1) rather than merely the suboptimal Nehari problem (σ1 < σ). However,
the core of the method involves solving equations in a Wiener-like algebra; this lim-
itation forces the spectral factor Λ and its inverse Λ−1 = V (in the discrete-time
setting) to be in H∞(D,C(p+m)×(p+m)) rather than merely in H2(D,C(p+m)×(p+m)).
A remaining open issue appears to be the extension of this abstract framework to
include the situation studied in this paper.

3. State-space solutions. Let X be an arbitrary Hilbert space, and let A be
the infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0. Let B ∈
L(Cm, X), C ∈ L(X,Cp). Assume that the triple (A,B,C) satisfies

A1. B∗(·I −A∗)−1x ∈ H2(C+,C
m) (input stable),

A2. C(·I −A)−1x ∈ H2(C+,C
p) (output stable),

A3. C(·I −A)−1Bu ∈ H∞(C+,C
p) (input-output stable)

for all x ∈ X, u ∈ C
m. Condition A3 holds if and only if D ∈ L(L2(R+; Cm),

L2(R+; Cp)), where

(Du)(t) = C

∫ t

0

T (t− s)Bu(s) ds (u ∈ L2(R+; Cm)).(3.1)

Equation (3.1) is equivalent to D̂u = Gû, where G(s) := C(sI−A)−1B and û denotes
the Laplace transform of u (û(s) :=

∫∞
0

e−stu(t) du). It is well known that ‖D‖ =
‖G‖H∞ . By Plancherel’s theorem (and the closed graph theorem), A2 means that
C : X → L2(R+; Cp) is bounded, where (Cx)(t) := CT (t)x, t ≥ 0. Hence it also
follows that LC := C∗C ∈ L(X). Similarly, A1 implies that Bd : X → L2(R+; Cm)
is bounded, where (Bdx)(t) := B∗T (t)∗x, t ≥ 0. Thus, LB := BB∗ ∈ L(X), where
B∗ := RBd, (Rf)(t) := f(−t) (the reflection). (See, for instance, Curtain and Zwart
[16] or Mikkola [30] for details.)
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It is easy to see that if the system is exponentially stable (that is, there are
ε > 0, M < ∞ such that ‖T (t)‖L(X) ≤ Me−εt for all t > 0), then A1–A3 are

satisfied (and C+ ⊂ ρ(A)). However, there are several important systems that are
not exponentially stable but for which A1–A3 hold. In this section we shall derive the
state-space formulas for the factors Λ and V for such systems; we use the additional
assumption that the open right half-plane C+ is contained in the resolvent set ρ(A),
but this assumption can be relaxed (for example, a zero-measurable spectrum on each
vertical line on C+ is not a problem; see Remark 3.4 below).

In Lemma 3.1 below we show that if A1–A3 hold, then the systems (A,−, B∗LC)
and (A∗,−, CLB) are output stable, that is, B∗LCT ∈ L(X,L2(R+; Cm)), CLBT

∗ ∈
L(X,L2(R+; Cp)). We use the following notation:

(π+f)(t) :=

{
f(t) if t ≥ 0,

0 if t < 0,
and Dd := RD∗R

is the input-output map of (A∗, C∗, B∗) (see [30, Lemma 6.2.9(b)]).
Lemma 3.1. If A1, A2, and A3 hold, then π+D∗Cx=B∗LCT (·)x and Rπ−DB∗x=

π+(Dd)∗Bdx = CLBT (·)∗x for each x ∈ X. In particular, there is M < ∞ such that
‖B∗LC(·I−A)−1x‖H2(C+,Cm) ≤ M‖x‖X and ‖CLB(·I−A∗)−1x‖H2(C+,Cp) ≤ M‖x‖X
for all x ∈ X.

Proof. By Lemma 4.2.6 of [33], we have π+D∗Cx = B∗LCTx (everywhere,
by continuity). The first inequality is obtained from Plancherel’s theorem with
M := ‖D‖max{‖C‖, ‖B‖}. Applying the above to (A∗, C∗, B∗), we obtain the sec-
ond equality and inequality (because ‖(Dd)∗‖ = ‖Dd‖ = ‖B∗(·I − A∗)−1C∗‖∞ =
‖G∗‖∞ = ‖G‖∞ = ‖D‖).

Now we are ready to give the state-space formulas for the factors Λ and V . The
case where C+ ⊂ ρ(A) is simple, and the general case will be reduced to that by using
the results given in section 6.

Lemma 3.2. Assume that the triple (A,B,C) satisfies A1, A2, A3 and that
C+ ⊂ ρ(A). Let G(s) = C(sI − A)−1B be the associated transfer function, with
associated Hankel singular values σ1 ≥ σ2 ≥ · · · , and let σ be such that σk+1 < σ < σk.
Let Λ be defined as follows:

Λ(s) =

[
Ip 0
0 σIm

]
+

1

σ2

[
−CLB

σB∗

](
I − 1

σ2
LCLB

)−1

(sI + A∗)−1
[
C∗ LCB

]
,

(3.2)

s ∈ C−. Then Λ has the following properties:

(1) Λ(iω)∗
[ Ip 0

0 −Im

]
Λ(iω) =

[
Ip G(iω)
0 Im

]∗[ Ip 0

0 −σ2Im

][
Ip G(iω)
0 Im

]
for almost all ω ∈

R.
(2) Λ(s) is invertible for each s ∈ C−, and its inverse is given by

V (s) =

[
Ip 0
0 1

σ Im

]
− 1

σ2

[
−CLB

σB∗

]
(sI + A∗)−1

(
I − 1

σ2
LCLB

)−1[
C∗ 1

σLCB
]
,

(3.3)

s ∈ C−.
(3) Λ(·) −

[ Ip 0
0 σIm

]
∈ H2(C−,C

(p+m)×(p+m)).

(4) V (·) −
[ Ip 0

0 1
σ Im

]
∈ H2(C−,C

(p+m)×(p+m)).
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Proof. 1◦ Case C+ ⊂ ρ(A): The proofs of parts (1) and (2) go in a way similar
to the suboptimal Nehari problem addressed in Curtain and Zwart [16, section 8.3].

The new part is to show that parts (3) and (4) hold. Set

ĝ(s) :=

[
C

B∗LC

]
(sI −A)−1 (s ∈ ρ(A)).(3.4)

By Lemma 3.1, we have ĝx ∈ H2(C+,C
p+m) for all x ∈ X, and so

f̂ := ĝ

(
I − 1

σ2
LBLC

)−1 [−LBC
∗

σB

]
(3.5)

satisfies f̂ z ∈ H2(C+,C
p+m) for all z ∈ C

p+m. Thus f̂ ∈ H2(C+,C
(p+m)×(p+m)).

Since −f̂(−s̄)∗ = Λ(s) −
[ Ip 0

0 σIm

]
, we obtain that (3) holds.

Part (4) can be proved in an analogous way.

2◦ The general case C+ ⊂ ρ(A): The proof in 1◦ establishes (2)–(4). However,
(1) is more complicated: Now (3.2) defines Λ on C− only, and on iR it is defined
a.e. as the radial (or nontangential) limit or, equivalently, as the Fourier (Laplace)
transform of the inverse Laplace transform of Λ. This follows from (3) (see below).

Nevertheless, the triple (A−ε, B,C) satisfies the assumptions of 1◦ (cf. Lemma 6.1).
Therefore, the corresponding functions Λε and Gε satisfy (1) in place of Λ and G.
(Note that Gε(iω) := C(iωI − (A− ε))−1B = G(iω+ ε).) Repeat (3.4) and (3.5) with

ĝε, f̂ε, A− ε, LC,ε, LB,ε in place of ĝ, f̂ , A, LC , LB , respectively.

By (2) and (3) of Lemma 6.1 (and Lemma A.3.1(j3) of Mikkola [30]), we have
gεx := π+

[
I
D∗

ε

]
Cεx → π+

[
I
D∗
]
Cx in L2(R+; Cp+m), and so ĝεx → ĝx in L2(iR; Cp+m),

as ε → 0+, for all x ∈ X. Therefore, f̂εz → f̂ z in L2(iR; Cp+m) for all z ∈ C
p+m

(here we also need (7) and (4) of Lemma 6.1); hence a subsequence converges a.e. on
iR. But, similarly, Gε(iω)z = G(iω + ε)z → G(iω)z, as ε → 0+, for almost every
ω ∈ R, for each z ∈ C

p+m (use the standard H∞ boundary function result, such as
Theorem 3.3.1(c1) of Mikkola [30]).

We already noted above that 〈Λε(iω)z̃,
[ Ip 0

0 −Im

]
Λε(iω)z〉 =

〈[
Ip Gε(iω)
0 Im

]
z̃,[ Ip 0

0 −σ2Im

][
Ip Gε(iω)
0 Im

]
z
〉

for almost every ω ∈ R, for any z, z̃ ∈ C
p+m. By the above,

we can remove the ε’s (just let ε → 0). Since C
p+m has a finite basis, (1) holds.

In light of Lemma 3.2, we now obtain our main theorem by invoking the key
frequency-domain result, namely, Theorem 2.1. The following theorem gives explicit
formulas (in terms of the state-space parameters) for all solutions to the suboptimal
Hankel norm approximation problem in the case of infinite-dimensional systems which
do not necessarily have an exponentially stable semigroup.

Theorem 3.3. Assume that the triple (A,B,C) satisfies A1, A2, A3 and that
C+ ⊂ ρ(A). Let G(s) = C(sI − A)−1B be the associated transfer function, and let
the Hankel singular values be denoted by σ1 ≥ σ2 ≥ · · · . Suppose that σ is such that
σk+1 < σ < σk, and let V be given by (3.3).

Then K is such that K(·) ∈ H∞,k(C−,C
p×m) and ‖G(i·) + K(i·)‖∞ ≤ σ if and

only if K is given by K(iω) = (V11(iω)Q(iω)+V12(iω))(V21(iω)Q(iω)+V22(iω))−1, ω ∈
R, for some Q ∈ H∞(C−,C

p×m) such that ‖Q‖∞ ≤ 1.

This follows from Theorem 2.1 and Lemma 3.2.



554 J. A. BALL, K. M. MIKKOLA, AND A. J. SASANE

Remark 3.4.

(a) The assumption C+ ⊂ ρ(A) can be weakened in all our results, including the
above. Indeed, it suffices that, for instance, the Lebesgue measure of {r+ωi ∈
σ(A) : ω ∈ R} is zero for all small r > 0, as one can verify from the proofs.

(b) Finally, we remark that in Chapter 6 of Sasane [40], using another approach,
state-space formulas were given in the nonexponentially stable case. However,
these were in terms of the parameters of the shifted system Σε and only guar-
anteed that, for a small enough shift, they are also solutions to the original
system. Also, while only the existence of some solutions was demonstrated
in [40], here we give a complete parameterization of all solutions.

4. An application to the case of well-posed linear systems. Finally, in
this last section we give an application of Theorem 3.3 to obtain state-space formulas
for the suboptimal Hankel norm approximation problem for well-posed linear systems.
This was done using the idea of reciprocal systems in Curtain and Sasane [15], but
there, instead of Theorem 3.3, a weaker result from Chapter 6 of Sasane [40] (which
was mentioned in Remark 3.4) was used. Here, using Theorem 3.3, we obtain a
different solution to the problem, where, as opposed to Curtain and Sasane [15], we
now obtain a parameterization of the set of all solutions to the suboptimal Hankel
norm approximation problem for well-posed linear systems.

We consider the suboptimal Hankel norm approximation problem for a well-posed
linear system Σ on a Hilbert space X, with input space C

m, output space C
p, gen-

erating operators A,B,C, semigroup {T (t)}t≥0, and transfer function G, under the
following assumptions:

B1. 0 ∈ ρ(A) and C+ ⊂ ρ(A).
B2. Σ is input-stable.
B3. Σ is output-stable.
B4. G ∈ H∞(C+,C

p×m).
(Condition B1 can be relaxed; for example, it suffices to assume that 0 ∈ ρ(A) and

σ(A) ∩ C+ is at most countable (see Remark 3.4(a)). Moreover, instead of 0 ∈ ρ(A)
it suffices to assume that ir ∈ ρ(A) for some r ∈ R, but then one must replace A by
A− ir in the formulas, so that the new G equals the old G(ir + ·).)

The reciprocal system of such a well-posed linear system is defined as the well-
posed linear system Σr with the bounded generating operators A−1, A−1B,−CA−1.
In Curtain and Sasane [15], it was established that if Σ satisfies B1–B4 above, then
its reciprocal system is such that

1. A1, A2, A3 from the previous section are satisfied;
2. C+ ⊂ ρ(A−1);
3. the controllability and observability Gramians of Σr are the same as the

controllability and observability Gramians of Σ;
4. Kr ∈ H∞,k(C−; Cp×m) is a solution to the suboptimal Hankel norm approx-

imation problem of the reciprocal system Σr if and only if

K(s) := Kr

(
1

s

)
−G(0) for s ∈ C−(4.1)

is a solution1 to the suboptimal Hankel norm approximation problem of the
original system Σ.

1Note that from equation (4.1), it follows that K ∈ H∞,k(C−,Cp×m) if and only if Kr ∈
H∞,k(C−,Cp×m).
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In light of these remarks, we have thus proved the following theorem.
Theorem 4.1. Suppose that the well-posed linear system Σ with transfer function

G satisfies assumptions B1–B4. Let σ be such that σk+1 < σ < σk, where σ1 ≥ σ2 ≥
· · · are the Hankel singular values of G. Let V be given by

V (s) =

[
Ip 0
0 1

σ Im

]
− 1

σ2

[
CA−1LB

σ(A−1B)∗

](
s + (A−1)∗

)−1
(
I − 1

σ2
LCLB

)−1

·
[
−(CA−1)∗ 1

σLCBA−1
]
,

s ∈ C−, where LB and LC denote the controllability Gramian and the observability
Gramian, respectively, of the system Σ, and Nσ := (I − 1

σ2LBLC)−1. Then K ∈
H∞,k (C−,C

p×m) satisfies ‖G(i·) + K(i·)‖∞ ≤ σ if and only if

K(s) = Kr

(
1

s

)
−G(0),

where Kr(iω) = (V11(iω)Q(iω) + V12(iω))(V21(iω)Q(iω) + V22(iω))−1, ω ∈ R, for
some Q ∈ H∞(C−,C

p×m) such that ‖Q‖∞ ≤ 1.
This solves the suboptimal Hankel norm approximation problem for well-posed

linear systems.

5. Appendix A. In this appendix we present the proofs that were deferred in
section 2.

5.1. Proof of Proposition 2.14.
Proof. Suppose that the matrix-valued function K has a Krĕın–Langer factoriza-

tion K = F ·B−1 with F ∈ H∞(D,Cp×m) and with B ∈ H∞(D,Cm×m) a Blaschke–
Potapov function of degree k. Then the graph of the multiplication operator MG+K

restricted to the subspace B ·H2(D,Cm) satisfies

GMG+K
:=

[
G + K

I

]
BH2(D,Cm)

=

[
I G
0 I

] [
K
I

]
BH2(D,Cm)

⊂
[
I G
0 I

]
H2(D,Cm+p) =: M.(5.1)

If also ‖G+K‖∞ ≤ σ, then we see that GG+K is a negative subspace in the Krĕın-space
inner product

〈f, g〉Jσ =
1

2π

∫
T

〈Jσf(ζ), g(ζ)〉Cm+p |dζ|

on L2(T,C
m+p); i.e., each function f ∈ GMG+K

has negative Jσ-self-inner product

〈f, f〉Jσ ≤ 0 for f ∈ GMG+K
.(5.2)

Since B ·H2(D,Cm) has codimension k in H2(D,Cm), we see in addition that GMG+K

has codimension k in a maximal negative subspace of the Krĕın space K :=
([ L2(T,C

p)
H2(D,Cm)

]
,〈

·, ·
〉
Lσ

)
. In addition, since G := GG+K is the graph of a multiplication operator

MG+K , we see that G is invariant for the shift operator Mζ : f(ζ) �→ ζf(ζ). We have
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thus verified the following: If K = FB−1 is a solution of the Nehari–Takagi problem,
then the subspace G = GG+K :=

[
G+K

I

]
· B · H2(D,Cm) (where B is the Blaschke–

Potapov product of degree k chosen so that K ·B ∈ H∞(D,Cp×m)) satisfies conditions
(1)–(3) in the statement of Proposition 2.14.

Conversely, if G is a subspace of K which satisfies conditions (1)–(3) in Proposition
2.14, one can reverse the steps and come up with a K ∈ H∞,k′(D,Cp+m) (k′ ≤ k)
which solves the Nehari–Takagi problem as follows. Since G is a negative subspace in
the Jσ-inner product, G necessarily has the form of a graph space

G =

[
X
I

]
D(X),

where the angle operator X : D(X) �→ L2(T,C
p) has domain D(X) ⊂ H2(D,Cm)

and norm ‖X‖ ≤ σ. Since G has codimension k in a maximal negative subspace,
necessarily dimH2(D,Cm) �D(X) = k. Since G is shift invariant, we have[

MζX
Mζ

]
D(X) ⊂

[
X
I

]
D(X).

Hence D(X) is shift invariant, and

MζXx = XMζx for x ∈ D(X).

But then, by the Beurling–Lax theorem, D(X) has the form D(X) = B ·H2(D,Cm)
for a Blaschke–Potapov factor of degree k, and the rule

X : ζ−nBh �→ ζ−nX(Bh)

(for h ∈ H2(D,Cm) and n = 0, 1, 2, . . . ) extends X to an operator, still called X,
defined on the dense subset ∪∞

n=0ζ
−nBH2(D,Cm) of L2(T,C

m), still with norm ‖X‖ ≤
σ, such that XMζ = MζX. This forces X to be a multiplication operator X = MG+K

for some matrix function K ∈ L∞(T,Cp+m) with ‖G+K‖∞ ≤ σ. From the fact that
G ⊂ M, we have [

G + K
I

]
BH2(D,Cm) ⊂

[
I G
0 I

]
H2(D,Cm),

i.e., [
I G
0 I

]−1 [
G + K

I

]
BH2(D,Cm) =

[
K
I

]
BH2(D,Cm) ⊂ H2(D,Cp+m).

In particular, K ·B maps H2(D,Cm) into H2(D,Cp), and we see that F : = K ·B ∈
H∞(D,Cp×m). But then K = F · B−1 has the Krĕın–Langer factorization form
required to be in the class H∞,k′(D,Cp×m) for k′ at most k. Proposition 2.14 now
follows.

5.2. Proof of Proposition 2.16.
Proof. By Proposition 2.7, since σk > σ > σk+1 we know that the existence of

a solution K ∈ H∞,k′(D,Cp×m) with k′ ≤ k forces k′ = k. This combined with the
result in Proposition 2.14 implies that the only content to be added by Proposition
2.16 is that, under the hypothesis that σk > σ > σk+1, a subspace G of M is M-
maximal negative (i.e., maximal as a negative subspace contained in M) if and only
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if G ⊂ M has codimension k in a K-maximal negative subspace G̃ of K. One can
see this general principle as follows. As M is regular, M has a fundamental decom-
position M = M++̇M−, where M+ is a uniformly positive subspace and M− is a
uniformly negative subspace in the Krĕın-space inner product 〈·, ·〉Jσ . As M[⊥] is also
regular, M[⊥] also has a fundamental decomposition as M[⊥] = P+̇N , where P is
uniformly positive and N is uniformly negative. We note also that, as a consequence
of Proposition 2.15, dimN = k. Then K = K++̇K− is a fundamental decomposition
for K, where

K+ = M++̇P, K− = M−+̇N .

By the angle-operator–graph correspondence, M-maximal negative subspaces of M
are of the form

G = {Xx + x : x ∈ M−},

where X is a Hilbert space contraction operator from (M−,−〈· , ·〉Jσ
) into (M+,

〈· , ·〉Jσ ). Similarly, K-maximal negative subspaces of K are of the form

G̃ = {X̃x + x : x ∈ K− = M−+̇N},

where X̃ is a contraction operator from (K−,−〈· , ·〉Jσ
) into (K+ = M++̇P, 〈·, ·〉Jσ

).
From this model, it is clear that M-maximal negative subspaces of M match up
exactly with those subspaces of M which have codimension k in a K-maximal negative
subspace of K. This completes the proof of Proposition 2.16.

5.3. Proof of Proposition 2.17. The proof of Proposition 2.17 requires a pre-
liminary lemma.

Lemma 5.1. Suppose that R ∈ H2(D,Cp+m) is outer and that G is a closed,
shift-invariant subspace of H2(D,Cp+m). Then G ∩R ·H∞(D,Cp+m) is dense in G.

Proof. Let g ∈ G. For n = 1, 2, . . . choose scalar outer functions rn so that

|rn(ζ)| = min

{
n

‖R(ζ)−1g(ζ)‖ , 1
}

for almost all ζ ∈ T.

Then gn := rn ·g ∈ G since G is shift invariant. Since ‖R−1(ζ)gn(ζ)‖ ≤ n for almost all
ζ ∈ T, by construction, we see that gn ∈ R ·H∞(D,Cp+n). Finally, since |rn(ζ)| ≤ 1
for almost all ζ ∈ T and g ∈ H2(D,Cp+m), we see that {gn} converges to g as n → ∞
in H2(D,Cp+m), and the lemma follows.

Proof of Proposition 2.17. Suppose first that G ⊂ M is maximal negative as
a subspace of M in the Jσ-inner product. Then G has the form G =

[ Ip G
0 Im

]
· G′,

where G′ is a closed shift-invariant subspace of H2(D,Cp+m). By Lemma 5.1 we know

that G′ ∩ V ·H∞(D,Cp+m) is dense in G′. Multiplication by
[ Ip G

0 Im

]
then gives that

G ∩ Θ ·H∞(D,Cp+m) is dense in G. We may write G ∩ Θ ·H∞(D,Cp+m) in the form

G ∩ Θ ·H∞(D,Cp+m) = Θ · G1,

where G1 ⊂ H∞(D,Cp+m).
We assert that G1 is weak-∗ closed in H∞(D,Cp+m). By part (1) of Proposition

2.3, it suffices to consider a sequence {hn}n=1,2,... of elements of G1 convergent in
the weak-∗ topology to an element h of L∞(D,Cp+m) and prove that in fact h ∈ G1,
i.e., that Θh ∈ G ∩ Θ · H∞(D,Cp+m). From the characterization of H∞(D,Cp+m)
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as that subspace of L∞(T,Cm+p) consisting of functions F for which all the Fourier
coefficients of negative index vanish,

1

2π

∫
T

F (ζ)ζ
n|dζ| = 0 for n = −1,−2, . . . ,

it is easily seen that H∞(D,Cp+m) is weak-∗ closed in L∞(T,Cp+m) and hence h ∈
H∞(D,Cp+m). It therefore remains only to show that Θh ∈ G. For this purpose note
that, for any k ∈ L2(T,C

p+m),

〈Θhn, k〉L2 =
1

2π

∫
T

k(ζ)∗Θhn(ζ)k(ζ)|dζ|.(5.3)

As k∗Θ ∈ L2(T,C
1×(m+n)) ⊂ L1(T,C

1×(m+n)) and hn is assumed to converge to h in
the weak-∗ topology of L∞(T,C(m+n)×1), we may take limits in (5.3) to get

lim
n→∞

〈Θhn, k〉L2 = 〈Θh, k〉L2
for each k ∈ L2(T,C

p+m);(5.4)

i.e., Θhn converges to Θh in the weak topology on L2(T,C
p+m). As Θhn ∈ G for

each n and as norm-closed subspaces of a Hilbert space are also closed in the weak
topology (see [42, Theorem 6.3, page 158]), it follows that Θh ∈ G as wanted. We
conclude that G1 is weak-∗ closed as asserted.

By the Beurling–Lax theorem for weak-∗ closed subspaces of H∞(D,Cm+p) (see,
e.g., [41] or [25, page 25] for the scalar case), there is a matrix inner function ψ =

[ ψ1

ψ2

]
in H∞(D,C(p+m)×m1) (for some m1 ≤ m + p) so that

G1 =

[
ψ1

ψ2

]
H∞(D,Cm1).(5.5)

The inner property of ψ means that

ψ1(ζ)
∗ψ1(ζ) + ψ2(ζ)

∗ψ2(ζ) = Im′ for almost all ζ ∈ T.(5.6)

From the fact that G1 is J1-negative we then also get

ψ1(ζ)
∗ψ1(ζ) − ψ2(ζ)

∗ψ2(ζ) ≤ 0 for almost all ζ ∈ T.(5.7)

Hence, if we set Q(ζ) = ψ2(ζ)ψ1(ζ)
‡, where ψ2(ζ)

‡ is the left Moore–Penrose gener-
alized inverse of ψ2(ζ),

ψ2(ζ)
‡ : c �→

{
0 if c ⊥ imψ2(ζ),

c′ if c = ψ2(ζ)c
′,

(5.8)

then Q(ζ) defines a contraction operator from C
m into C

p for almost all ζ ∈ T, and
we can rewrite (5.5) as

G1 =

[
Q
Im

]
ψ2H∞(D,Cm1).(5.9)

We next argue that ψ2H∞(D,Cm1) is weak-∗ closed in H∞(D,Cm). Indeed,
suppose that ψ2hn converges in the L∞-weak-∗ topology to an element k ∈ L∞.
Then the computation (for each g ∈ L1(T,C

p))

[ψ1hn, g] = [Qψ2hn, g] = [ψ2hn, Q
∗g] → [k,Q∗g] = [Qk, g]
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shows that ψ1hn tends weak-∗ to Qk. (Here we let [·, ·] denote the duality pairing

[F, f ] =
1

2π

∫
T

f(ζ)∗F (ζ)|dζ| for F ∈ L∞(T,Cm′
) and f ∈ L1(T,C

m′
)

between L∞(T,Cm′
) and L1(T,C

m′
) for any fixed choice of m′, and we use that

Q∗ · g ∈ L1(T,C
m) for any g ∈ L1(T,C

p) since Q(ζ) is contractive a.e.) We conclude
that [

ψ1

ψ2

]
hn →

[
Q
Im

]
k

in the weak-∗ topology. As G1 is closed in the weak-∗ topology, it follows that
[

Q
Im

]
k ∈

G1, and hence, in particular, k ∈ ψ2H∞(D,Cm1). We conclude that ψ2H∞(D,Cm1)
is closed in the weak-∗ topology as wanted.

We next argue that in fact

ψ2H∞(D,Cm′
) = H∞(D,Cm).(5.10)

Indeed, via a second application of the Beurling–Lax theorem for weak-∗ closed sub-
spaces of vector-valued H∞, by the fact established in the previous paragraph it
follows that there is an m × m′ matrix inner function φ so that ψ2H∞(D,Cm′

) =
φH∞(D,Cm′

). If m′ < m (or more generally, if φH∞(D,Cm′
) does not fill up all of

H∞(D,Cm)), then we may choose a nonzero vector f ∈ (H2(D,Cm)�ψH2(D,Cm′
))∩

H∞(D,Cm) so that the L2-closure of MΘ ·
(
span

[
0
f

]
+ G1

)
is a larger negative sub-

space of M which includes G as a subspace. As G is assumed to be maximal negative
in M, this leads to a contradiction, and we conclude that m′ = m and φ is a unitary
constant. We have now arrived at

G ∩ Θ ·H∞(D,Cp+m) = Θ

[
Q
I

]
·H∞(D,Cm).

Taking closures in this identity gives the representation (2.15) for the shift-invariant
subspace G assumed to be maximal negative in M.

Conversely, suppose that Q ∈ H∞(D,Cp×m) with ‖Q‖∞ ≤ 1 and we define G ⊂
L2(T,C

p×m) by (2.15). From the factorization
[ Ip G

0 Im

]
= Θ ·Λ, where Λ and V = Λ−1

are in H2(D,C(p+m)×(p+m)), it is clear that G ⊂ M :=
[ Ip G

0 Im

]
·H2(D,Cp+m). Since

‖Q‖∞ ≤ 1 and Θ is (J1, Jσ)-unitary on T, we see that necessarily G is negative in
the Jσ-inner product. If G′ is a Jσ-negative subspace with G ⊂ G′ ⊂ M, then by the
same argument as in the first part of the proof we know that

G′ ∩ Θ ·H∞(D,Cp+m) = G′
1

for some weak-∗ closed subspace G′
1 of H∞(D,Cp+m). The (J1, Jσ)-unitary property

of Θ and the fact that G′ is Jσ-negative then force G′
1 to be J1-negative. Hence G′

1

can contain no elements of the form
[
h
0

]
with h ∈ H∞(D,Cp) nonzero. We conclude

that G′
1 is a graph space; i.e., there is an operator X mapping some domain D(X) ⊂

H∞(D,Cm) into H∞(D,Cp) so that G′
1 =
[

X
Im

]
D(X). Since G′ ⊃ G, we see next that

G′
1 ⊃ G1, i.e., [

X
Im

]
D(X) ⊃

[
Q
Im

]
H∞(D,Cm).

As D(X) ⊂ H∞(D,Cm), we must have D(X) = H∞(D,Cm), X is the operator of
multiplication by Q, and G = G′ is M-maximal negative. This concludes the proof of
Proposition 2.17.
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6. Appendix B. In this appendix we present the proofs that were deferred in
section 3.

To prove Lemma 3.2(1) we want to study how the operators determined by
“shifted” triple (A− ε, B,C) converge to those determined by (A,B,C), as ε → 0+.
For the shifted system, the semigroup is denoted by {Tε(t)}t≥0, the controllability
map is denoted by Cε, and the controllability Gramian C∗

ε Cε is abbreviated by LC,ε;
similarly, one uses the notation B∗

ε , LB,ε,Dε, etc. Since the functions in A1, A2, and
A3 are shifted to the left (C(sI − (A − εI))−1x = C((s + ε)I − A)−1x, etc.), the
assumptions A1–A3 hold a fortiori. Some further claims are straightforward, while
others are more complicated.

Lemma 6.1. Assume that the triple (A,B,C) satisfies A1, A2, and A3. Then,
with the above notation, as ε → 0+, we have the following for all k ∈ {1, 2, 3, . . . }, t ≥
0, x ∈ X, u ∈ L2(R+; Cm), y ∈ L2(R+; Cp) :

(1) Tε(t) = e−εtT (t), Cεx = e−ε·Cx, and Dεu = e−ε·Deε·u.
(2) ‖Cε‖ ≤ ‖C‖ and ‖Cεxε − Cx‖2 → 0 whenever ‖xε − x‖X → 0.
(3) ‖Dε‖ ≤ ‖D‖ and ‖D∗

ε yε −D∗y‖2 → 0 whenever ‖yε − y‖2 → 0.
(4) ‖LC,ε‖ ≤ ‖LC‖, ‖LB,ε‖ ≤ ‖LB‖, LC,εx → LCx, and LB,εx → LBx.
(5) σk is the kth singular value of Γ := CB.
(6) σk,ε → σk−, where σk,ε is the kth singular value of Γε := CεBε.
(7) Let σk > σ > σk+1. Then there are ε0 > 0 and M0 < ∞ such that Nσ,ε :=

(I − σ−2LB,εLC,ε)
−1 exists and ‖Nσ,ε‖ ≤ M0 for all ε ∈ (0, ε0). Moreover,

Nσ,εx → Nσx.
Proof. (1) This is straightforward.
(2) By (1), we have ‖Cε‖ ≤ ‖C‖. Obviously, ‖Cεx− Cx‖2 → 0. Since Cεxε − Cx =

Cε(xε − x) + (Cε − C)x, we obtain that (2) holds.

(3) We have D̂εu(s) = (G(·)u(· − ε))(s + ε) = G(ε + s)u(s), i.e., Gε = G(ε + ·).
Therefore, ‖Gε‖∞ ≤ ‖G‖∞ and G∗

εy0 → G∗y0 a.e. on iR, for any y0 ∈ C
p (see,

e.g., Theorem 3.3.1(c1) of [30]). Consequently, G∗
ε ŷ → G∗ŷ in L2(iR; Cm) for any

ŷ ∈ L2(iR; Cp), by the dominated convergence theorem. By Plancherel’s theorem,
this means that D∗

ε y → D∗y for any y ∈ L2(R; Cm). Because the functions D∗
ε are

uniformly bounded, (3) also holds.
(4) We have

‖LC,ε‖ = sup
‖x‖≤1

〈x, LC,εx〉 = sup
‖x‖≤1

‖Cεx‖2
L2

≤ sup
‖x‖≤1

‖Cx‖2
L2

= sup
‖x‖≤1

〈x, LCx〉 = ‖LC‖.

Moreover, 〈x, (LC − LC,ε)x〉 =
∫∞
0

(1 − e−2εt)|(Cx)(t)|2 dt → 0. By duality (i.e.,
(A∗, C∗, B∗) in place of (A,B,C)), we obtain the claims for LB .

(5) By Plancherel’s theorem, HG and Γ are isomorphic (see [16, Lemma 8.2.3(c),
page 397]).

(6) Define (Sεf)(t) = e−εtf (ε ∈ R). For any f ∈ L2(R; Cn), n ≥ 1, we have
Sεf → f in L2 as ε → 0. Moreover, ‖Sεf‖ ≤ ‖f‖ (respectively, ‖S−εf‖ ≤ ‖f‖) if
f = 0 on R− (respectively, R+). Therefore, Γ∗

εΓεu → Γ∗Γu for each u ∈ L2(R−; Cm)
(see Mikkola [30, Lemma A.3.1(j3)] and note that Cε = SεC, Bε = BSε). Thus, we
get lim infε→0+ σk,ε ≥ σk from Lemma 6.3.

Conversely, if rankK ≤ k − 1, then rankKε ≤ k − 1, where Kε := SεKS−ε, and
‖Γε−Kε‖ = ‖Sε(Γ−K)S−ε‖ ≤ ‖Γ−K‖. Hence σk+1,ε ≤ σk+1. Similarly, we observe
that σk+1,ε ≤ σk+1,ε′ when ε > ε′ > 0.

(7) Let δ be as in Lemma 6.2(2), and choose ε0 so that σ2
l,ε − σ2

l < δ/2 for l = k,

k+1, and ε∈ (0, ε0) (use (6)). Then Lemma 6.2(2) implies that ‖(σ2I−Γ∗
εΓε)

−1‖≤ 2/δ,



STATE-SPACE FORMULAS 561

that is, that ‖(I − σ−2Γ∗
εΓε)

−1‖ ≤ 2σ2/δ, for ε ∈ (0, ε0). Apply (I − ST )−1 =
I + S(I − TS)−1T to T = σ−2B∗

ε , S := C∗
ε CεBε to obtain the inequality in (7) for

M0 := 1+2σ2‖C‖‖B‖/δ (use (2) and its dual). The last claim follows from the others
and (4) (see (j3)–(j5) of Lemma A.3.1 of Mikkola [30]).

In the above we have used the following two lemmas. In the first one we present
some sort of a singular value decomposition with k largest singular values on the
diagonal and a small operator on the bottom-right corner.

Lemma 6.2 (partial singular value decomposition). Assume that {σk} are the
singular values of S ∈ L(X,Y ) and X,Y are Hilbert spaces.

(1) For any k ∈ {0, 1, 2, . . . }, there is a k-dimensional subspace Xk ⊂ X such
that S∗S = diag(σ2

1 , . . . , σ
2
k;T ) on Xk ×X⊥

k = X, ‖T‖ = σ2
k+1.

(2) We have σ2 ∈ ρ(S∗S) and ‖(σ2 − S∗S)−1‖ ≤ δ−1, where δ := min{σ2
k −

σ2, σ2 − σ2
k+1}.

Claim (1) follows from pp. 212–213 of [21], alternatively, by using a resolution
of the identity of S∗S. Claim (2) follows, because (σ2 − S∗S)−1 = diag((σ2

1 −
σ2)−1, . . . , (σ2

k − σ2)−1; (σ2 − T )−1). Recall that σk := inf{‖S −K‖ : K ∈ L(X,Y ),
rankK ≤ k − 1} = infdimM≤k−1 ‖SPM⊥‖, where PM⊥ is the orthogonal projection
X → M⊥.

Lemma 6.3 (lim infn σk,n ≥ σk). Let Sn, S ∈ L(X,Y ) for all n, and let S∗
nSnx →

S∗Sx for all x ∈ X, where X,Y are Hilbert spaces. Then lim infn→∞ σk,n ≥ σk, where
σk,n is the kth singular value of Sn (n ∈ N).

Proof. Given ε > 0, choose N such that ‖(S∗
nSn − S∗S)P‖ < ε for all n ≥ N ,

where P : X → Xk−1 is the orthogonal projection and Xk−1 is as in Lemma 6.2.

We obviously have σk = infdimM≤k−1 ‖SPM⊥‖, where PM⊥ is the orthogonal
projection X → M⊥. But if dimM ≤ k − 2, then there is x ∈ M⊥ ∩ Xk−1 such
that ‖x‖ = 1 (otherwise we would have Xk−1 ⊂ Ker(PM⊥) = M). Then ‖Snx‖ =
〈Px, S∗

nSnPx〉 ≥ 〈x, S∗Sx〉 − ε ≥ σk − ε.
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[11] R. F. Curtain and J. C. Oostveen, The Nehari problem for nonexponentially stable systems,
Integral Equations Operator Theory, 31 (1998), pp. 307–320.

[12] R. F. Curtain and A. C. M. Ran, Explicit formulas for Hankel norm approximations of
infinite-dimensional systems, Integral Equations Operator Theory, 12 (1989), pp. 455–469.

[13] R. F. Curtain and A. J. Sasane, Sub-optimal Hankel norm approximation for the ana-
lytic class of infinite-dimensional systems, Integral Equations Operator Theory, 43 (2002),
pp. 356–377.

[14] R. F. Curtain and A. J. Sasane, Sub-optimal Hankel norm approximation for the Pritchard–
Salamon class of infinite-dimensional systems, Integral Equations Operator Theory, 39
(2001), pp. 98–126.

[15] R. F. Curtain and A. J. Sasane, Hankel norm approximation for well-posed linear systems,
Systems Control Lett., 48 (2003), pp. 407–414.

[16] R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems
Theory, Texts Appl. Math. 21, Springer-Verlag, New York, 1995.

[17] J. C. Doyle, K. Glover, and K. Zhou, Robust and Optimal Control, Prentice–Hall, Engle-
wood Cliffs, NJ, 1996.

[18] N. Dunford and L. T. Schwartz, Linear Operators Part I: General Theory, John Wiley &
Sons, New York, 1958.

[19] K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their
L∞ error bounds, Internat. J. Control, 39 (1984), pp. 1115–1193.

[20] K. Glover, R. F. Curtain, and J. R. Partington, Realization and approximation of lin-
ear infinite-dimensional systems with error bounds, SIAM J. Control Optim., 26 (1988),
pp. 863–898.

[21] I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of Linear Operators, Vol. I, Oper.
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