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Abstract. Let M+ denote the Banach algebra of all complex Borel measures
with support contained in [0, +∞), with the usual addition and scalar multi-
plication, and with convolution ∗, and the norm being the total variation of
µ. We show that the maximal ideal space X(M+) of M+, equipped with the
Gelfand topology, is contractible as a topological space. In particular, it fol-
lows that every left invertible matrix with entries from M+ can be completed
to an invertible matrix, that is, the following statements are equivalent for
f ∈ (M+)n×k, k < n:

1. There exists a matrix g ∈Mk×n
+ such that g ∗ f = Ik.

2. There exist matrices F, G ∈Mn×n
+ such that G ∗F = In and Fij = fij ,

1 ≤ i ≤ n, 1 ≤ j ≤ k.
We also show a similar result for all subalgebras of M+ satisfying a mild
condition.
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1. Introduction

The aim of this paper is to show that the maximal ideal space X(M+) of the Ba-
nach algebra M+ of all complex Borel measures with support in [0, +∞) (defined
below), is contractible. We also apply this result to the problem of completing a
left invertible matrix with entries in M+ to an invertible matrix over M+.

Definition 1.1. Let M+ denote the set of all complex Borel measures with support
contained in [0,+∞). Then M+ is a complex vector space with addition and
scalar multiplication defined as usual, and it becomes a complex algebra if we take
convolution of measures as the operation of multiplication. With the norm of µ
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taken as the total variation of µ, M+ is a Banach algebra. Recall that the total
variation ‖µ‖ of µ is defined by

‖µ‖ = sup
∞∑

n=1

|µ(En)|,

the supremum being taken over all partitions of [0,+∞), that is over all countable
collections (En)n∈N of Borel subsets of [0, +∞) such that En

⋂
Em = ∅ whenever

m 6= n and [0,+∞) =
⋃

n∈NEn. The identity with respect to convolution in M+

is the Dirac measure δ, given by

δ(E) =
{

1 if 0 ∈ E,
0 if 0 6∈ E.

The above Banach algebra is classical, and we refer the reader to the book
[1, §4, p.141-150] for a detailed exposition.

Notation 1.2. Let X(M+) denote the maximal ideal space of the Banach algebra
M+, that is the set of all nonzero complex homomorphisms from M+ to C. We
equip X(M+) with the Gelfand topology, that is, the weak-∗ topology induced
from the dual space L(M+;C) of the Banach space M+.

We will show that X(M+) is contractible. We recall the notion of contractibil-
ity below:

Definition 1.3. A topological space X is said to be contractible if there exists a
continuous map H : X × [0, 1] → X and an x0 ∈ X such that for all x ∈ X,
H(x, 0) = x and H(x, 1) = x0.

Our main result is the following:

Theorem 1.4. X(M+) is contractible.

In particular, by a result proved by V. Ya. Lin, the above implies that the
ringM+ is Hermite. Before stating this result, we recall the definition of a Hermite
ring:

Definition 1.5. Let R be a ring with an identity element denoted by 1. Let us
denote by Ik ∈ Rk×k the diagonal matrix of size k×k with all the diagonal entries
equal to the identity element 1. A matrix f ∈ Rn×k is called left invertible if there
exists a matrix g ∈ Rk×n such that gf = Ik.

The ring R is called a Hermite ring if for all k, n ∈ N with k < n and all
left invertible matrices f ∈ Rn×k, there exist matrices F, G ∈ Rn×n such that
GF = In and Fij = fij for all 1 ≤ i ≤ n and 1 ≤ j ≤ k.

We now recall Lin’s result; [2, Theorem 3, p. 127]:

Proposition 1.6. Let R be a commutative Banach algebra with identity. If the
maximal ideal space X(R) (equipped with the Gelfand topology) of the Banach
algebra R is contractible, then R is a Hermite ring.
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Using the above result, our main result given in Theorem 1.4 then implies
the following.

Corollary 1.7. M+ is a Hermite ring, that is, the following statements are equiv-
alent for f ∈ (M+)n×k, k < n:

1. There exists a matrix g ∈Mk×n
+ such that g ∗ f = Ik.

2. There exist matrices F, G ∈ Mn×n
+ such that G ∗ F = In and Fij = fij,

1 ≤ i ≤ n, 1 ≤ j ≤ k.

(In the above, ∗ denotes convolution, and Fij , fij denote the entries in the
ith row and jth column, of the matrices F and f , respectively.)

1.1. Relevance of the Hermiteness of M+ in control theory

The motivation for proving that M+ is a Hermite ring arises from control theory,
where it plays an important role in the problem of stabilization of linear systems.
Let M̂+ denote the integral domain of Laplace transforms of elements of M+.
Then M̂+ is a class of “stable” transfer functions, in the sense that if the plant
transfer function g = µ̂ belongs to M̂+, then nice inputs are mapped to nice
outputs in a continuous manner: if the initial state of the system is 0, and the input
u ∈ Lp(0,+∞), where 1 ≤ p ≤ +∞, then the corresponding output1 y = µ ∗ u is
in Lp(0,+∞) (here µ is the inverse Laplace transform of g). Moreover,

sup
0 6=u∈Lp(0,+∞)

‖y‖p

‖u‖p
≤ ‖g‖.

In fact one has equality above if p = 1 or p = +∞.
The result that M+ is Hermite implies that if a system with a transfer func-

tion G in the field of fractions of M̂+ has a right (or left) coprime factorization,
then G has a doubly coprime factorization, and the standard Youla parameteriza-
tion yields all stabilizing controllers for G. For further details on the relevance of
the Hermite property in control theory, see [5, Theorem 66, p.347].

Unfortunately, a nice analytic test for checking right invertibility is not avail-
able; see [1, Theorem 4.18.5, p.149]. This has been the reason that in control
theory, one uses the subalgebra A of M+ consisting of those measures from M+

for which the non-atomic singular part is 0, for which an analytic condition for
left invertibility is indeed available [1, Theorem 4.18.6]. The Hermite property of
A, which was mentioned as an open problem in Vidyasagar’s book [5, p. 360], was
proved in [4]. The proof of the Hermite property of M+ we give here is inspired
from the calculation done in [4].

In Section 3, we will give the proof of Theorem 1.4, but before doing that, in
Section 2, we first prove a few technical results which will be used in the sequel.

1equivalently ŷ(s) = g(s)û(s), for all s in some right half plane in C
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2. Preliminaries

In this section, we prove a few auxiliary facts, which will be needed in order to
prove our main result.

Definition 2.1. If µ ∈M+ and θ ∈ [0, 1), then we define the complex Borel measure
µθ as follows:

µθ(E) :=
∫

E

(1− θ)tdµ(t),

where E is a Borel subset of [0, +∞). If θ = 1, then we define

µθ = µ1 := µ({0})δ.

It can be seen that µθ ∈ M+ and that ‖µθ‖ ≤ ‖µ‖. Also δθ = δ for all
θ ∈ [0, 1].

Proposition 2.2. If µ, ν ∈M+, then for all θ ∈ [0, 1],

(µ ∗ ν)θ = µθ ∗ νθ.

Proof. If E is a Borel subset of [0, +∞), then

(µ ∗ ν)θ(E) =
∫

E

(1− θ)td(µ ∗ ν)(t) =
∫∫

σ+τ∈E
σ,τ∈[0,+∞)

(1− θ)σ+τdµ(σ)dν(τ).

On the other hand,

(µθ ∗ νθ)(E) =
∫

τ∈[0,+∞)

µθ(E − τ)dνθ(τ)

=
∫

τ∈[0,+∞)




∫
σ∈E−τ

σ∈[0,+∞)

(1− θ)σdµ(σ)


 dνθ(τ)

=
∫∫

σ+τ∈E
σ,τ∈[0,+∞)

(1− θ)σ+τdµ(σ)dν(τ).

This completes the proof. ¤

The following result says that for a fixed µ, the map θ 7→ µθ : [0, 1] →M+

is continuous.

Proposition 2.3. If µ ∈M+ and θ0 ∈ [0, 1], then

lim
θ→θ0

µθ = µθ0

in M+.
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Proof. Consider first the case when θ0 ∈ [0, 1). Given an ε > 0, first choose an
R > 0 large enough so that |µ|((R, +∞)) < ε. Let θ ∈ [0, 1). There exists a Borel
measurable function w such that d(µθ − µθ0)(t) = e−iw(t)d|µθ − µθ0 |(t). Thus

‖µθ − µθ0‖ = |µθ − µθ0 |([0,+∞)) =
∫

[0,+∞)

eiw(t)d(µθ − µθ0)(t)

=

∣∣∣∣∣
∫

[0,+∞)

eiw(t)d(µθ − µθ0)(t)

∣∣∣∣∣

=

∣∣∣∣∣
∫

[0,+∞)

eiw(t)

(
(1− θ)t − (1− θ0)t

)
dµ(t)

∣∣∣∣∣ .

Hence

‖µθ − µθ0‖ ≤
∣∣∣∣∣
∫

[0,R]

eiw(t)

(
(1− θ)t − (1− θ0)t

)
dµ(t)

∣∣∣∣∣

+

∣∣∣∣∣
∫

(R,+∞)

eiw(t)

(
(1− θ)t − (1− θ0)t

)
dµ(t)

∣∣∣∣∣

≤ max
t∈[0,R]

∣∣∣∣(1− θ)t − (1− θ0)t

∣∣∣∣|µ|([0, R]) + 2|µ|((R, +∞))

≤ max
t∈[0,R]

∣∣∣∣(1− θ)t − (1− θ0)t

∣∣∣∣|µ|([0,+∞)) + 2ε.

But by the mean value theorem applied to the function θ 7→ (1− θ)t,

(1− θ)t − (1− θ0)t = (θ − θ0)t(1− c)t−1 = (θ − θ0)t
(1− c)t

1− c
,

for some c (depending on t, θ and θ0) in between θ and θ0. Since c lies between θ
and θ0, and since both θ and θ0 lie in [0, 1), and t ∈ [0, R], it follows that (1−c)t ≤ 1
and

1
1− c

≤ max
{

1
1− θ

,
1

1− θ0

}
.

Thus using the above and the fact that |t| ≤ R,

max
t∈[0,R]

∣∣∣∣(1− θ)t − (1− θ0)t

∣∣∣∣ = max
t∈[0,R]

|θ − θ0||t||(1− c)t| 1
|1− c|

≤ |θ − θ0| ·R · 1 ·max
{

1
1− θ

,
1

1− θ0

}
.
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Hence we have

lim sup
θ→θ0

(
max

t∈[0,R]

∣∣∣∣(1− θ)t − (1− θ0)t

∣∣∣∣|µ|([0,+∞))
)

≤ lim sup
θ→θ0

(
|θ − θ0| ·R ·max

{
1

1− θ
,

1
1− θ0

}
· |µ|([0, +∞))

)

= 0 ·R · 1
1− θ0

|µ|([0, +∞))

= 0.

Consequently,
lim sup

θ→θ0

‖µθ − µθ0‖ ≤ 2ε.

But the choice of ε > 0 was arbitrary, and so

lim sup
θ→θ0

‖µθ − µθ0‖ = 0.

Since ‖µθ − µθ0‖ ≥ 0, we can conclude that

lim
θ→θ0

‖µθ − µθ0‖ = 0.

Now let us consider the case when θ0 = 1. Let us assume for the moment
that µ({0}) = 0. We will show that

lim
θ→1

µθ = 0

in M+. Given an ε > 0, first choose a r > 0 small enough so that |µ|([0, r])) < ε.
(This is possible, since µ({0}) = 0.) There exists a Borel measurable function w
such that dµθ(t) = e−iw(t)d|µθ|(t). Thus

‖µθ‖ = |µθ|([0, +∞)) =
∫

[0,+∞)

eiw(t)dµθ(t)

=
∫

[0,+∞)

eiw(t)(1− θ)tdµ(t) =

∣∣∣∣∣
∫

[0,+∞)

eiw(t)(1− θ)tdµ(t)

∣∣∣∣∣

≤
∣∣∣∣∣
∫

[0,r]

eiw(t)(1− θ)tdµ(t)

∣∣∣∣∣ +

∣∣∣∣∣
∫

(r,+∞)

eiw(t)(1− θ)tdµ(t)

∣∣∣∣∣
≤ |µ|([0, r]) + (1− θ)r|µ|((r,+∞))
≤ ε + (1− θ)r|µ|([0, +∞)).

Consequently,
lim sup

θ→1
‖µθ − µθ0‖ ≤ ε.

But the choice of ε > 0 was arbitrary, and so

lim sup
θ→1

‖µθ‖ = 0.
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Since ‖µθ‖ ≥ 0, we can conclude that

lim
θ→1

‖µθ‖ = 0.

Finally, if µ({0}) 6= 0, then define

ν := µ− µ({0})δ ∈M+.

It is clear that ν({0}) = 0 and νθ = µθ − µ({0})δ. Since

lim
θ→1

νθ = 0,

we obtain
lim
θ→1

µθ = µ({0})δ
in M+. ¤

3. Contractibility of X(M+)

In this section we will prove our main result.

Proof of Theorem 1.4. Define ϕ+∞ : M+ → C by ϕ+∞(µ) = µ({0}), µ ∈ X(M+).
It can be checked that ϕ+∞ ∈ X(M+); see [1, Theorem 4.18.1, p.147]. We will
construct a continuous map H : X(M+)× [0, 1] → X(M+) such that

for all ϕ ∈ X(M+), H(ϕ, 0) = ϕ, and
for all ϕ ∈ X(M+), H(ϕ, 1) = ϕ+∞.

The map H is defined as follows:

(H(ϕ, θ))(µ) = ϕ(µθ), µ ∈M+, θ ∈ [0, 1]. (1)

We show that H is well-defined. From the definition, H(ϕ, 1) = ϕ+∞ ∈ X(M+) for
all ϕ ∈ X(M+). If θ ∈ [0, 1), then the linearity of H(ϕ, θ) : M+ → C is obvious.
Continuity of H(ϕ, θ) follows from the fact that ϕ is continuous and ‖µθ‖ ≤ ‖µ‖.
That H(ϕ, θ) is multiplicative is a consequence of Proposition 2.2, and the fact
that ϕ respects multiplication. Finally (H(ϕ, θ))(δ) = ϕ(δθ) = ϕ(δ) = 1.

That H(·, 0) is the identity map and H(·, 1) is a constant map is obvious.
Finally, we show below that H is continuous. Since X(M+) is equipped with

the Gelfand topology, we just have to prove that for every convergent net (ϕi, θi)i∈I

with limit (ϕ, θ) in X(M+)×[0, 1], there holds that (H(ϕi, θi))(µ) → (H(ϕ, θ))(µ).
We have

|(H(ϕi, θi))(µ)− (H(ϕ, θ))(µ)| = |ϕi(µθi)− ϕi(µθ) + ϕi(µθ)− ϕ(µθ)|
≤ |ϕi(µθi)− ϕi(µθ)|+ |ϕi(µθ)− ϕ(µθ)|
= |ϕi(µθi − µθ)|+ |(ϕi − ϕ)(µθ)|
≤ ‖ϕi‖ · ‖µθi − µθ‖+ |(ϕi − ϕ)(µθ)|
≤ 1 · ‖µθi − µθ‖+ |(ϕi − ϕ)(µθ)| → 0.

This completes the proof. ¤
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In [4], we had used the explicit description of the maximal ideal space X(A)
of the algebra A (of those complex Borel measures that do not have a singular
non-atomic part) in order to prove that X(A) is contractible. Such an explicit de-
scription of the maximal ideal space X(M+) of M+ does not seem to be available
explicitly in the literature on the subject.

Our definition of the map H is based on the following consideration, which can
be thought of as a generalization of the Riemann-Lebesgue Lemma for functions
fa ∈ L1(0, +∞) (which says that the limit as s → +∞ of the Laplace transform
of fa is 0):

Theorem 3.1. If µ ∈M+, then

lim
s→+∞

∫ +∞

0

e−stdµ(t) = µ({0}).

The set X(M+) contains the half plane

C≥0 := {s ∈ C | Re(s) ≥ 0}
in the sense that each s ∈ C≥0, gives rise to the corresponding complex homomor-
phism ϕs : M+ → C, given simply by point evaluation of the Laplace transform
of µ at s:

µ 7→ ϕs(µ) =
∫ +∞

0

e−stdµ(t), µ ∈M+.

If we imagine s tending to +∞ along the real axis we see, in light of the Theorem 3.1
stated above, that ϕs starts looking more and more like ϕ+∞. So we may define

H(ϕs, θ) = ϕs−log(1−θ),

which would suggest that at least the part C≥0 of X(M+) is contractible to ϕ+∞.
But we see that we can view the action of H(ϕs, θ) defined above as follows:

(H(ϕs, θ))(µ) = ϕs−log(1−θ)(µ)

=
∫ +∞

0

e−(s−log(1−θ))tdµ(t)

=
∫ +∞

0

e−st(1− θ)tdµ(t)

= ϕs(ν),

where ν is the measure such that dν(t) = (1− θ)tdµ(t). This motivates the defini-
tion of H given in (1).

4. Hermite-ness of some subalgebras of M+

The proof of Theorem 1.4 shows that in fact it works for all subalgebras R of M+

which are closed under the operation µ 7→ µθ, θ ∈ [0, 1].
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Theorem 4.1. Suppose that R is a Banach subalgebra of M+, such that it has the
property:

(P) For all µ ∈ R and for all θ ∈ [0, 1], µθ ∈ R.

Then the maximal ideal space X(R) equipped with the Gelfand topology is con-
tractible. In particular, the ring R is Hermite, that is, the following statements are
equivalent for f ∈ Rn×k, k < n:

1. There exists a matrix g ∈ Rk×n such that g ∗ f = Ik.
2. There exist matrices F, G ∈ Rn×n such that G ∗ F = In and Fij = fij,

1 ≤ i ≤ n, 1 ≤ j ≤ k.

As specific examples of R, we consider the following:

(a) Consider the Wiener-Laplace algebra W+ of the half plane, of all functions
defined in the half plane C≥0 that differ from the Laplace transform of an
L1(0, +∞) function by a constant. The Wiener-Laplace algebra W+ is a
Banach algebra with pointwise operations and the norm

‖f̂ + α‖W+ = ‖f̂‖L1 + |α|, f ∈ L1(0, +∞), α ∈ C.

Then W+ is precisely the set of Laplace transforms of elements of the subal-
gebra of M+ consisting of all complex Borel measures of the type µa + αδ,
where µa is absolutely continuous (with respect to the Lebesgue measure)
and α ∈ C. This subalgebra of M+ has the property (P) demanded in the
statement of Theorem 4.1, and so the maximal ideal space X(W+) is con-
tractible.

(b) Also we recover the main result in [4], but this time without recourse to the
explicit description of the maximal ideal space of A. Indeed, the subalgebra A
of M+, consisting of all complex Borel measures that do not have a singular
non-atomic part, also possesses the property (P).

(c) Finally, we consider the algebra almost-periodic Wiener algebra APW+, of
sums

f(s) =
∞∑

k=1

fke−stk , s ∈ C≥0

where t0 = 0 < t1, t2, t3, . . . and
∞∑

k=0

|fk| < +∞.

This algebra is isometrically isomorphic to the subalgebra of M+ of
atomic measures µ. Since this subalgebra has the property (P), it follows
that APW+ is a Hermite ring.

In each of the above algebras W+, A or APW+, the corona theorem holds, that
is, there is an analytic condition which is equivalent to left-invertibility. (The
proofs/references of the corona theorems for W+, A and APW+ can be found
for example in [3, Theorem 4.3].) Combining the Hermite-ness with the corona
theorem, we obtain the following:
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Corollary 4.2. Let R be any one of the algebras W+, A or APW+. Then the
following statements are equivalent for f ∈ Rn×k, k < n:

1. There exists a matrix g ∈ Rk×n such that gf = Ik.
2. There exist matrices F,G ∈ Rn×n such that GF = In and Fij = fij for all

1 ≤ i ≤ n, 1 ≤ j ≤ k.
3. There exists a δ > 0 such that for all s ∈ C≥0, f(s)∗f(s) ≥ δ2I.
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