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Abstract

In this article it is shown that for the class of stable linear state space systems with a fixed MacMillan degree, the topology of the gap
between the graphs of the systems is equivalent to the topology of the gap between the extended graphs of the systems.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The need to measure the distance between systems is basic
in control theory. Indeed, it arises naturally when one wants
to approximate a system with another system, for instance
in the context of the problem of model reduction. In robust
control theory, one investigates the uncertainties that can
be tolerated in a system without loss of properties such as
stability under the application of feedback.

In the classical Kalman finite dimensional state space the-
ory, the gap metric serves as a tool for the qualitative analy-
sis and design of feedback systems (see for instance, [3,12]).
The gap metric between two systems is defined as the gap
between the associated graphs. Recall that the graph of a
stable state space system

� :
{ dx

dt
(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

is defined by

G(�) =
[

I

MG

]
H2(C+, Cm),
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where MG : H2(C+, Cm) → H2(C+, Cp) denotes the mul-
tiplication map by the transfer function G(·) = D + C(·I −
A)−1B ∈ H∞(C+, Cp×m). The gap metric gives the weak-
est topology in which closed-loop stability is a robust prop-
erty, or in which the closed-loop system varies continuously
as a function of the open loop system.

In the behavioral setting of Willems (see [6] for an ele-
mentary introduction), as opposed to the traditional transfer
function set up, instead of the initial conditions being zero,
one expects a term in the graph of the system which reflects
all possible initial conditions. So we consider the following
natural (closed) subspace of H2(C+, Cm+p) associated with
the system, called the extended graph, given by

Ge(�) =
[

I

MG

]
H2(C+, Cm) +

[
0

C(·I − A)−1

]
Cn.

The gap between the extended graphs is related to the be-
havioral distance that was introduced in [8] (see also [9]).
The extended graphGe(�) differs from the classical graph
of the system by[

0
C(·I − A)−1

]
Cn, (1)

which captures all possible initial conditions: for given
u ∈ L2((0, ∞), Cp) and x0 ∈ Cn, the Laplace transform
of the output with this input u and the initial state x0 is

http://www.elsevier.com/locate/sysconle
mailto:ball@math.vt.edu
mailto:A.J.Sasane@lse.ac.uk


J.A. Ball, A.J. Sasane / Systems & Control Letters 55 (2006) 214–222 215

given by

G(s)(L(u))(s) + C(sI − A)−1x0,

where L denotes the Laplace transform.
The question of whether these two metrics, namely the

gap between the extended graphs (henceforth referred to as
the behavioral distance), and the gap between the classical
graphs (called the gap metric in the sequel), are equivalent,
is a natural one. In this note we prove that in fact the topol-
ogy induced by the gap metric is the same as the topology
induced by the behavioral distance in the case of stable state
space systems with a fixed MacMillan degree. We leave the
question of understanding the situation when either or both
of these restrictions (stability and fixed McMillan degree) is
dropped for future work.

The outline of this article is as follows. In Section 2, we
give a few preliminaries and fix some notation. In the next
section we prove that the topology induced by the behavioral
distance is stronger/finer than that induced by the gap metric.
Subsequently in Section 4, we prove the converse result:
using a special realization of the transfer function obtained
via an extremal factorization of the Hankel operator, we
show that the topology induced by the behavioral distance
is weaker/coarser than that induced by the gap metric. The
results from Sections 3 and 4 are summarized in the final
Section 5, where we state our main theorem concerning the
equivalence of the gap metric and the behavioral distance.

2. Preliminaries

In this section, we give the definitions of the behavioral
distance d and the gap metric �. We begin by recalling the
notion of the gap between closed subspaces of a Hilbert
space.

The gap between subspaces of a Hilbert space: Given
two closed subspaces V1 and V2 of a Hilbert space H,
one defines the gap, denoted by g, between V1 and V2 as
follows:

g(V1,V2) = ‖�V1 − �V2‖,

where �Vi
: H → H denote the projections onto Vi , i ∈

{1, 2}. It can be verified that g makes the set of all closed
linear subspaces of a Hilbert space into a (complete) metric
space. Furthermore, it can also be shown that

g(V1,V2) = max{�g(V1,V2), �g(V2,V1)},
where

�g(V1,V2) = ‖(I − �V2)�V1‖
= sup

v∈V1, ‖v‖=1
dist(v,V2)

is the directed-gap. For more details about the gap metric,
we refer the reader to Kato [5] and the references therein.

Graph and extended graph of a state space system: We
denote the open right half complex plane by C+, that is,

C+ = {s ∈ C | Re(s) > 0}. If (E, ‖ · ‖E) is a Banach space,
then

H∞(C+,E) =
{

f : C+ → E

∣∣∣∣∣f is analytic and ‖f ‖∞

:= sup
Re(s)>0

‖f (s)‖E < ∞
}

.

If (H, 〈·, ·〉H) is a Hilbert space, then let

H2(C+,H) :=
{

f : C+ → H |f is analytic and

sup
�>0

(
1

2�

∫ ∞

−∞
‖f (�+i�)‖2

H d�

)1/2

< ∞
}

.

It can be shown that each f ∈ H2(C+,H), there exists a
unique f̃ ∈ L2(iR,H) such that

lim
�↓0

f (� + i�) = f̃ (i�) for almost all � ∈ R and

lim
�↓0

‖f (� + ·) − f̃ (·)‖L2(iR,H) = 0.

The Hardy space H2(C+,H) is a Hilbert space with the
inner product defined by

〈f, g〉H2(C+,H) = 1

2�

∫ ∞

−∞
〈f̃ (i�), g̃(i�)〉H d �.

Given a linear system

� :
{ dx

dt
(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

where A ∈ Cn×n, �(A) ⊂ {s ∈ C | Re(s) < 0}, B ∈ Cn×m,
C ∈ Cp×n and D ∈ Cp×m, let the transfer function of � be
denoted by G: G(s) = D + C(sI − A)−1B, s ∈ C+.

We define the (classical) graph of the system � by

G(�) =
{[

I

MG

]
u

∣∣∣∣ u ∈ H2(C+, Cm)

}
,

where MG : H2(C+, Cm) → H2(C+, Cp) denotes the mul-
tiplication map by G ∈ H∞(C+, Cp×m):

(MGu)(s) = G(s)u(s), s ∈ C+
for u ∈ H2(C+, Cm).

This is a closed subspace of H2(C+, Cm+p). The extended
graph of the system � is defined as follows:

Ge(�) =
{[

I

MG

]
u +

[
0

C(sI − A)−1

]
x∣∣∣∣ u ∈ H2(C+, Cm), x ∈ Cn

}
.

It is easy to see that this is a closed subspace of
H2(C+, Cm+p).
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The set Sn,m,p, the gap metric and the behavioral distance.
If n, m, p ∈ N, then let Sn,m,p denote the set of stable,
minimal state space systems � with state space dimension
n, number of inputs equal to m and number of outputs equal
to p.

The gap metric between two systems �1, �2 in Sn,m,p is
defined to be the gap between the corresponding graphs, that
is,

�(�1, �2) = g(G(�1),G(�2)),

and the behavioral distance between �1 and �2 is defined
to be the gap between the corresponding extended graphs,
namely,

d(B1,B2) = g(Ge(�1),Ge(�2)).

It is known that in the set Sn,m,p, convergence in the gap
metric � is the same as convergence in H∞(C+, Cp×m) (see
for instance [4]):

Theorem 2.1. If (�k)k �1 is a sequence in Sn,m,p and � ∈
Sn,m,p, then the following are equivalent:

1. g(G(�k),G(�)) → 0 as k → ∞,
2. ‖Gk − G‖H∞(C+,Cp×m) → 0 as k → ∞.

In this note we prove that d and � are equivalent on Sn,m,p.

3. The topology induced by the behavioral distance is
finer than that induced by the gap metric on the set
Sn,m,p

We prove that the topology induced by the behavioral
distance is finer than that induced by the gap metric on the set
Sn,m,p by appealing to Theorem 2.1: we show in Theorem
3.3 that if the extended graphs converge in the gap topology
of subspaces, then this implies that the transfer functions
converge in the H∞ norm.

We begin by proving two preliminary lemmas which will
be used in proving Theorem 2.1:

1. in Lemma 3.1, we express the gap between two extended
graphs as the gap between the graphs of multiplication
operators on the orthogonal complement of the range of
the observability map in the frequency domain, and

2. in Lemma 3.2, we express the orthogonal complement
of the range of the observability map as the range of a
multiplication map by an inner function.

We first fix some notation: for K ∈ H∞(C+, Ck2×k1), the
linear map MK : H2(C+, C

k1+ ) → H2(C+, Ck2) denotes the
analytic Toeplitz operator of multiplication by K:

MK : f �→ Kf ∈ H2(C+, Ck2) for f ∈ H2(C+, Ck1).

The adjoint operator M∗
K : H2(C+, Ck2) → H2(C+, Ck1) is

then given by

M∗
K : f �→ P

H2(C+,Ck1 )
(K∗f ) for f ∈ H2(C+, Ck2),

where K∗ is the matrix-valued function K∗(s) = K(−s)∗,
and the projection from L2(iR, Ck1) onto the closed
subspace H2(C+, Ck1) of L2(iR, Ck1) is denoted by
P

H2(C+,Ck1 )
.

Let C : Cn → L2([0, ∞), Cp) denote the observability
map

x �→ Ce·Ax, x ∈ Cn,

(where t �→ e·A is the (stable) strongly continuous semi-
group with infinitesimal generator A) and Ĉ = L ◦ C with
L equal to the Laplace transform, so that

(Ĉx)(s) = C(sI − A)−1x, s ∈ C+, x ∈ Cn.

Lemma 3.1. If �k, � ∈ Sn,m,p, then

g(Ge(�k),Ge(�))

= g

([−M∗
Gk

I

]
(ran Ĉk)

⊥,

[−M∗
G

I

]
(ran Ĉ)⊥

)
.

Proof. Using Theorem 2.9 of Kato [5, p. 201], we know that

g(Ge(�k),Ge(�)) = g((Ge(�k))
⊥, (Ge(�))⊥).

So the claim would be proved if we show that for any �0 ∈
Sn,m,p,

(Ge(�0))
⊥ =

[−M∗
G0

I

]
(ran Ĉ0)

⊥.

If[
u0
y0

]
∈ (Ge(�0))

⊥,

then for all u ∈ H2(C+, Cm) and all x ∈ Cn, there holds that

0 = 〈u0, u〉 + 〈y0, MG0u + Ĉ0x〉
= 〈u0, u〉 + 〈y0, MG0u〉 + 〈y0, Ĉ0x〉
= 〈u0, u〉 + 〈M∗

G0
y0, u〉 + 〈y0, Ĉ0x〉

= 〈u0 + M∗
G0

y0, u〉 + 〈y0, Ĉ0x〉. (2)

In particular, with u = 0, we obtain that 〈y0, Ĉ0x〉 = 0 for
all x ∈ Cn and so y0 ∈ (ran Ĉ0)

⊥. From (2), it now follows
that since 〈u0 + M∗

G0
y0, u〉 = 0 for all u ∈ H2(C+, Cm),

there holds that u0 + M∗
G0

y0 = 0, that is, u0 = −M∗
G0

y0.
Consequently,[
u0
y0

]
∈
[−M∗

G0
I

]
(ran Ĉ0)

⊥. (3)

Conversely, if (3) holds, then y0 ∈ (ran Ĉ0)
⊥ and u0 =

−M∗
G0

y0. Let[
u

y

]
∈ Ge(�0),
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that is, y = MG0u + Ĉ0x for some x ∈ Cn. Then〈[
u0
y0

]
,

[
u

y

]〉
= 〈u0, u〉 + 〈y0, y〉
= 〈−M∗

G0
y0, u〉 + 〈y0, MG0u + Ĉ0x〉

= − 〈y0, MG0u〉 + 〈y0, MG0u〉
+ 〈y0, Ĉ0x〉

= 0,

and so
[
u0
y0

] ∈ (Ge(�0))
⊥. This completes the proof. �

Lemma 3.2. If � ∈ Sn,m,p, then there exists an inner � ∈
H∞(C+, Cp×p) and a F ∈ H∞(C+, Cm×p) such that G =
�F ∗ and (ran Ĉ)⊥ = M�H2(C+, Cp).

Proof. Consider first the scalar case m=p = 1. We assume
in addition that the poles of G are all simple. Then G(s) has
a partial fraction representation

G(s) = D +
n∑

j=1

rj

s − pj

with distinct poles p1, ..., pn in the right-half plane. Then
G(s) = D + C(sI − A)−1B is a minimal realization for G

with

C = [1 ... 1] , A =
⎡⎣p1

. . .

pn

⎤⎦ , B =
⎡⎣ r1

...

rn

⎤⎦ .

Let

�(s) =
n∏

j=1

s + pj

s − pj

be the inner function with poles at p1, ..., pn. Set F(s) =
�(s)G(−s). Then we see that the zeros of �(s) cancel
out the poles of G(−s) in C+ and hence F ∈ H∞(C+).
Moreover, we have the representation G(s) = �(s)F (−s)

for G.
Note next that

ran Ĉ =
{

c1

s − p1
+ · · · + cn

s − pn

∣∣∣∣ cj

∈ C for 1�j �n

}
.

Thus f ∈ (ran Ĉ)⊥ means that

f ⊥ 1

· − pj

or
∫

iR

1

s + pj

f (s) ds = 0,

for j ∈ {1, . . . , n}. Viewing the integral as a contour integral
and using the Residue Theorem, we see that this is equivalent
to f (−pj ) = 0 for j ∈ {1, . . . , n}. This in turn amounts to
f having a factorization f = �g with g analytic on C+.

We conclude that (ran Ĉ)⊥ = �H 2(C+), and the lemma is
proved for the scalar simple-pole case.

For the general case, the ideas are the same but it is conve-
nient to use the formalism from [1] to handle the additional
matrix zero-pole structure. Let G(s) = D + C(sI − A)−1B

be a minimal realization for G. As we are assuming that
G is stable, �(A) ⊂ {s ∈ C | Re(s) < 0}. Let �(s) be the
p × p-matrix inner function having right pole pair (C, A),
that is, �(s) = I − C(sI − A)−1H−1C∗ where H is the
unique solution of the Lyapunov equation

HA + A∗H + C∗C = 0 (4)

(see [1, Theorem 6.1.4]). As � and G have the same right
pole pair (C, A) over C− and �(s)−1 = �(−s)∗ is analytic
on C−, it follows that G has a factorization G = �F ′ with
F ′ analytic on C− (see [1, Proposition 12.1.1] for a precise
statement). If we then set F(s) = F ′(−s)∗, we have G(s) =
�(s)F (−s)∗ with F ∈ H∞(C+, Cm×p).

By definition ran Ĉ={C(·I −A)−1x | x ∈ Cn}. Thus f ∈
(ran Ĉ)⊥ means that∫

iR
(sI + A∗)−1C∗f (s) ds = 0.

From Theorem 12.3.1 in [1] (using that a C+-null-pole-triple
for � is (0, 0; −A∗, C∗; 0)), we see that this condition is
equivalent to f having a factorization as f = �g with g

analytic on C+. We conclude that (ran Ĉ)⊥ =�H2(C+, Cp)

as asserted. �

Using the results from Lemmas 3.1 and 3.2, we are now
ready to prove the following result.

Theorem 3.3. Suppose that (�k)k �1 is a sequence of sys-
tems in Sn,m,p and � ∈ Sn,m,p. For each k�1, let Gk denote
the transfer function of �k and let G denote the transfer
function of �.

If

g(Ge(�k),Ge(�)) → 0 as k → ∞, (5)

then

‖Gk − G‖H∞(C+,Cp×m) → 0 as k → ∞. (6)

Proof. The proof is long and so we have divided it into a
sequence of steps.

Step 1: From Lemma 3.1, it follows that

g(Ge(�k),Ge(�))

= g

([−M∗
Gk

I

]
(ran Ĉk)

⊥,

[−M∗
G

I

]
(ran Ĉ)⊥

)
.

Using Lemma 3.2, we have (ran Ĉk)
⊥ = M�k

H2(C+, Cp),
and so[−M∗

Gk

I

]
(ran Ĉk)

⊥ =
[−MFk

M�k

]
H2(C+, Cp),
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where �k is inner, Gk = �kF
∗
k , and Fk ∈ H∞(C+, Cm×p).

Similarly,[−M∗
G

I

]
(ran Ĉ)⊥ =

[−MF

M�

]
H2(C+, Cp),

where � is inner, G = �F ∗, and F ∈ H∞(C+, Cm×p).
Hence

g(Ge(�k),Ge(�))

= g

([−MFk

M�k

]
H2(C+, Cp),[−MF

M�

]
H2(C+, Cp)

)
. (7)

Step 2: The projection �k onto
[−MFkM�k

]
H2(C+, Cp) is

given by

�k =
[−MFk

M�k

]
(M∗

Fk
MFk

+ M∗
�k

M�k
)−1

× [−M∗
Fk

M∗
�k

]
=
[−MFk

M�k

]
(I + M∗

Fk
MFk

)−1[−M∗
Fk

M∗
�k

], (8)

since �k is inner. Similarly the projection � onto[−MF

M�

]
H2(C+, Cp)

is given by

� =
[−MF

M�

]
(I + M∗

F MF )−1 [−M∗
F M∗

� ] . (9)

In view of (7), the assumption that g(Ge(�k),Ge(�)) → 0
as k → ∞ means simply that �k → � in operator norm,
from which we get, using (8) and (9), that

MFk
(I + M∗

Fk
MFk

)−1M∗
Fk

−→ MF (I + M∗
F MF )−1M∗

F , (10)

M�k
(I + M∗

Fk
MFk

)−1M∗
Fk

−→ M�(I + M∗
F MF )−1M∗

F , (11)

M�k
(I + M∗

Fk
MFk

)−1M∗
�k

−→ M�(I + M∗
F MF )−1M∗

� (12)

in operator norm as k → ∞.
Step 3: If T is a bounded linear operator on a Hilbert

space H, then I +T ∗T and I +T T ∗ are invertible (indeed,
it is easy to see that T ∗T and T T ∗ are nonnegative and so
the spectra of I + T ∗T and I + T T ∗ are both contained in
the interval [1, ∞); in particular, 0 belongs to their resolvent
sets, and so invertibility follows) and

(I + T T ∗)−1 = I − T (I + T ∗T )−1T ∗. (13)

This can be verified directly by checking that

(I − T (I + T ∗T )−1T ∗)(I + T T ∗)
= I = (I + T T ∗)(I − T (I + T ∗T )−1T ∗).

From (13),

T (I + T ∗T )−1T ∗ = I − (I + T T ∗)−1. (14)

Since (I + T ∗T )T ∗ = T ∗(I + T T ∗), by operating from the
left and right by (I +T ∗T )−1 and (I +T T ∗)−1, respectively,
we also obtain the identity

T ∗(I + T T ∗)−1 = (I + T ∗T )−1T ∗. (15)

Applying the identity (14) to (10), we obtain

I − (I + MFk
M∗

Fk
)−1 −→ I − (I + MF M∗

F )−1,

and so (I + MFk
M∗

Fk
)−1 −→ (I + MF M∗

F )−1 in operator

norm as k → ∞. Since the inverse map ·−1 is continuous on
the Banach space of continuous linear operators on a Hilbert
space, it follows that

I + MFk
M∗

Fk
−→ I + MF M∗

F (16)

in operator norm as k → ∞.
Applying the identity (15) to (11), we obtain

M�k
M∗

Fk
(I + MFk

M∗
Fk

)−1

−→ M�M∗
F (I + MF M∗

F )−1 (17)

in operator norm as k → ∞.
Finally, multiplying the sequence (17) by (I + MFk

M∗
Fk

)

and using (16), together with the fact that operator multipli-
cation is continuous in the uniform topology, it follows that

MGk
= M�k

M∗
Fk

−→ MG = M�M∗
F

in operator norm as k → ∞. Thus we obtain (6). �

Corollary 3.4. The topology induced by the behavioral dis-
tance d is finer than that induced by the gap metric � on the
set Sn,m,p.

4. The topology induced by the behavioral distance is
coarser than that induced by the gap metric on the set
Sn,m,p

In this section, we show that the topology induced by the
behavioral distance is coarser than that induced by the gap
metric on the set Sn,m,p, by showing that if the transfer func-
tions converge in the H∞ norm, then the extended graphs
converge in the gap topology of subspaces.

We show that under some conditions on the chosen real-
izations,

Gk
H∞(C+,Cp×m)−→ G implies that Ck

Cp×n

−→ C (18)

in Theorem 4.4 below, which (together with some other
properties of the chosen realizations) will enable us to prove
the convergence of the �k and Fk constructed in Lemma
3.2. This then yields convergence of the extended graphs in
Theorem 4.5.
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The simple example with

Gk(s) = 1

s + 1
, Ak = −1, Bk = 1

k
, Ck = k, Dk = 0

and

G(s) = 1

s + 1
, A = −1, B = 1, C = 1, D = 0

demonstrates that (18) does not hold with every realiza-
tion of the transfer function. So one looks for an appropri-
ate realization for which the implication in (18) holds. We
do this by appealing to Theorem 1.3 [10, p. 303]), where
it is shown that every factorization of the Hankel opera-
tor induces a realization of the transfer function. For our
purposes, we will use the following extreme factorization:
	 = 	IL2 . Recall that if h ∈ L1((0, ∞), Cp×m) denotes the
inverse Laplace transform of a transfer function of a sys-
tem in Sn,m,p in S, then the associated Hankel operator 	 ∈
L(L2((0, ∞), Cm), L2((0, ∞), Cp)) is defined by

(	u)(t) =
∫ ∞

0
h(t + 
)u(
) d
, t �0

for u ∈ L2((0, ∞), Cm).

Let X = ran(	∗	)1/2 ⊂ L2((0, ∞), Cm), and let
PX : L2((0, ∞), Cm) → L2((0, ∞), Cm) denote the pro-
jection operator onto the closed subspace X. (Note that X
is finite dimensional.)

Lemma 4.1. Suppose that (�k)k �1 is a sequence of systems
in Sn,m,p and � ∈ Sn,m,p. For each k�1, let Gk denote the
transfer function of �k and let G denote the transfer function
of �. Furthermore, suppose that 	k and 	 denote the Hankel
operators associated with the inverse Laplace transforms hk

and h of Gk and G, respectively, with Xk = ran(	∗
k	k)

1/2

and X = ran(	∗	)1/2.
If Gk → G in H∞(C+, Cp×m) as k → ∞, then

1. 	k → 	 in the operator norm as k → ∞.
2. PXk

→ PX in the operator norm as k → ∞.

Proof. The first part follows for instance from Lemma
8.2.3.c [2, p. 397] combined with Lemma 8.1.2.a [2, p.
388]: ‖	k − 	‖�‖Gk − G‖H∞(C+,Cp×m) → 0 as k → ∞.

That PXk
→ PX can be seen as follows. Let �(k)

1 � · · · �
�(k)

n > 0 denote the n Hankel singular values of 	k , and
�1 � · · · ��n > 0 those of 	. From the convergence of 	k to
	 in the operator norm, and the upper semicontinuity of the
spectrum in the operator norm (see [5, Theorem 3.1, p. 208]),
there exists an open interval (a, b) with 0 < a, b < + ∞,
such that for n sufficiently large, �(k)

1 , . . . , �(k)
n ∈ (a, b) and

�1, . . . , �n ∈ (a, b). Let C be a simple, closed, rectifiable
curve that encloses an open set containing (a, b) in its inte-
rior. Then we have

PXk
= 1

2�i

∫
C

(�I − (	∗
k	k)

1/2)−1 d�.

From the continuity of the resolvent and the square root
it follows easily that PXk

→ P . �

The closed subspace X induces a decomposition of
L2((0, ∞), Cm)

L2((0, ∞), Cm) = X⊥ ⊕ X.

Lemma 4.2. Suppose that (�k)k �1 is a sequence of systems
in Sn,m,p and � ∈ Sn,m,p. For each k�1, let Gk denote the
transfer function of �k and let G denote the transfer function
of �. Furthermore, suppose that 	k and 	 denote the Hankel
operators associated with the inverse Laplace transforms hk

and h of Gk and G, respectively, with Xk = ran(	∗
k	k)

1/2

and X = ran(	∗	)1/2.
If Gk → G in H∞(C+, Cp×m) as k → ∞, then there

exists a k0 (large enough) such that for k�k0,

Xk = {Wkx + Ux | x ∈ Cn} (19)

for a unique bounded linear operator Wk : Cn → X⊥(⊂
L2((0, ∞), Cm)), and a fixed unitary identification map
U : Cn → X(⊂ L2((0, ∞), Cm)).

Proof. We show that for large k, Xk satisfies

Xk+̇X⊥ = L2((0, ∞), Cm). (20)

We begin by showing that

Xk ∩ X⊥ = {0}. (21)

Suppose that x ∈ L2((0, ∞), Cm) is in Xk ∩X⊥ with ‖x‖=
1. Then we have

‖PXk
− PX‖ = sup

{v | ‖v‖=1}
‖(PXk

− PX)v‖
� sup

{x | ‖x‖=1 x∈X⊥}
‖(PXk

− PX)x‖

= ‖x‖�1.

Since PXk
→ PX, it follows that there exists a k0 such that

k�k0 implies that ‖PXk
−PX‖ < 1. So we have proved (21).

Next we show that

Xk + X⊥ = L2((0, ∞), Cm). (22)

Suppose that there exists x ∈ L2((0, ∞), Cm) with ‖x‖ = 1
and x ⊥ (Xk +X⊥). In particular, x ⊥ X⊥ so x ∈ X. Then
also x ⊥ Xk . Thus

‖PXk
− PX‖�‖(PXk

− PX)x‖ = ‖PXx‖ = ‖x‖ = 1.

Hence for k large enough, no such x can exist, and we
conclude that Xk + X⊥ is dense in L2((0, ∞), Cm). Since
X⊥ has finite codimension and it is closed, it follows that
every superspace of X⊥ is closed. So Xk + X⊥ is closed
and consequently (22) holds. From (21) and (22), we obtain
that (20) holds.

Now we show that any subspace Xk satisfying (20) is a
graph space, that is, there exists a unique bounded linear op-
erator Wk ∈ L(Cn, L2((0, ∞), Cm)) such that (19) holds.



220 J.A. Ball, A.J. Sasane / Systems & Control Letters 55 (2006) 214–222

Note that from (20), in particular, given x ∈ X, there exists
x⊥ ∈ X⊥ such that

x + x⊥ ∈ Xk .

This x⊥ is unique. Indeed if x′⊥ ∈ X⊥ is also such that
x′⊥ + x ∈ Xk , then

(x⊥ + x) − (x′⊥ + x) = x⊥ − x′⊥ ∈ Xk ∩ X⊥ = {0}
which implies that x⊥=x′⊥. Define Mk : X → X⊥ by Mkx=
x⊥. Then it can be checked that Mk is linear and that

Xk = {Mkx + x | x ∈ X}.
The domain of Mk is finite dimensional, and so Mk is
bounded. Since X is a finite dimensional space with dimen-
sion n, it follows that there is an isomorphism U : Cn → X.
Then Wk defined by MkU satisfies (19). �

Define

Uk = (Wk + U)(I + W ∗
k Wk)

−1/2

∈ L(Cn, L2((0, ∞), Cm)). (23)

As W ∗
k U = U∗Wk = 0 (since U and Wk have orthogonal

ranges) and U∗U = ICn , we see that U∗
k Uk = ICn . It is also

easily checked that PXk
= UkU

∗
k .

Lemma 4.3. Suppose that (�k)k �1 is a sequence of systems
in Sn,m,p and � ∈ Sn,m,p. For each k�1, let Gk denote the
transfer function of �k and let G denote the transfer function
of �. Let the associated operators Wk, Uk, U be given as in
(19).

If Gk → G in H∞(C+, Cp×m) as k → ∞, then

1. Wk → 0 in the operator norm as k → ∞.
2. Uk → U in the operator norm as k → ∞.

Proof. Since PXk
=UkU

∗
k =(Wk +U)(I +W ∗

k Wk)
−1(W ∗

k +
U∗) −→ PX = UU∗ it follows that

PX⊥PXk
PX⊥ −→ PX⊥UU∗PX⊥ = 0 as k → ∞,

where PX⊥PXk
PX⊥ = Wk(I + W ∗

k Wk)
−1W ∗

k = −I + (I +
WkW

∗
k )−1. So (I + WkW

∗
k ) → I and hence Wk → 0. As

Uk = (Wk + U)(I + W ∗
k Wk)

−1/2, we see next that Uk → U

in operator norm as k → ∞. �

Following [10, Theorem 1.3, p. 302], by using the ex-
tremal factorization 	k = 	kIL2 for the Hankel associated
with the inverse Laplace transform of Gk , it can be checked
that Gk has a realization (Ak, Bk, Ck, Dk) with state space
Cn, input space Cm and output space Cp such that:

R1. Ak ∈ Cn×n is the infinitesimal generator of the
semigroup etAk = U∗

k S(t)Uk , for t �0, where S(
) :
L2((0, ∞), Cm) → L2((0, ∞), Cm) denotes the shift

operator:

(S(
)f )(t) = f (t + 
), t ∈ (0, ∞)

for f ∈ L2((0, ∞), Cm).

R2. The input map Bk : L2((0, ∞), Cm) → Cn is given by
Bk = U∗

k .
R3. The output map Ck : Cn → L2((0, ∞), Cp) is given

by Ck = 	kUk .
R4. The input-output map Dk : L2((0, ∞), Cm) →

L2((0, ∞), Cp) is given by

Dku = L−1(Gk(Lu)), u ∈ L2((0, ∞), Cm),

where L : L2((0, ∞), Cm) → H2(C+, Cm) and
L−1 : H2(C+, Cp) → L2((0, ∞), Cp) denote the
Laplace transformation and the inverse Laplace trans-
formation, respectively.

In light of the above, we have the following result:

Theorem 4.4. Suppose that (�k)k �1 is a sequence of sys-
tems in Sn,m,p and � ∈ Sn,m,p. For each k�1, let Gk de-
note the transfer function of �k and let Ak, Bk, Ck, Dk be
defined as in items R1, R2, R3 and R4 above. Furthermore,
suppose that G denotes the transfer function of � and that
A, B, C, D are defined as in items R1, R2, R3 and R4 above.

If Gk → G in H∞(C+, Cp×m) as k → ∞, then

1. �k → � in L∞(iR, Cp×p) as k → ∞,
2. F ∗

k → F ∗ in L∞(C+, Cp×m) as k → ∞,
where �k, Fk and �, F are constructed as in the Proof of
Lemma 3.2.

Proof. Step 1. In this step, we use the Lebesgue dominated
convergence theorem to prove that Ak → A in operator
norm as k → ∞.

By the previous Lemma, we know that Uk → U in op-
erator norm as k → ∞. Since etAk = U∗

k S(t)Uk and etA =
U∗S(t)U , we conclude that for each fixed t , etAk → etA,
and so we have pointwise convergence on (0, ∞).

As Uk converges to U in operator norm, it is uniformly
bounded: there exists a M > 0 such that ‖Uk‖ e |U∗

k ‖�M

for all k. But (S(t))t �0 is a contraction semigroup and
so ‖etAk‖�M2. Thus the semigroups are uniformly
bounded with a uniform bound M2, and so we have
a dominating function M2e−Re(�)t for each � ∈ C+:
‖e−�tetAk‖�M2e−Re(�)t ∈ L1(0, ∞).

Using the fact that the resolvent of the infinitesimal gen-
erator of a strongly continuous semigroup is the Laplace
transform of the semigroup (see for instance [11, Theorem
3.2.9.(i), p. 103]), and the Lebesgue dominated convergence
theorem, we obtain

(�I − Ak)
−1 =

∫ ∞

0
e−�tU∗

k S(t)Uk dt

k→∞−→
∫ ∞

0
e−�tU∗S(t)U dt = (�I − A)−1.



J.A. Ball, A.J. Sasane / Systems & Control Letters 55 (2006) 214–222 221

By the continuity of the inverse, we conclude that Ak → A

in operator norm as k → ∞.
Step 2: We have that 	k → 	 and Uk → U as k → ∞ in

the respective operator norms. Since Ck =	kUk , it is evident
that Ck → C in L(Cn, L2((0, ∞), Cp)) as k → ∞. We
claim that in fact

Ck → C in L(Cn, W 1,2((0, ∞), Cp)) as k → ∞, (24)

where W 1,2((0, ∞), Cp) denotes the Sobolev space

W 1,2((0, ∞), Cp) :=
{
f ∈ L2((0, ∞), Cp)

∣∣∣∣df

dt

∈ L2((0, ∞), Cp)

}
,

equipped with the norm

‖f ‖W 1,2 =
(

‖f ‖2
L2

+
∥∥∥∥df

dt

∥∥∥∥2

L2

)1/2

.

Indeed (24) amounts to showing that for each x ∈ Cn,

d

dt
Ckx → d

dt
Cx in L2((0, ∞), Cp) as k → ∞,

which is the same as CkAkx → CAx in L2((0, ∞), Cp)

as k → ∞. As we know that Ck → C and Ak → A in
the appropriate spaces, the claim (24) follows. Since point
evaluation is continuous in the Sobolev norm, for each x ∈
Cn we have

Ckx = (Ckx)(0)
k→∞−→ (Cx)(0) = Cx in Cp.

Thus Ck → C in matrix norm as k → ∞.
Step 3: The solution to the Lyapunov (4) is given by Hk =

C∗
kCk and so we see that Hk → H in Cn×n as k → ∞. From

the continuity of the inverse, it also follows that H−1
k →

H−1 in Cn×n as k → ∞.
Step 4: We know that Ak → A in Cn×n as k → ∞, and

so using the continuity of the spectral set (see for instance
[7, Theorem 10.20, p. 257]), we see that given � > 0, there
exists a large enough K such that k�K implies that �(Ak) ⊂
�(A) + B(0, �). Here B(0, �) denotes the ball with center
0 and radius � in C, and for a square matrix M , �(M) is
used to denote its set of eigenvalues. Since �(A) ⊂ {s ∈
C | Re(s) < 0}, it follows that there exists a positive � and a
K ∈ N such that for all k�K ,

�(A) ∪ �(Ak) ⊂ {s ∈ C | Re(s) < − �}.
Consequently, there exist positive constants M1, M2 such
that

‖etAk − etA‖�M1e−�t + M2e−�t = (M1 + M2)e
−�t .

Hence from the Lebesgue dominated convergence theorem,
we have

‖e·Ak − e·A‖L1((0,∞),Cn×n) → 0 as k → ∞.

Using continuity of the Laplace transform (see for instance
[2, Property A.6.2a, p. 636]), it follows that ‖(·I −Ak)

−1 −
(·I − A)−1‖H∞(C+,Cn×n) → 0 as k → ∞. Hence

�k(·) = I − Ck(·I − Ak)
−1H−1

k C∗
k −→ �(·)

= I − C(·I − A)−1H−1C∗

in L∞(iR, Cp×p) as k → ∞. Since L∞(iR, Cp×p) is a
Banach algebra, from the continuity of the inverse, we have
�−1

k → �−1 in L∞(iR, Cp×p) as k → ∞. Finally F ∗
k =

�−1
k Gk −→ �−1G=F ∗ in L∞(iR, Cp×m) as k → ∞. �

Using the above result, we now obtain the following:

Theorem 4.5. If (�k)k �1 is a sequence in Sn,m,p, � ∈
Sn,m,p and there holds that

‖Gk − G‖H∞(C+,Cp×m) → 0 as k → ∞,

then g(Ge(�k),Ge(�)) → 0 as k → ∞.

Proof. We use the formula established in Step 1 of the proof
of Theorem 3.3. Indeed from Theorem 4.4 above, we know
that M�k

→ M� and MFk
→ MF in operator norm as k →

∞. Consequently from (8) and (9), we see that �k → � in
operator norm as k → ∞, and so g(Ge(�k),Ge(�)) → 0
as k → ∞. �

Corollary 4.6. The topology induced by the behavioral dis-
tance d is coarser than that induced by the gap metric � on
the set Sn,m,p.

5. The topologies induced by the behavioral distance
and the gap metric coincide on the set Sn,m,p

We summarize the results from Sections 3 and 4 below:

Theorem 5.1. Suppose that (�k)k �1 is a sequence in Sn,m,p

and � ∈ Sn,m,p. The following are equivalent:

1. g(Ge(�k),Ge(�)) → 0 as k → ∞
2. g(G(�k),G(�)) → 0 as k → ∞
3. ‖Gk − G‖H∞(C+,Cp×m) → 0 as k → ∞.

Proof. This follows from Theorems 2.1, 3.3 and 4.5. �

Corollary 5.2. The topologies induced by the behavioral
distance and the gap metric coincide on the set Sn,m,p.
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