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Abstract

In this article we prove new sufficient conditions under which the feedback operator associated with the
Linear Quadratic Regulator control design for distributed parameter systems is nuclear or Hilbert—Schmidt.
Examples illustrating the main results are also given.
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1. Introduction

The most popular control design for distributed parameter systems (DPS) is the Linear
Quadratic Regulator (LQR) control design. These controllers are infinite-dimensional and in
practice one approximates these to obtain implementable finite-dimensional controllers. Con-
ditions for the effectiveness of this approach has been the subject of a number of papers (see for
example Banks and Kunisch [2], Burns et al. [4], Gibson [10], Ito [12,13], Kappel and Salamon
[14], King [16], Opmeer et al. [20]).

Here we focus on two properties that are of importance:

(P1) The gain operator is Hilbert—Schmidt.
(P2) The solution to the Riccati equation is Hilbert—Schmidt or nuclear.
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The aim of this paper is to summarize known sufficient conditions and to give new sufficient
conditions for (P1) and (P2) to hold.
The LQR problem we consider is for the abstract linear system

d
Ex(t) = Ax(t) + Bu(t)
y(#) =Cx(1)

where the control input1 u € Lr(Ry; U), the state x € C loc R4; X),and output y € Lr(Ry; Y),
and U, X, Y are Hilbert spaces. We suppose that A generates a Cp-semigroup on X, the oper-
ator> C € B(X,Y), and (B — A)~'B € B(U, X) for some 8 € p(A), the resolvent set of the
operator A.

The LQR problem is to find ugpe € L2(R4; U) that minimizes

, 120, x(0) = xo,

J (x0, u) =/ Iy + Ju| at.
0

If B is bounded and the system is exponentially stabilizable, then there exists uopi (1) = Kx (1),
where the gain operator K is given by —B*Q, and Q € B(X) is the minimal nonnegative solution
of the Riccati equation

(Qx1, Axz) + (Ax1, Ox2) — (B*Qx1. B*Qxz) 4 (Cx1, Cx2) =0

for all x1, xo € Dom(A). If, in addition, U and Y are finite-dimensional, then it is easy to show
that Q is nuclear and consequently the gain operator is Hilbert—Schmidt (see Section 3). This
means that K can be represented as an integral operator (see for instance Weidmann [24, Theo-
rem 6.11, p. 139]), which has advantages for designing practical control laws (see the papers by
King on functional gains [1,15,16]).

The nuclear property of Q implies the existence of finite-dimensional approximants uop(t) =
K, x(t) that will stabilize the original system (see Curtain [6]). In the robust LQG design pre-
sented in [8] it is sufficient that Q be Hilbert—Schmidt.

In many applications the control is implemented on the boundary, in which case B is un-
bounded. It is important to have conditions for (P1) and (P2) to hold in this case too. It is already
known that if A generates an analytic Cp-semigroup and (81 — A)~7 is Hilbert—-Schmidt for
some y € [0, 1), then (P2) holds (see Lasiecka and Triggiani [17, Remark 2.2.2, p. 128]). We
recall this result in Theorem 4.1 and Proposition 4.4, and use it to obtain sufficient conditions for
(P1) to hold in Theorem 4.6. These results cover the classical parabolic equations with boundary
control (as we illustrate in Example 6.1).

There are, however, operators A that generate analytic semigroups, but for which (81 — A)™Y
is not Hilbert—Schmidt. If A has an accumulation point in its spectrum, then (81 — A)~7 will
never be Hilbert—Schmidt. For this class we derive alternative sufficient conditions for (P1) and
(P2) to hold in Theorem 4.6. In Example 6.2, these results are applied to show that a controlled
flexible beam with boundary control has properties (P1) and (P2). This provides the theoretical
justification for the LQG-balancing control design in Opmeer et al. [20].

1 Throughout this article, R4 denotes the set of positive real numbers.
2 The notation B(H 1, Hp) is used to denote the space of bounded linear operators from the Hilbert space H] to the
Hilbert space H;.
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2. Preliminaries

In this section, we recall the notions of Hilbert—Schmidt and nuclear operators, and also list
a few properties of these classes of operators that we will use in the sequel. For background
information, we refer the reader to Pietsch [22] and to Weidmann [24].
Let H; and H; be Hilbert spaces. An operator T € B(H, Hy) is said to be Hilbert—Schmidt
if
D olTel? < 400
iel
for some orthonormal basis {e;};c; for Hj. The set of Hilbert—Schmidt operators is denoted by
S»(Hy, Hy). Hilbert—Schmidt operators are compact, and they form a two-sided ideal:

So(Hp, H3)B(Hy, Hy) C S2(Hy, H3) and  B(Hz, H3)S:(Hy, Hy) C S»(Hy, H3).

An operator T € B(H{, Hy) is Hilbert—Schmidt iff its adjoint T* € B(HJ, H{) is Hilbert—
Schmidt. There are several alternative characterizations of Hilbert—Schmidt operators, and we
give one such below.

First we recall the notion of singular values of a bounded linear operator from a Hilbert space
H, to a Hilbert space H,. For n € N, the nth singular value of an operator T € B(H|, H)
(denoted by o,(T)) is defined to be the distance with respect to the norm in B(H}, Hy) of T
from the set of operators in B(H}, H,) of rank at most n — 1. Thus o1(T) = || T||, and

o1(T) 2 02(T) 2 03(T) 2 --- 2 0.

If T is compact, then 7*T is compact and nonnegative, and so the nonzero spectrum of 7*T
consists of a pure point spectrum with countably many nonnegative eigenvalues. The square
roots of these eigenvalues are then the singular values of 7.

An alternative characterization of Hilbert—Schmidt operators is then the following: an operator
T € B(H,, H,) is Hilbert—-Schmidt iff

3" (0w(1))? < o
neN
On the other hand, if the singular values are summable, then the operator is called nuclear:
Z 0,(T) < 4+00.
neN

The set of nuclear operators is denoted by S1(H;, H>). This space has the following ideal prop-
erty:

S1(Hp, H3)B(Hy, Hy) C S1(Hy, H3) and B(H», H3)S1(Hy, Hy) C S1(H1, H3).

Clearly, every nuclear operator is Hilbert—Schmidt: S1(Hy, H2) C S2(Hy, Hp). It can also be
shown that the product of two Hilbert—Schmidt operators is nuclear, that is,

S>(Ha, H3)S,(Hy, Hy) C S1(Hy, H3).

The hierarchy of the classes of operators is shown below, where C(H|, Hy) denotes the set of
compact operators: S1(Hy, Hy) C $2(Hy, Hy) C K(Hy, Hy) C B(Hy, Hy).
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3. Case of bounded, finite rank input and output operators
We recall the following theorem from Curtain and Zwart [8].

Theorem 3.1. Suppose that U, X, Y are Hilbert spaces, and that A be the infinitesimal gen-
erator of a Co-semigroup A on X, B € B(U, X), and C € B(X,Y). If (A, B) is exponentially
stabilizable, then there exists a self-adjoint, nonnegative solution Q in B(X) such that:

(1) A — BB*Q generates an exponentially stable Cy-semigroup Aon X;
(2) Q is the minimal solution of the algebraic Riccati equation

0= (Ax1, Qx2)x + (Qx1, Ax2)x + (Cx1, Cxa)y — (B*Qx1. B*Qxa),, (1

forall x1, x, € Dom(A);
3) 0= Q*QQZQ, where €g: X — Lo(Ry; Y @ U) is given by

Q~l(t)x

(€ox)(t) = [B*Qﬁ(t)x} , 120, xeX. )

We quote the following result from Dumortier [9, Proposition 1.0.2] (see also Grabowski [11]
and Curtain and Sasane [7, Theorem 4.1]).

Theorem 3.2. Suppose that A is the infinitesimal generator of an exponentially stable
Co-semigroup on the Hilbert space X, and that C € B(X, CP). Then the observability opera-
tor ©: X — Ly(R4; CP) defined by (E€x)(t) = CUA(t)x, t =0, x € X, is Hilbert—Schmidt.

Using the above two results, we obtain the following easy result (see Curtain [5]):

Theorem 3.3. Suppose that A is the infinitesimal generator of a Co-semigroup 2 on the Hilbert
space X, B € B(C", X), and C € B(X,CP). If (A, B) is exponentially stabilizable, then the
minimal solution of the algebraic Riccati equation (1) is nuclear. Furthermore, B*Q € B(X,C™)
is also nuclear.

Proof. Since C € B(X, CP) and B*Q € B(X, C™), it follows that [ BEQ] € B(X, CP™™), which
has finite rank. The semigroup generated by A — BB*Q is exponentially stable, by Theorem 3.1.
Applying Theorem 3.2, we obtain that the observability operator € : X — Lp(Ry; CPT™),
defined by (2), is Hilbert-Schmidt. Consequently Q = Q*QGQ € B(X) is nuclear. As B* €
B(X,C™), it follows that B*Q is nuclear as well. O

4. Analytic case with unbounded finite rank input and output operators

First we introduce some notation. If A is the generator of a Cp-semigroup 2, then its growth
bound is denoted by w4, where the growth bound is defined as

1
wp = tlgg " 10g||91(t) ||
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Suppose that A is the infinitesimal generator of an analytic Co-semigroup 2 on the Hilbert space
X, and let @ > wy4. Then for all « > 0, the fractional power of (wl — A)~! is defined by setting

_ —o __ L i a—1 —owt
@ =)™ = s /t e~'A(t) dt € B(X). 3)
0

Furthermore, let (wl — A)® = ((wl —A)~*)~!. Let X, = Dom((wl — A)¥) = Ran((wl — A)~%)
with the norm ||x||x, = l[(wl — A)*x||x, x € Dom((w! — A)*). For o <0, let X, be the com-
pletion of X with respect to the norm ||x||x, = [[(wl — A)*x]|x, x € X. Finally, let Xo be the
Hilbert space X. Hence one obtains a chain of Hilbert spaces X, parametrized by o € R. If 2
is analytic, then 2* is also analytic, and for « € R, we define X} = (X*)y = (X_4)*. These sets
and their topologies (not norms) are independent of w.

Below we list a few remarks concerning properties of analytic semigroups, which we will use
in the sequel.

(R1) If A generates an exponentially stable analytic semigroup, then for each « > 0, there exist
constants M < +o00 and € > 0 such that

—€t

| (A AD) | gy < M—, tER,. 4)
B(X) s

(R2) For any @ > wg, there exists ® € (%, ] and there exists M = M (A, w, ®) < 0o such that
I(sT —A) ! <X foralls e Yo.w:=1{s€C|s #w,|arg(s —w)| < ©}. Furthermore,

[s—w|

M(1+|s — wol®)
|s — wol
(seZ‘@,wO, w>wy> w4y, o€ |0, 1]). (®))

[l — A)*(s1 —A)~! |5 <

(R3) For a > 0, the restriction of 2 to X, is an analytic semigroup, isomorphic to the original
one (using 2A(t)(wl — A)* = (wl — A)*2U(¢)), with generator Ay, . Similarly, for o <0,
2l has a unique extension to an (isomorphic) analytic semigroup on X,, and we denote its
generator by Alx,,,. In particular, wy4|y  is the same for each «.

(R4) If we were to start from some Xg, 8 € R instead of X = X¢, then we would ob-
tain the same spaces, semigroups and generators (in particular, (Xg)y = Xg4q, i.€.,
(@ — Alxy,) " Xp = (0 — Alx,)” Pt X).

For properties of analytic semigroups and interpolation spaces X, we refer the reader to Lu-
nardi [18], Pazy [21] or Staffans [23].

We recall the following result (see Lasiecka and Triggiani [17, Theorems 2.2.1 and 2.2.2,
pp. 125-127] and also Mikkola [19, §9.5]).

Theorem 4.1. Suppose that:

(A1) A is the infinitesimal generator of an analytic Cy-semigroup A on a Hilbert space X.

(A2) There exists ap € (—1,0] such that (wl — A)*2B € B(U, X), that is, B € B(U, Xq}),
where w > w4 and U is a Hilbert space.

(A3) C e B(X,Y), where Y is a Hilbert space.

(A4) (Exponential detectability) There exists L € B(Y, X) such that the analytic Cy-semigroup
with generator A 4+ LC is exponentially stable on X.
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(AS) (Finite cost condition) For each xo € X, there exists u € Lo(Ry; U) such that the mild
solution x to %x(t) = Ax(t) + Bu(t), x(0) = xo, satisfies Cx(-) € Lo(R4; X).

Then there exists a self-adjoint, nonnegative Q € B(X) such that:

(1) The operator Ag = A — BB*Q with Dom(A ) given by
{x e Dom((wl — A)!+e5) |
(@I — A x — (wl — A)** BB*Qx € Dom((wl — A)™*#)} (6)

is the infinitesimal generator of an exponentially stable, analytic Cy-semigroup A on X.
(2) Q is the unique self-adjoint nonnegative solution of the following algebraic Riccati equation

0= (Ax1, OQx2)x + (Qx1, Ax2)x + (Cx1, Cxa)x — (B* Ox1, B*Qxa),, @)
for all x1, xo € Dom((wl — A)€), and any € > 0.
3) 0= Q:*QQQ, where €g € B(X, Lo(R; Y @ U)) is given by

(Cox)(t) = [Bfgng)x} , t20, xeX. ®)

(4) B*Q € B(X, U).

The result in Theorem 4.3 below is a consequence of the following standard result from Weid-
mann [24, Theorem 6.12, p. 140].

Theorem 4.2. Let K be a bounded linear operator from a Hilbert space H into Ly(Ry; C). If
there exists a function k € Ly(Ry; C) such that |(Kx)(t)| < k(@)|x|| for almost all t € Ry and
all x € H, then K is a Hilbert—Schmidt operator.

Theorem 4.3. Suppose that A is the infinitesimal generator of an exponentially stable, analytic
Co-semigroup A on the Hilbert space X, and let C € B(Xy.,CP). If y > ac — %, then the
observability operator € : X,, — Ly(R; CP) defined by (€x)(t) = CAM)x, t 20, x € X, is
Hilbert—Schmidt.

Proof. The result follows from an immediate application of Theorem 4.2 above; for details, see
for instance the proof of part (2) of Theorem 6 on page 1266 of [7]. O

We recall the following result from Lasiecka and Triggiani [17, Remark 2.2.2, p. 128].

Proposition 4.4. Let assumptions (A1) to (AS) hold. Furthermore, if the operator (wl — A)™ is
Hilbert—Schmidt on X for some a € (0, 1), then the unique nonnegative solution of the algebraic
Riccati equation (7) is Hilbert—Schmidt on X.

However, as mentioned in the introduction, (wl — A) ™% being Hilbert—-Schmidt is an assump-
tion which may not always be satisfied. For instance, this is never satisfied if the spectrum of A
has an accumulation point as in Example 6.2. This motivates the result in Theorem 4.6 below,
which gives alternative conditions that guarantee the Hilbert—Schmidt/nuclearity properties of
the solution to the Riccati equation and the gain operator. This new result is obtained by a simple
application of Theorems 4.1 and 4.3 and the following technical result in Proposition 4.5.
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Proposition 4.5. Let A be the generator of an analytic semigroup on the Banach space X. Let
A e B(Xq, Xp) for some a, B e Rwitha — B < 1. Let y € [a — 1, B + 1]. Then the following
hold:

(S1) The operator® A + A generates an analytic semigroup A on Xo—1-

(S2) The space X, is invariant under 2, and the restriction §l| x, to Xy is an analytic semigroup
on X,. _

(S3) The generator of Ul x, is the part of A+ Ain X, ; it equals (A+ A)|x,,, if y € [e—1, B].

(S4) We have (wl — (A + A)~Y=@=DIX, | =X, (0> watn).

(S5) If0e[a —1, B+ 1] (so that Q~l|x is an analytic semigroup on X) and if we let Xs (b eR)
be the analogues of the spaces Xs with A replaced by the part of A+ A in X, then )N((g =Xs
forall§ ela—1,8+1].

(The part of A + A in X,, has the domain {x € X, N X, | (A + A)x € X, }, by definition.
By X y = X we mean that the vector spaces and topologies coincide (so that the norms are
equivalent). Naturally, in (S4) we refer to (3) with 2 in place of % and X,_; in place of X.)

The proof of Proposition 4.5 is given in Section 5.

Theorem 4.6. Under the assumptions (A1) to (AS) from Theorem 4.1, withU = C" and Y = CP,
the following hold:

(1) The self-adjoint nonnegative solution of the algebraic Riccati equation (7) is a nuclear op-

erator from X, to (X,))* for all y > —%.

Q2) Ifap > —%, then B* Q is a Hilbert-Schmidt operator from X,, to C" for all y > —%.

Proof. From Theorem 4.1, we know that the semigroup A is analytic and exponentially stable.
Furthermore, [BEQ] € B(X,CPT™). Since BB*Q € L(X, X4,) With —ap < 1, using Proposi-
tion 4.5 above, it follows that the interpolation spaces corresponding to the semigroup 2{ are
the same topological spaces as the ones corresponding to 2(. By Theorem 4.3 and (8) above,
it follows that €g € B(X,,, Lo(Ry; CP*™M)) is Hilbert—Schmidt for all y > —%. Consequently,
Q =C}Cg € B(X,, (X,)*) is nuclear forall y > —3.

We have € € B(X,, Ly(R4; CP™™)) is Hilbert-Schmidt for all y > —%. So B*Q =
B*Q*QQQ will also be Hilbert-Schmidt from X, to C™ if B*(’Z*Q € B(Ly(Ry; CPT™) C™), that
is, if €9 B € B(C™, Ly(Ry; CPT™)). Now

C ~
¢oB = |:B*Q:|Ql(t)B

and

2
dt

c 1~
Jeanear [ Json
0 0

3 By A+ A wereferto Alx, + A.
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<|[s%e]

o
—€t
< (constant) - / ;TBdt, (using (4))
0

2 o0
f |(~A + BB*Q)“*A0)|*|| (A + BB*Q)** B|* dt
0

where C, B*Q and (wl — A)*B B are all bounded, and 2 is an exponentially stable analytic
semigroup. So it follows that €y B is bounded provided that ap > —%. m|

In other words, under the assumptions (A1) to (AS), the solution to the Riccati equation is
always nuclear for all y > —% ((P2) holds). If in addition, the input operator B is sufficiently

smooth (apg > —%), then the gain operator B*Q is Hilbert—Schmidt ((P1) holds).
5. Proof of Proposition 4.5

In this section we prove Proposition 4.5. We shall use freely the fact that (R1)-(R4) and that
the facts above them (except the sentence on adjoints) hold also when X is a Banach space.

Proposition 4.5 and its proof were sketched in Lemma 9.4.2 of Mikkola [19] and in somewhat
more detail in Theorem 3.10.11 of Staffans [23]. Because the result appears to be new, and it is
the key to our new results on properties (P1) and (P2), we include an expanded proof below. We
start with some auxiliary results.

Lemma 5.1. Let 2 and A be Co-semigroups on Banach spaces X and X with generators A
and A, respectively, and let X C X continuously.

(1) If A C A (that is, if Alpom(a) = A), then A =]y. ~
(2) If A =2AUx, then A is the part of A in X, that is, Dom(A) = {x € Dom(A) N X | Ax € X}
and A C A.

Proof. (1) Take o > w4, w7, and observe that (o] — A7 = (al - K)_l |x. Then with

Ag:i=a?(@l — A" —al and A, =l —A) ' —al,

we have Ay = Agylx, and e/ = (e“:“)|x, and so A(r) = limg_s 400 €/ = A(t)|x (see [23,
Theorem 3.7.3]).
(2) This follows from Theorem 3.14.14 of [23]. O

Lemma 5.2. Let X, Y and Z be Banach spaces. If X C Z continuously, Y C Z continuously and
X CY, then X CY continuously.

Proof. This is a simple consequence of the closed-graph theorem. O
The following is well known (see, for example, [19, Lemma A.4.4]):

Proposition 5.3. If A generates a strongly continuous semigroup on a Banach space X and
W > w4y, then there exists M < 0o such that for all real A > w,

[rd — A7 gy, <M and | — A)” M. )
B(X)

: ” B(X,Dom(A)) <
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Now we are ready to prove Proposition 4.5; we start from a special case:

Lemma 5.4. Proposition 4.5 holds under the additional restrictionsa =1, B >0, v, 6 € [0, 1].

Proof of Lemma 5.4. By the assumption, A € B(X1, Xg). Without loss of generality, we assume
that 8 < 1: indeed, if A € B(X1, Xg) with 8 > 1, then A € B(X1, X1).

lo

In this step we prove (S1) and make a few additional remarks.

By Propositions 2.4.1(ii) (and 2.1.4(i)) and 2.2.15 of Lurgrdi [18], A + A with domain

Dom(A + A) := Dom(A) generates an analytic semigroup 2{ on X. Hence X1 =X, and by

Lemma 5.2, the norms are equivalent. Obviously, A + A equals the part of A + A in X.

We also have X5 C X when 1 > § >y >0, and this can be seen as follows. For § =1 or
y = 0 this holds because X1 = X1 C X and Xs C X = Xo Ifl>6§>y >0, then this

follows from Propositions 2.2.15 and 1.2. 3 of [18] (X5 C (X, X1)5,00 C (X, X1)y,1 C X v)-

In this step we show that (w/ — A — A)"Y € B(X, X,) for y €[0, 1].

The case y = 0 is trivial and the case y =1 follows from 1°, and so we assume that y €

(0, 1). Fix some w > max{w, wa+4}. Then

(sI —A) I +A6I-A-2)7")
=6I—A—A)"", sep(A)NpA+A), (10)
and so from (6.4) of [21] (or Lemma 3.9.9 of Staffans [23]), it follows that
(wl —A— A7V —(wl — AT
00

= —Singfy) /S_y((w+s)1 —A) ' A(@+ )T — A~ A)_l ds. (n

F(s):=

But for s > 0 we have [|[A((w +s)] — A — A)™ ||B(X xp) < My, (apply Proposition 5.3 to
A + A and recall that X1 = X; and A € B(X1, Xg)), and 50

(@37 = 4 A+ = A= 2) 5004, <ML

Thus, the fol F(s)ds part of the integral in (11) converges in B(X, Xgy1), hence in
B(X, X, ). Therefore, we only need to show that floo [(wl — A)Y F(s)|lBx)ds < oo in order
to establish that floo F(s)ds € B(X, X,) and hence (wl — A — A)™Y € B(X, X, ). But this
follows by using the estimate (5), choosing any wg € (w4, w):

ds < o0.

(o8]
/s*V M1+ |s 4+ o — wol”F)

s 4+ @ — wo|
1

Here we have used the fact that
(@ =AY ((@+ 91— A) (@l —A)F = (@l — A P((0+1—A4)",
by Lemma 3.9.7(ii) of Staffans [23].
In this step we prove (S4) and (SS) i.e., we show that X), = X for y €10, 1].
By 2° we already know that Xy =(wl—A—-A)" rX = (wl —A-A)7XCX,.
By 1°, A= (A + A)|x, generates an analytic semigroup on X. From 1° it also follows that
X1 =X and Xg C Xg/, and since all the embeddings here are continuous by Lemma 5.2,
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we conclude that —A € B(X] , X/g/z) Now apply 2° to A and —A to observe that
(a)I—A)VeB(X y),andso X, = (wl — A)~ VXCX
By Lemma 5.2, the topologies also coincide.

4° By 3° and (R3), (S2) holds. ~

5° By (S2) and Lemma 5.1.5.1, the generator R, = (A + A)|>7y+1 of A|x, equals the part of
(A+ A)|x, in X, If y < B, then Ry, = (A + A)|x,,: indeed, then we have

Dom(R,)={xeXiNX, |[(A+AxeX,}={xeX||Ax e X,}
={xeXi | —-AxeX,} (rep(A)
=X1NXyp1=Xp41. (12)

This completes the proof. O

Proof of Proposition 4.5. We only need to prove (S1), (S2) and (S4), because then (S3) then
follows from (S2) (and (S1)) as in the proof of Lemma 5.4, and (S4) implies (S5), by the prop-
erty (R4).

We have divided the proof into several steps below.

1° In this step we show that (S1), (S2) and (S4) hold under the restriction that y € [ — 1, «].
We shall apply Lemma 5.4 to the space X,_;. Indeed, set Z := Xy 1, 8 :=B — (@ — 1).
Naturally, we define the interpolation spaces Zs (6 € R), with respect to 2 = 2| z. By (R4),
we have Z; = Xy 14, (t € R) and hence A € B(Zy, Zg').
Therefore, Lemma 5.4 applied to Z implies that (SI) holds and that the spaces Z; (7 € [0, 1])
(thatis, X5 (6 € [« — 1, «])) are invariant under QI|Z =9 etc., hence (S2) and (S4) hold.
(Note that, since (S1) is independent of y, in the other steps below we only need to establish
(S2) and (S4).)

2° Letk€{0,1,2,...} and @ + k < B (skip this step if no such k exists). In this step we assume
that (S1), (S2) and (S4) hold under the restriction that y € [@ — 1, « 4 k] and show that then
they hold under the restriction that y € [« + k, o + k + 1].
By the assumption (mainly (S4)) and (R2), wg,,, = wRr,_, = wa+a, Where Rs stands for the
generator of §l| Xtk
Set Z := Xg1k, B/ =B — (@ + k) to have Z; = Xoy1qs (t €R) and A € B(Z_4, Zp/),
hence A € B(Zy,Zg). Now Lemma 5.4 applied to Z implies that (S2) holds (because
Alx, = Qlx,,)lx,) and that (@ — Rapr)™ )Xo p = (@ — Rypg)~ @z =
Zy_(a+k) = Xy, . Combine this with (R4) (with X_; in place of X and 2 in place of ) and
with the assumption that (S4) holds with « + k in place of y, to conclude that (S4) holds (for
the current y).

3° If (S1), (S2) and (S4) hold when y € [a — 1, 8], then they hold also when y € [8, 8 + 1).
Indeed, this can be shown as in 2° (with r in place of & + k) by setting Z := X,, 8/ := 8 —r,
where r :=max{y — 1, — 1}, because r € [@ — 1, 8), A € B(Zy, Zg) and B > 0.

4° By induction, from the above we conclude that (S1)—(S5) hold for y,8 € [ — 1, 8 + 1) and
that it only remains to establish (S2) and (S4) in the case that y = 8 + 1. For this purpose,
we first need an auxiliary result, 4.1°.
4.1° In this auxiliary step we only assume that A € B(Xy, X), 2 <1, 8=0, y =1 and we

only prove certain results needed in 4.2° to complete the proof.
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By Proposition 2.2.15 and 2.4.1(i) of Lunardi [18], (A + A)|x, is sectorial and gener-
ates an analytic semigroup on X (if @ < 0, use the fact that then A € B(Xo, X)). By
Lemma 5.1.1, that semigroup equals the restriction Qll x of A= Ql| X, to X. (By 1°,
2A exists.)
Therefore, X is invariant under §l| x, hence also under 5[, and 5(| x, 1s analytic. More-
over, (w — )1 X = X (0 > ws), where R := (A + A)lx,.

4.2° Set Z := Xpg, so that Z; = Xg, (t € R) and apply 4.1° with A € B(Z,_g, Z) (note
that Zy—g—1 = Xq—1). It follows that (S2) holds and that (0 — (A + A)|x,,, )_1X/3 =
Xp+1 (0 > ws), where § := (A + A)|Xﬁ+1. Combine this with (R4) and the already
proved case of (S4) to obtain (S4) for y = 8 + 1, as in 2° (for v > max{wata, ws},
but then wa4+ 4 = wg, by (R3)).

This completes the proof. O
6. Examples

Example 1 (Classical parabolic equations on X = L,($2)). In Lasiecka and Triggiani [17], the
following example was considered. Given a smooth bounded domain 2 € R, let A be the real-
ization in L;(£2) of an elliptic operator of order 2d, subject to appropriate boundary conditions
(see [17, Chapter 3, Appendix 3A]). A generates a strongly continuous analytic semigroup on
L>(£2), and also Dom(A*) C H¥"(§2) (Sobolev space). The following result was obtained in
[17] (see pp. 128—-129): Q is Hilbert—-Schmidt on X if 4d > N.

On the other hand, when U = C™, applying Theorem 4.6 we obtain that the operator Q is
nuclear, and hence it is also Hilbert—Schmidt (for all N and d).

Using the result mentioned above from [17], it can also be shown that if (wl — A)™% is
Hilbert—Schmidt on X for some « € (0, 1) the gain operator B*Q is Hilbert-Schmidt from X to
C"ifl4+ag>a> LY i

On the other hand, in the case when U = C™, the result in Theorem 4.6 says that the gain
operator B*Q is Hilbert-Schmidt from X, to C" for all y > —% provided that op > —%.

Example 2 (Model of a damped flexible beam). In Bontsema [3], several models of flexible
beams were considered. They were based on one-dimensional Euler—Bernoulli beam equations
with free ends and various types of damping structures. Here we consider the so-called viscous
damping model, with an external free force and an external moment M (¢) acting at the center of
the beam. (See Fig. 1.) The equations describing the displacement w are given by:

w(z,t) F(t)
4oy
0 = o
ods
M)
0

Fig. 1. Flexible beam.
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2w 85 84
,oa—z(x,t)—l—E*Ia 7 (x, t)+E1 (x t) = x e[—1,1]1\ {0},

83 83 4 4w
EI—(O+ 1) — EI—(O )+ E*T 0+, 1) — E*I (0—,1) = F(1),
dtdx3 drox3
82 32 Aw Aw
0+,t)+ EI 0— E*I 0+,1)+ E*I 0—,1)=M(),
82(+ )+ 2( 1) — 8t8x2(+ )+ 8ta)ﬂ( ) @)
2 2 3 3

07w 0°w 07w 0 w

—(—=1,1)=0, —(1,1) =0, —(—=1,1)=0, —(1,1) =0,

8x2( ) axz( ) 3x3( ) 8x3( )
where

w(x,t) the vertical displacement of the beam at position x and at time ¢,

a the cross sectional area of the beam,

P the mass density of the beam,

E the Young’s modulus of elasticity,

E* a constant reflecting the stress-strain relation in the beam,
1 the moment of inertia of the beam per cross section,

F the external force acting at the center of the beam,

M the external moment acting at the center of the beam.

The external force F' and the moment M are taken as the two inputs: u(¢t) = F(¢), u2(t) = M(t),
and the measurements of the displacement and the angle of rotation at the center of the beam are
taken as the two outputs: y;(r) = w(0, 1), y2(t) = dw (0, 7). This model can be thought of as
an idealization of a very large flexible space structure with a central hub at x = 0, where the

actuators and sensors are located Let o : % and o : E L and introduce the operator Ao,
defined as follows: Ag = d_4’ with
2 3 .
%, %, % are absolutely continuous,

Dom(Ag)=1{ f e Ly(—1,1)

@I e Ly(-1, 1), and
CLn=0 CLay=0, LL1=0 £L1)=0
As shown in [3], Ao is densely defined, self-adjoint and positive. We introduce the Hilbert space
1
X = Dom(Aé) @ L(—1, 1), with the inner product defined as follows:
x| ]\ 3 3
<|:x2] 5 |:y2i|>x - <)C], )’1>L2 +052(A3)C], A(%)’I)Lz + <X2, y2>L2

w(-,1)
;)m ( )

lated as an abstract differential equation on X: x(t) = Ax(t), where

x| X2 RS
A |:x2] N |:—012A0(x1 + z—;xz)] . Dom(4)= H:xz} <X

A is a Riesz spectral operator and it generates a strongly continuous semigroup on X (see [3]).

By introducing the state vector x(t) = [ ] the uncontrolled beam equation can be formu-

1
x2 € Dom(Af), _
X1+ %xz € Dom(Ap)

Spectrum of A. The spectrum of the operator A is 0 (A) = 0.(A) Uo,(A), where
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(0%)
oc(A) = {——},
ol
—aipy £ /aipl — 4oyt
0p(A) ={hm |m e Z\{0}}, Ai142=0, Ay = ,n =3,

2

where u,s are the real, positive solutions of (sinh w,)(cos ) + (—1)"(cosh w,)(sin u,) = 0.
The point spectrum of the operator A lies on a circle with center (—g—f, 0) and radius Z—f, or it

lies on the real line, with limit points —oo and — z—f

Eigenvectors. The eigenvalue O of the operator A has algebraic multiplicity 4, with two eigen-
vectors and two generalized eigenvectors given respectively by

_|lwu | v _ 0 _ 0
(pl - 0 ’ (P—l - O ’ §02 - Ul ) §0—2 - U2 ’

where v (x) = T and vy (x) = \/Ex The eigenvectors of A corresponding to the eigenvalues
Ans A—p for n > 3 are given as follows:

— Un
nvn , O—n =1N-n A nun |

where
) cosh (,, + cos
vp(x) =
! V/ (cosh 14,)? + (cos fin)?
cosh(u,x) — cos(u,x)
X [ cos(upx) + cos wy, for odd n,
cosh u, + cos w,x
@) sinh p,, 4 sin w,
vp(x) =
T sinh )? — (sin )2
. . sinh(ppx) — sin(ppx)
X | sin(,x) + sin p, — - for even n,
sinh (, + sin (,x
and n4, = L

Vot a2

The eigenvalue O of the operator A* has eigenvectors f; = ¢1, f—1 = ¢—1, and two gen-
eralized eigenvectors f> = ¢, f_2 = ¢_». The eigenvectors f, of A* corresponding to the
eigenvalue A, for |n| > 3 are given as follows:

Un Un
fu= 1+azu , fon= 1+a2u .
— " )\n Un — " K—n Un

052# (xzu
Y, Y—, are defined by ¢, = Trolx fn, n| > 1. For* m,ne? \ {0}, (¥, ¥n) = Smn» and so
(Ym)mez\{oy 1s a biorthogonal sequence 10 (@n)nez)\{0}-

Spectral decomposition. A is a Riesz spectral operator with the spectral decomposition

Ax = (x, ¥2)o1 + (5, Y-2)o 1 + Y _ (%, Yndpn + D (X, Y0P,

n=3 n=3

4 Itm,neZ\,then 8;y, =0ifm#n,and 1 if m =n.
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for x in Dom(A) ={x € X | ZneZ\{O} A 21X, W) |2 < +o0}. The resolvent of A is given by

1
(sl—A)*‘x=—<x,w1>¢1+s (x, ¥2)p1 + — <x V)@

—_—

1
o valea+ S Ya)ea + o ()Hﬁz)

o)

1
+,§S—* X, ) ¢n+2 A_n 1) P-n, (13)

for all s € p(A). The open right half plane C; = {s € C | Re(s) > 0} is contained in p(A) and
w4 = 0. From (13), we obtain that there exists M < +o00 such that for all s € C with Re(s) > 1,

(sl — A1 < Msupnez\{o} T A 1O €0, ) is such that sin® = 113/2% , then we have

(s — A~ < “"50 for all s € C with Re(s) > 1. So A generates an analytic semigroup on X.
The semigroup 1s glven as follows:

A x = (x, Y1)@1 +t{x, Y2)o1 + (x, ¥2)@2
+ Yoo HH{x, Y2)o—1 + (x, Y_2)p—2

o0 o0
+ ) e Yo + Y X Y )
n=3

n=3
In Proposition 4.4 (the result quoted from [17]), the following condition is given for Q to be a
Hilbert—Schmidt operator on X: (wl — A)™% is Hilbert—Schmidt on X, a € (0, 1), ® > w4.
We show that for our present example, this condition is never met. By using properties of

analytic semigroups (for instance, Lemma 9.4.2.1 of Mikkola [19]), it follows that for w > wx
and o € (0, 1),

_ 1 o 1
(wl —A) %x = E(x, Yi)er + W(L Y2)e1 + E(x’ Vo)

1 1 1
Yoo + a+1<xw2><p1+ (x, Y-2) -

+Z(w ) (X, ¥n) ¢n+Z o n)" X, Yn)@—n

n=3
If (wl — A)™¢ is Hilbert—Schmidt, then since (¢,),>3 is an orthonormal sequence, it follows
that 3 0% 5 (@l — A)~%@,||? < 400, and in particular,
lim |[(@] — A)%@,| =0, thatis, lim |(@ —A,)*| = +oo. (14)
n— 00 n— 00

But for positive n, u,, = O(n), and so |1, | = O(1). Consequently, |(w — A,)*| = O(1), and so
(14) does not hold. So (wI — A)~ is not Hilbert—Schmidt.

Finally, we show that our main Theorem 4.6 does apply in this case. First we introduce the
input and output operators B and C below.

B and C. The output operator C € B(X, C?) is defined as follows: C[ ] = [ii Eg; |- Formally,

we can think of the input operator as the following distribution operator:

)=zl Sl
B el ’ )
uz pa |8 —8y || uz
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where 8y denotes the Dirac distribution with support in 0, and &, is its derivative. The dual of B
is given by

B X1 | = 1 [ x1(0)
x2 | pa [ x1(0) |
To see that B € B(C?, Xo,) with appropriate ap, we use Bu = Znez\{o} (u, bp)c2n, with
b, = B*{r,,, where

Lo -0 =9 _ 1w
b‘l_[o] " [v/z(o)] bl_[o] = [vi(O)],
LR (Lo 0]
by, = pal fu, on)x ( 0‘2#3 U,;(O) , n>=3,

3 4
o Aon <1+azfn)[v7(0)] N3
palf—n, o—n)x oy, v, (0)
We have the following estimates for large positive values of n: |A,| = O(1) and [A_, | = o),
and this yields the following estimates for by, :

0(%5), n>0, nodd,

O(%), n >0, neven,
0(), n<0, nodd,
O(n), n<Q0, neven.

bnllc2 =

Using the above, it can be seen that (I — A)*8 B € B(C?, X) for ap < —%. Hence assumptions
(A1)—(A3) from Theorem 4.6 hold. In Bontsema [3], it was shown that the pair (A, C) is expo-
nentially detectable if g—? > 0, and so it follows that (A4) is also satisfied.

Hence under the finite cost condition, Theorem 4.6 applies, and we obtain that Q €
S1(X,, (X,)*) forall y > —%. In particular, with y = 0, we obtain that Q € B(X) is nuclear.
Furthermore, B*Q is a Hilbert-Schmidt operator from X, to C" for all y > —%. This provides
the theoretical justification for the LQG control design in [20].
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