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Inertia theorems for operator Lyapunov inequalities
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Abstract

We study operator Lyapunov inequalities and equations for which the in1nitesimal generator is not necessarily stable, but
it satis1es the spectrum decomposition assumption and it has at most 1nitely many unstable eigenvalues. Moreover, the input
or output operators are not necessarily bounded, but are admissible. We prove an inertia result: under mild conditions, we
show that the number of unstable eigenvalues of the generator is less than or equal to the number of negative eigenvalues
of the self-adjoint solution of the operator Lyapunov inequality. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction and the main result

The inertia of a square matrix A ∈ Cn×n is the triple
(�(A); �(A); �(A)), where

�(A) = number of eigenvalues of A in C−;

�(A) = number of eigenvalues of A on the

imaginary axis;

�(A) = number of eigenvalues of A in C+;

where C− = {z ∈ C |Re(z) ¡ 0} and C+ = {z ∈
C |Re(z) ¿ 0}. Inertia theorems for matrices concern
relations between the inertia of Hermitian solutions Q
of the Lyapunov equation

A∗Q + QA = −C∗C (1)
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and the matrix A. The fundamental result was by Os-
trowski and Schneider [12], and later contributions can
be found in [15,2]. We shall generalize the following
known theorem (see [7, Theorem 3:3:2, p. 1126]):

Theorem 1.1. Given the matrices A ∈ Cn×n and C ∈
Cn×p and a Hermitian solution Q to (1); if �(Q)=0;
then �(A)6�(Q) and �(A)6�(Q).

There is little known about such inertia theorems
for operator Lyapunov equations, and since the oper-
ators may have in1nitely many eigenvalues, it is clear
that one can only hope for a partial generalization of
the matrix results. In [3,4], they consider the case of
A a bounded linear operator assuming an exact con-
trollability condition on �(A; B;−).

We now de1ne the notion of the algebraic multi-
plicity of an isolated eigenvalue of a closed operator
on a Hilbert space.

Let �0 be an eigenvalue of a closed linear operator
A on a Hilbert space H. Suppose further that this
eigenvalue is isolated; that is, there exists an open set
O containing �0 such that �(A) ∩ O = {�0}. We say
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that �0 has order �0 if for every x ∈ H,

lim
�→�0

(� − �0)�0 (�I − A)−1x

exists, but there exists a x0 such that

lim
�→�0

(� − �0)�0−1(�I − A)−1x0

does not. If for every � ∈ N there exists a x� ∈ H
such that the limit

lim
�→�0

(� − �0)�(�I − A)−1x�

does not exist, then the order of �0 is in1nity. For an
isolated eigenvalue �0 of 1nite order �0, its algebraic
multiplicity is de1ned as dim(ker(�0I − A)�0 ).

For example, the eigenvalue 1 of the operator

A =
[

1 1
0 1

]
∈ L(C2)

has order 2. On the other hand, any isolated eigenvalue
of a self-adjoint operator Q ∈ L(H) has order 1.

Next, we de1ne �(A) for a closed operator A on a
Hilbert space H.

Let A be a closed linear operator on a Hilbert space
(H; 〈·; ·〉) and let �(A) ∩ C+ be a bounded set which
is isolated from �(A) \ (�(A) ∩ C+) (by which we
mean that it is separated from �(A) \ (�(A) ∩ C+) in
such a way that a simple, closed, recti1able curve �
can be drawn so as to enclose an open set containing
�(A) ∩ C+ in its interior and �(A) \ (�(A) ∩ C+) in
its exterior). Let � denote the spectral projection on
�(A) ∩ C+. Then H = H+ uH−, where

H+:=�H;

H−:=(I − �)H (2)

and u denotes the direct sum of the subspaces H+

and H− (see for example, [10, Theorem 6:17, p.
178]). dim(H+) ¡∞ iH �(A) ∩ C+ consists of a 1-
nite system of eigenvalues (see [6, Lemma 2:5:7, pp.
71–72], [10, Problem 6:18, p. 182]). In this case, the
total algebraic multiplicity of the eigenvalues in C+,
which we denote by �(A), is equal to dim(H+).

We now state our main result about operator Lya-
punov inequalities.

Theorem 1.2. Assume that
1. A is a densely de;ned closed linear operator on

a Hilbert space (H; 〈·; ·〉);
2. �(A) ∩ C+ is a bounded set which is isolated

from �(A) \ (�(A) ∩ C+);
3. dim(H+) ¡∞ (with the notation introduced in

(2));

4. Q inL(H) is a self-adjoint operator such that
0 �∈ �p(Q); �(Q) ∩ C− = �p(Q) ∩ C−; �(Q) ¡∞;
and Q satis;es the Lyapunov inequality

〈Qx; Ax〉 + 〈QAx; x〉60 ∀x ∈ D(A): (3)

Then �(A)6�(Q).

The paper is organized as follows. In Section 2, we
provide the mathematical background and the proof
of our main theorem. In Section 3, we give a few
corollaries of our main theorem for operator Lyapunov
equations with admissible observation operators.

2. Preliminaries on inde�nite inner products and
proof of the main result

The proof of our main theorem relies on the fact
that any self-adjoint solution of the operator Lyapunov
inequality gives rise to a natural inde1nite inner prod-
uct space. So, we will 1rst state a few preliminaries
and results about inde1nite inner product spaces which
will be used in the proof. For more details, see [1].

Let V be a vector space over C. An inde1nite in-
ner product [·; ·] on V is a map [·; ·] :V × V → C
satisfying:

1. [�x1 + �x2; y] = �[x1; y] + �[x2; y], ∀x1; x2; y ∈ V
and ∀�; � ∈ C.

2. [x; y] = [y; x] for all x; y ∈ V.

A vector x ∈ V is said to be positive, negative or
neutral depending on whether [x; x] is ¿ 0, ¡ 0 or
=0, respectively. We denote the sets of all positive,
negative and neutral vectors of a space by V++, V−−
and V0, respectively, that is

V++ = {x | [x; x] ¿ 0};

V−− = {x | [x; x] ¡ 0};

V0 = {x | [x; x] = 0}:

We de1ne

V+ = V++ ∪V0; V− = V−− ∪V0;

the sets of all nonnegative and nonpositive vectors in
V, respectively. A subspace W of V is said to be
nonnegative, nonpositive or neutral if

W⊂V+; W⊂V− or W⊂V0;

respectively. A subspaceW ofV is said to be positive
(negative) if

W⊂V++ ∪ {0} (W⊂V−− ∪ {0}):
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The nonnegative and nonpositive subspaces are said
to be semide1nite. For a semide1nite subspace W,
the following generalization of the Cauchy–Schwarz
inequality holds:

|[x1; x2]|26[x1; x1][x2; x2] ∀x1; x2 ∈ W: (4)

The following lemma will be crucial in obtaining the
inequality in our main inertia theorem:

Lemma 2.1. Let V be a linear space with an indef-
inite inner product [·; ·] which admits a decomposi-
tion into a direct sum V = V+ uV− of a positive
subspaceV+ and a negative subspaceV−. Then the
dimension of any nonpositive subspaceW ofV does
not exceed the dimension of V−.

Proof. This follows from [1, Remark 4:4, p. 24].

Next, we study inde1nite inner products that are
induced by a bounded self-adjoint operator.

LetH be a Hilbert space with an inner product 〈·; ·〉.
Let Q ∈ L(H) be an arbitrary bounded self-adjoint
operator on H. Then H equipped with the inde1nite
inner product [·; ·] de1ned by

[x; y] = 〈Qx; y〉 ∀x; y ∈ H;

is called a Q-space and Q is called the Gram operator
of the space (H; [·; ·]). It is clear that

|[x; y]|6‖Q‖ ‖x‖ ‖y‖;

where ‖x‖=(〈x; x〉)1=2, which establishes the continu-
ity of [·; ·] :H×H → C. We denote the sum of two
〈·; ·〉-orthogonal subspaces W1 and W2 by

W1〈+〉W2

and the sum of two [·; ·]-orthogonal subspacesW1 and
W2 by

W1[ + ]W2:

We now prove a useful lemma about Q-spaces
which will be used in the proof of our main theorem.

Lemma 2.2. LetH be a Hilbert space with the inner
product 〈·; ·〉 and letQ ∈ L(H) be self-adjoint.Then

1. The Q-space (H; [·; ·]) admits an 〈·; ·〉-ortho-
gonal direct sum decomposition

H = HQ−〈+〉HQ0〈+〉HQ+ ; (5)

where HQ− is a negative subspace; HQ0 is a neu-
tral subspace and HQ+ is a positive subspace.
Furthermore; H = HQ− [ + ]HQ0 [ + ]HQ+; that is;
the decomposition is also [·; ·]-orthogonal.

2. If �(Q)∩C−=�p(Q)∩C− and �(Q) ¡∞; then
dim(HQ−) = �(Q).

3. HQ0 = 0 iA 0 �∈ �p(Q).

Proof. 1. Let E = {E(�)}�∈R be the spectral family
of spectral projections E(�) ∈ L(H); � ∈ R, cor-
responding to the self-adjoint operator Q. De1ne the
projections

S− =
∫ 0−

−∞
dE(�) = E(0−);

S0 = E(0) − E(0−) and S+:=
∫ ∞

0
dE(�):

These projections are pairwise orthogonal and I =
S− +S0 +S+, and they generate a 〈·; ·〉-orthogonal de-
composition of H into subspaces HQ− , HQ0 , HQ+ ,
where

HQ− = ran(S−);

HQ0 = ran(S0) and HQ+ = ran(S+):

Thus,H=HQ−〈+〉HQ0〈+〉HQ+ . We 1rst prove that
[x−; x−] = 〈Qx−; x−〉60 ∀x− ∈ HQ− . We have

[x−; x−] = 〈Qx−; x−〉 =
∫ ∞

−∞
� d〈E(�)x−; x−〉

=
∫ ∞

−∞
� d〈E(�)x−; S−x−〉

=
∫ ∞

−∞
� d〈E(�)x−; E(0−)x−〉

=
∫ ∞

−∞
� d〈E(0−)E(�)x−; x−〉:

But

〈E(0−)E(�)x−; x−〉

=

{ 〈E(�)x−; x−〉; � ¡ 0

〈E(0−)x−; x−〉( = a constant); �¿ 0

and so

〈Qx−; x−〉=
∫ ∞

−∞
� d〈E(0−)E(�)x−; x−〉

=
∫ 0−

−∞
� d〈E(�)x−; x−〉60;

since � �→ 〈E(�)x−; x−〉 is a nondecreasing function
and � ¡ 0:

Similarly, it can be checked that [x+; x+] =
〈Qx+; x+〉¿0, ∀x+ ∈ HQ+ . Since HQ− , HQ0
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and HQ+ are Q-invariant, it follows from their
〈·; ·〉-orthogonality that they are [·; ·]-orthogonal. Fi-
nally, to prove that the subspaces HQ+ and HQ−
are in fact positive and negative, respectively, we use
the generalized Cauchy–Schwarz inequality (4). If
x+ ∈ HQ+ and 〈Qx+; x+〉 = 0, then

06 |〈Qx+; Qx+〉|2 = |[x+; Qx+]|2

6 [x+; x+][Qx+; Qx+]

= 〈Qx+; x+〉〈QQx+; Qx+〉 = 0

and so Qx+ = 0, that is x+ ∈ HQ0 . Consequently,
x+ ∈ HQ+ ∩HQ0 = {0}.

Similarly, it can be shown that HQ− is a negative
subspace.

2. If the eigenvalues in C− are �1; : : : ; �n, then

dim(HQ−) = dim(E(0−))

=
n∑

k=1

dim(E(�k) − E(�k−))

=
n∑

k=1

dim(ker(�kI − Q)) = �(Q):

3. This follows from the fact that HQ0 = ker(Q).

Remark. We remark that the decomposition in (5) is
only one amongst several possible ones. So for exam-
ple, if [x; x] ¡ 0, it does not follow that x ∈ HQ− .
Indeed, with

Q =
[−1 0

0 1

]
(∈ L(C2)) and

x =
[

2
1

](
�∈ span

([
1
0

])
= HQ−

)
;

we have [x; x] ¡ 0.

A linear operator A with an arbitrary domain of
de1nition D(A), operating in a Q-space H, is said to
be Q-dissipative if

2Re([Ax; x]) = 〈QAx; x〉 + 〈Qx; Ax〉60

for all x ∈ D(A).
We quote the following crucial result which is an

immediate consequence of [1, Theorem 2:21, p. 98].

Lemma 2.3. LetH be a Q-space and A be a closed
Q-dissipative operator on H. Furthermore; assume
that � is a bounded subset of �(A) such that �⊂C+

and � is isolated from �(A) \ �. If � denotes the

spectral projection on �; then �H is a nonpositive
subspace of the Q-space (H; [·; ·]).

We now proceed to give a proof of our main theo-
rem.

Proof of Theorem 1.2. 1. From the Lyapunov in-
equality, it follows that A is Q-dissipative:

2Re([Ax; x]) = 〈QAx; x〉 + 〈Qx; Ax〉60 ∀x ∈ D(A):

Using Lemma 2.3, we obtain that H+ = �H (see
(2)) is a nonpositive subspace of (H; [·; ·]). This is a
�(A)-dimensional nonpositive subspace of (H; [·; ·])
(see [11, Problem 6:18, p. 182]).

2. From Lemma 2.2, since 0 �∈ �p(Q) it follows that
the self-adjoint operator Q induces a [·; ·]-orthogonal
direct sum decomposition

H = HQ− [ + ]HQ+ ;

where HQ− and HQ+ are negative and positive sub-
spaces, respectively, in (H; [·; ·]), with dim(HQ−) =
�(Q).

3. Finally it follows from Lemma 2.1, that
dim(H+)6dim(HQ−), that is, �(A)6�(Q).

3. Corollaries

In this section, we give a few corollaries of our main
theorem applied to Lyapunov equations with possibly
unbounded observation operators.

Throughout this section, we assume that X is a
Hilbert space and A : D(A) → X is the in1nitesimal
generator of a C0-semigroup {T (t)}t¿0 on X .

De�nition 3.1. Let us denote

�+(A) := �(A) ∩ C+;
�−(A) := �(A) ∩ C−:

A satis1es the spectrum decomposition assumption if
�+(A) is a bounded set which is separated from �−(A)
in such a way that a recti1able, simple closed curve, �,
can be drawn so as to enclose an open set containing
�+(A) in its interior and �−(A) in its exterior (see
Fig. 1).

The decomposition of the spectrum in this way in-
duces a corresponding direct sum decomposition of
the state space X :

X = X + u X −; X + = �X; X − = (I − �)X; (6)
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Fig. 1. The spectrum decomposition: Here �+(A) comprises the
shaded region together with the crosses, and �−(A) is contained
in the region to the left of the curve �.

where � is the spectral projection on �+(A):

�x =
1

2�i

∫
�
(�I − A)−1x d� ∀x ∈ X

and � is traversed once in the positive direction (coun-
terclockwise).

Here, we allow for unbounded observation opera-
tors, for which we require a few preliminaries.

We de1ne the Hilbert space X1 as D(A) with the
norm

‖z‖1 = ‖(�I − A)z‖;

where � ∈ !(A) is 1xed (this norm is equivalent to the
graph norm). Z−1 is the completion of X with respect
to the norm

‖x‖−1 = ‖(#I − A∗)−1z‖;

where # ∈ !(A∗) is 1xed. If X is the pivot space
(that is, if we identify X with X ∗), then it follows that
Z∗
−1 = X1.
We now consider the operator Lyapunov equation

A∗Qx + QAx = −C∗Cx ∀x ∈ D(A); (7)

with values in Z−1, where C ∈ L(X1; Y ) and Y is a
Hilbert space. We say that (7) has a self-adjoint solu-
tion Q = Q∗ ∈ L(X ) if (7) holds. For the theory of
such Lyapunov equations with a self-adjoint nonneg-
ative de1nite solutions Q ∈ L(X ), see [8,9].

Corollary 3.2. If
1. A is the in;nitesimal generator of a strongly con-
tinuous semigroup {T (t)}t¿0 on the Hilbert space
X;

2. C ∈ L(X1; Y );

3. A satis;es the spectrum decomposition assumption;
4. dim(X +) ¡∞ (with the notation used in (6));
5. Q ∈ L(X ) is a self-adjoint solution of (7) such
that 0 �∈ �p(Q); �(Q) ∩ C− = �p(Q) ∩ C−; and
�(Q) ¡∞;

then �(A)6�(Q).

Proof. We observe that

2Re([Ax; x]) = 〈QAx; x〉 + 〈Qx; Ax〉
=−〈Cx; Cx〉60 ∀x ∈ D(A);

that is, A is Q-dissipative. An application of Theorem
1.2 yields the desired inequality.

The conditions dim(X+) ¡∞ and on �(Q) in
Corollary 3.2 may not be easy to check, and so we
replace these by more familiar suLcient conditions
on the pair (A; C) in the following corollary:

Corollary 3.3. If
1. C ∈ L(X; Y ) has ;nite rank;
2. �(A;−; C) is exponentially detectable; and
3. Q ∈ L(X ) is a self-adjoint solution of (7);
then A satis;es the spectrum decomposition
assumption;A has a pure point spectrum in the closed
right half-plane (that is; �(A) ∩ C+ = �p(A) ∩ C+)
and �(A) = 0.
Furthermore; if 0 �∈ �p(Q); �(Q)∩C− =�p(Q)∩

C−; �(Q) ¡∞; then �(A)6�(P).

Proof. From Theorem 5:2:7 [6, p. 235] it follows that
A satis1es the spectrum decomposition assumption,
and X + is 1nite-dimensional. So from Problem 6:18
[10, p. 182], we conclude that �+(A) comprises 1nitely
many eigenvalues of 1nite algebraic multiplicity.

Next, we show that A has no eigenvalues on the
imaginary axis. Assume the contrary; that is, suppose
that there exists a !0 ∈ R and a x0 (�= 0) ∈ X such
that Ax0 = i!0x0. From (8), we obtain that

−‖Cx0‖2 =−〈Cx0; Cx0〉 = 〈Ax0; Qx0〉 + 〈x0; QAx0〉
= i!0〈Qx0; x0〉 − i!0〈Qx0; x0〉 = 0

and so Cx0 = 0. Thus, x0 ∈ ker(C). But since
�(A;−; C) is exponentially detectable with a
1nite-rank C, we have

ker(sI − A) ∩ ker(C) = {0} ∀s ∈ C+; (8)

(see [6, Theorem 5:2:11, pp. 240–241]), and so we
arrive at a contradiction.
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If 0 �∈ �p(Q); �(Q)∩C−=�p(Q)∩C−; �(Q) ¡∞,
then using Corollary 3.2 above, we obtain that
�(A)6�(P).

Remark. The above corollary can be extended to al-
low for unbounded, but admissible observation oper-
ators.

C is said to be an admissible observation operator
for {T (t)}t¿0 if for every T ¿ 0, there exists a KT¿0
such that∫ T

0
‖CT (t)x‖2 dt6K2

T‖x‖2 ∀x ∈ D(A):

(See [14].)

Corollary 3.3 still holds for admissible C with 1-
nite rank and such that the pair (A; C) is exponential
detectable, where by the latter is meant:

There exists a L ∈ L(Y; X1) such that AX1 + LC
generates an exponentially stable semigroup on W ,
where AX1 denotes the restriction of A to

D(AX1 ) = {x ∈ D(A) |Ax ∈ D(A)}:

This is a bounded concept of detectability on the
state space X1 and as in the proof of Corollary 3.3,
we conclude that AX1 satis1es the spectrum decompo-
sition assumption on X1. But the spectra of A and its
restriction AX1 are the same (see [5]) and so A sat-
is1es the spectrum decomposition on X and X + is
1nite-dimensional. Similarly, we can argue that (8)
holds. Finally, we remark that this concept of expo-
nential detectability is equivalent to the existence of
an “admissible control” operator L ∈ L(Y; X ) such
that A + LC generates an exponentially stable semi-
group on X (see [5]). The more general concepts of
detectability in the literature do not imply that A sat-
is1es the spectrum decomposition assumption, even if
C has 1nite rank (see [13]).

Of course, it is clear from Corollary 3.2 that de-
tectability is not necessary and it is possible to formu-
late sharper suLcient conditions on (A; C).

Finally, we remark that similar theorems can be
proved for control operators B ∈ L(U; X−1), where
the input space U is a Hilbert space (see [9]).
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