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Abstract. In this article we prove a representation theorem for H∞(D) func-
tions, such that the realization formula is spectrally minimal in the following
sense: the spectrum of the main operator in the realization intersects the unit
circle precisely at those points where the given function has no holomorphic
extension. We also extend this result to operator-valued H∞ functions.
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1. Introduction

It is known (see for example [2, Theorem 6.5], [6, Theorem 2-1]) that every function
in H∞(D) can be represented as a “transfer function”, that is, there exists a Hilbert
space H and a bounded operator

V =
[

A B
C D

]
:
[

H
C

]
→

[
H
C

]
(1.1)

such that
g(z) = D + Cz(I − zA)−1B , z ∈ D . (1.2)

In the right-hand side of the realization formula (1.2), it is understood that for
every nonzero z ∈ D, I−zA is invertible as an element of L(H), that is, z−1 ∈ ρ(A),
the resolvent set of A. The background to the realization formula (1.2) arises from
relating g to the input-output map (the transfer function) of a discrete-time linear
time-invariant system {

x(n + 1) = Ax(n) + Bu(n) ,
y(n) = Cx(n) + Du(n) .

(1.3)
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Here n ∈ Z can be interpreted as a time variable, u(n), x(n), y(n) have interpre-
tations as input signal, state vector, and output signal, respectively, at time n.
Application of the Z-transform (x(n))n �→ x̂(z) =

∑
n∈Z

x(n)zn to all quantities
in (1.3) formally leads to ŷ(z) = g(z)û(z), where g is as in (1.2); see [6] and [4].

However, the same transfer function can be realized by generators A with
widely differing spectra. From an intuitive point of view, the question then arises
if we can have a generator which reflects the singularities of the transfer function
in a faithful manner, that is, we would like to have an A with the smallest possible
spectrum required to model the singularities of the given transfer function. We
make this precise below.

Definition 1.1. Let V as in (1.1) be a realization of g, so that (1.2) holds. Let

S := {z ∈ T | g is holomorphic across z} .

We call the realization (1.1) for g ∈ H∞(D) spectrally minimal if

S−1 := {z−1 | z ∈ S} = ρ(A) ∩ T .

Our main result is that a spectrally minimal realization always exists.
In the literature, there are many canonical methods for constructing a “mini-

mal” realization (not minimal in the sense of spectrum) for a given function. How-
ever, we know no earlier methods that would always lead to a spectrally minimal
realization. For example, if a function g is cyclic, then both the canonical left-shift
realization [6] and the minimal optimal passive scattering realization [1] of this
function have the whole closed unit disc as the spectrum of the main operator.
Moreover, then the latter realization coincides with the deBranges–Rovnyak real-
ization. Thus, if g(z) = ((z + 1)/2)1/2, then none of these realizations is spectrally
minimal, because then g is holomorphic on T \ {−1} and cyclic.

It has been shown earlier (for instance in [6, §4], [5], [10, §9.8]), by different
methods, that in certain special cases of g’s from H∞(D), a realization can be
chosen so that the component of ρ(A) containing the origin is a maximal holomor-
phic domain of g. We cover the general case when g is arbitrary in H∞(D), but we
study the spectrum in the closed unit disk only. Our main result is the following:

Theorem 1.2. Let S be an open subset of T, and let g ∈ H∞(D) have a holo-
morphic extension across S. Then g admits a spectrally minimal realization of the
form (1.2).

The proof will be presented in Section 2. An operator-valued version of this
result is given in Section 3.

We will use the following standard notation.
D, D, T the open unit disk, the closed unit disk, and the unit circle, respec-

tively:
D := {z∈C | |z| < 1}, D := {z∈C | |z| ≤ 1}, T := {z∈C | |z| = 1};

H∞(D; X) If X is a Banach space, then H∞(D; X) denotes the space of X-
valued bounded holomorphic functions on D, equipped with the
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supremum norm. The space H∞(D; C) will be denoted simply by
H∞(D).

L(X, Y ) If X, Y are Hilbert spaces, then L(X, Y ) denotes the space of
bounded linear operators from X to Y , equipped with the opera-
tor norm;

ρ(A) If A ∈ L(X) is a linear transformation on a Hilbert space X , then
ρ(A) denotes the resolvent set of A.

2. A spectrally minimal realization formula for H∞(D)

In this section we will prove our main result on the existence of spectrally minimal
realizations in Theorem 1.2 below.

Before giving the proof, we explain the main idea behind it: assuming for the
moment that g(0) = 0, if g were holomorphic in a domain containing D, then by
Cauchy integral formula, we would have

g(z)
z

=
1

2πi

∫ 2π

0

g(eiθ)e−iθ

eiθ − z
ieiθdθ =

1
2π

∫ 2π

0

(1 − ze−iθ)−1 g(eiθ)
eiθ

dθ ,

and we view this integral as C(I − zA)−1B, where C ∈ L(L2(T); C), A ∈
L(L2(T), L2(T)), B ∈ L(C; L2(T)) are given by:

C =
1
2π

∫ 2π

0

• dθ ,

A = multiplication operator on L2(T) by e−iθ ,

B =
(

u �→ g(ei·)
ei· u

)
.

However, our g need not be holomorphic across every point of T, and so we will
modify the above construction. First of all, in order to get the correct spectrum,
we will replace the contour above (which was simply the circle), now to a suitable
curve γ, such that γ matches the circle precisely at those points where g does not
have a holomorphic extension and otherwise it passes through the region outside
the circle where g is holomorphic, and take A as the multiplication operator on
L2(T) by the function θ �→ 1/(R(θ)eiθ), where R(θ)eiθ gives the polar representa-
tion of γ. Moreover, we cannot directly apply Cauchy integral formula with this
new γ, since g is not holomorphic across γ at the points where γ matches with
the circle. Hence we will first work with a scaled version of γ by r ∈ (0, 1), and
subsequently pass the limit as r increases to 1.

In order to construct γ in Theorem 1.2, we will need the following technical
lemma.

Lemma 2.1. Let O be an open set in R
2 containing the segment (0, 1). Then there

exists a f ∈ C∞(R; R) such that:
(a) f(x) > 0 for all x ∈ (0, 1);
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(b) f(x) = 0 for all x �∈ (0, 1);
(c) (x, y) ∈ O for all x ∈ (0, 1) and all y ∈ [0, f(x)] .

Proof. We first define f on (0, 1/2). For n ≥ 3, let gn ∈ C∞(R) be such that

gn(x) =

⎧⎨
⎩

0 x ≤ 1
n

1 x ≥ 1
n−1

∈ (0, 1) x ∈ ( 1
n−1 , 1

n )
.

For n ≥ 3, choose an > 0 such that an‖gn‖Cn < 1/2n. For n ≥ 3, pick rn > 0 such
that (x, y) ∈ O for x ∈ [1/n, 1/2] and y ∈ [0, rn], also ensuring that the sequence
of rn’s satisfies rn+1 < rn for all n ≥ 3 and rn → 0 as n → ∞. For n ≥ 3, define
bn = min{an, rn − rn+1}. Let

f1 =
∞∑

n=3

bngn .

For any N < ∞, the series converges in CN :

‖f1‖CN ≤
∞∑

n=3

bn‖gn‖CN ≤
∞∑

n=3

an‖gn‖CN <

N−1∑
n=3

an‖gn‖CN +
∞∑

n=N

1
2n

< +∞ .

(2.1)
So f1 ∈ C∞. Let now x ∈ (0, 1/2]. Then x ∈ (1/(n + 1), 1/n] for some n ≥ 2, and
hence gk(x) = 0 for k ≤ n (we define gk := 0 for k < 3), so

0 < bn+1gn+1(x) < f1(x) ≤
∞∑

k=n+1

bk ≤
∞∑

k=n+1

(rk − rk+1) = rn+1 .

If y ∈ [0, f1(x)], then y ∈ [0, rn+1] and hence then (x, y) ∈ O.
From (2.1), we also have that f1(x) < 1 for all x ∈ (0, 1) (even ‖f1‖C0 ≤∑∞

k=3 2−k = 1/4).
Similarly, we can construct a f2 ∈ C∞ such that for all x ∈ [1/2, 1) and all

y ∈ [0, f2(x)], we have (x, y) ∈ O, and furthermore, 1 > f2(x) > 0 for x ∈ (0, 1).
Defining f = f1f2, we are done. �

We are now ready to prove our main result.

Proof of Theorem 1.2. We assume that g(0) = 0 (set D = g(0) in the general
case).

Let Ω be a simply connected domain containing D∪S such that ∂Ω∩T = T\S,
and such that g is holomorphic and bounded in Ω.

We note that it can be arranged that the boundary of Ω is smooth, that
is C1, and it has a C1 parameterization θ �→ R(θ)eiθ. Indeed, first of all, we
observe that S can be written as a disjoint union ∪∞

k=1Ik of open arcs

Ik =
{
eiθ | θ ∈ (αk, βk)

}
, k ∈ N
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(see for instance [11, Theorem 1.3]). Now let R(θ) = 1 if eiθ ∈ T \ S, while if
eiθ ∈ S, say eiθ ∈ Ik, then take

R(θ) = 1 + fk

(
θ − αk

βk − αk

)
,

where fk is a function constructed as in Lemma 2.1 (then actually R ∈ C∞).
The map z �→ g(z)/z is holomorphic in D. Let H = L2(T). Suppose that

z ∈ D. Let r be such that |z| < r < 1.
Define Ar ∈ L(H) to be the multiplication operator by 1/(rR(θ)eiθ):

(Arf)(eiθ) = f(eiθ)/
(
rR(θ)eiθ

)
, θ ∈ [0, 2π), f ∈ L2(T) .

The spectrum of Ar is the range of θ �→ 1/(rR(θ)eiθ). Since |z| < r, it follows that
1 ∈ ρ(zAr), and

(
(I − zAr)−1f

)
(eiθ) =

f(eiθ)
1 − z/

(
rR(θ)eiθ

) , θ ∈ [0, 2π), f ∈ L2(T) .

Let Br ∈ L(C; H) be defined by

(Bru)(eiθ) =
g
(
rR(θ)eiθ

)(
R(θ) − iR′(θ)

)
r
(
R(θ)

)2
eiθ

u , θ ∈ [0, 2π), u ∈ C .

Let C ∈ L(H ; C) be defined by

Cf =
1
2π

∫ 2π

0

f(eiθ)dθ , f ∈ L2(T) .

Let γ denote the curve θ : [0, 2π] → rR(θ)eiθ . By the Cauchy integral formula, we
have

g(z)
z

=
1

2πi

∫
γ

g(w)/(w)
w − z

dw

=
1
2π

∫
γ

1
1 − z/w

−ig(w)dw
dθ /reiθ

w2
dw

=
1
2π

∫ 2π

0

1
1 − z/

(
rR(θ)eiθ

) g
(
rR(θ)eiθ

)(
R(θ) − iR′(θ)

)
r
(
R(θ)

)2
eiθ

dθ

= C(I − zAr)−1Br . (2.2)

Note that with a fixed z, the above is true for every r satisfying |z| < r < 1.
Define A ∈ L(H) to be the multiplication operator given by:

(Af)(eiθ) = f(eiθ)/
(
R(θ)eiθ

)
, θ ∈ [0, 2π), f ∈ L2(T) .

We note that zAr → zA as r ↗ 1 in the operator norm of L(H). As 1 ∈ ρ(zAr)
(|z| < r < 1) and 1 ∈ ρ(zA), it follows that (I − zAr)−1 → (I − zA)−1 in L(H) as
r ↗ 1.
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Furthermore, define B ∈ L(C, H) by

(Bu)(eiθ) =
g
(
R(θ)eiθ

)(
R(θ) − iR′(θ)

)
(
R(θ)

)2
eiθ

u , θ ∈ [0, 2π), u ∈ C .

We also note that Br → B in L(C; H) as r ↗ 1. To see this, it is enough to
prove that g(rR(·)ei·) → g(R(·)ei·) as r ↗ 1 in L2(T). But this follows from the
Lebesgue dominated convergence theorem, if we prove that the functions converge
pointwise almost everywhere. If R(θ) = 1, then this follows from the fact that the
radial limits exist almost everywhere for functions in H∞(D) [9, Theorem 17.11].
If R(θ) > 1, then this follows from the fact that g is continuous at R(θ)eiθ (this
can be ensured by having chosen Ω suitably at the outset, that is, by shrinking it
enough so that its boundary outside D lies in the region where g is holomorphic
and so continuous to the boundary).

Consequently, from (2.2) we obtain that

g(z)
z

= C(I − zA)−1B . (2.3)

Since the choice of z ∈ D was arbitrary, (2.3) holds for all z ∈ D. Defining D = 0,
we obtain (1.2).

Finally, we observe that σ(A) is the range of 1/(R(θ)eiθ). Since ∂Ω∩T = T\S,
we have S−1 = T ∩ ρ(A). �

Remark 2.2. We remark that the spectrally minimal realization given in Theo-
rem 1.2 is not unique, since there is some freedom in the choice of the γ.

3. Operator-valued case

Theorem 3.1. Let U, Y be Hilbert spaces, S be an open subset of T, and g ∈
H∞(D;L(U, Y )) have a holomorphic extension across S. Then there exists a Hilbert
space H and a bounded operator

V =
[

A B
C D

]
:
[

H
U

]
→

[
H
Y

]

such that S−1 = T ∩ ρ(A) and

g(z) = D + Cz(I − zA)−1B , z ∈ D . (3.1)

Proof. Let Ω and R(θ) be constructed as in the proof of Theorem 1.2, and let
H = L2(T; Y ). Define B ∈ L(U, H) by

(Bu)(eiθ) =
g
(
R(θ)eiθ

)(
R(θ) − iR′(θ)

)
(
R(θ)

)2
eiθ

u , θ ∈ [0, 2π), u ∈ U ,

Let A ∈ L(H) be the multiplication operator given by

(Af)(eiθ) = f(eiθ)/
(
R(θ)eiθ

)
θ ∈ [0, 2π), f ∈ L2(T; Y ) .
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Define C ∈ L(H ; Y ) by

Cf =
1
2π

∫ 2π

0

f(eiθ)dθ , f ∈ L2(T; Y ) .

Finally, let
D := g(0) ∈ L(U, Y ) .

Let Λ ∈ Y ∗ and u ∈ U . By repeating the argument from the proof of Theorem 1.2
to Λg(·)u ∈ H∞(D), we see that

Λg(z)u = ΛDu + ΛCz(I − zA)−1Bu = Λ
(
D + Cz(I − zA)−1B

)
u , z ∈ D ,

and that S−1 = T ∩ ρ(A). Since the choice of Λ ∈ Y ∗ and u ∈ U was arbitrary, it
follows that (3.1) holds. �
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