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Abstract. We denote by W C.CC/ the set of all complex-valued functions defined in the Note 1
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closed right half plane CC WD ¹s 2 C j Re.s/ � 0º that differ from the Laplace transform
of functions from L1.0;1/ by a constant. Equipped with pointwise operations,W C.CC/
forms a ring. It is known thatW C.CC/ is a pre-Bézout ring. The following properties are
shown for W C.CC/:
W C.CC/ is not a GCD domain, that is, there exist functions F1; F2 in W C.CC/ that

do not possess a greatest common divisor in W C.CC/.
W C.CC/ is not coherent, and in fact, we give an example of two principal ideals whose

intersection is not finitely generated.
We will also observe that W C.CC/ is a Hermite ring, by showing that the maximal

ideal space of W C.CC/, equipped with the Gelfand topology, is contractible.
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1 Introduction

The aim of this paper is to study some algebraic properties of the ring W C.CC/
(defined below).

We first recall the notion of a GCD domain, a coherent ring and a Hermite ring
below.

Definition 1.1. Let R be an integral domain (that is a commutative unital ring
having no divisors of zero).

1. An element d 2 R is called a greatest common divisor (often abbreviated by
gcd) of a; b 2 R if it is a divisor of a and b, and moreover, if k is another
divisor, then k divides d .

R is said to be a GCD domain if for all a; b 2 R, there exists a greatest
common divisor d of a; b.

2. R is said to be pre-Bézout if for every a; b 2 R for which there exists a great-
est common divisor d , there exist x; y 2 R such that d D xaC yb.
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3. R is called coherent if for any pair .I; J / of finitely generated ideals in R
their intersection I \ J is finitely generated again.

4. A matrix f 2 Rn�k is called left invertible if there exists a g 2 Rk�n such
that gf D Ik .

5. R is called a Hermite ring if for all k; n 2 N with k < n and all left invertible
matrices f 2 Rn�k , there exist F;G 2 Rn�n such that GF D In and
Fij D fij for all 1 � i � n and 1 � j � k. We shall also say that in that
case R has the matricial extension property.

Whether some rings of analytic functions have the above algebraic properties
has been investigated in earlier works. For example, von Renteln showed that
the Hardy algebra H1.D/ (of all bounded and analytic functions in the open
unit disc, with pointwise operations) is a GCD domain [17, p. 519], while the
disc algebra A.D/ (the ring of continuous functions on the closed unit disc D,
which are analytic in the open unit disc D, with the usual pointwise operations)
is not [16, p. 52]. In [10], the first author and von Renteln noted that the Wiener
algebra W C.D/ (of all absolutely convergent Taylor series in the open unit disc)
is not a GCD domain. In this article, we will show that the ringW C.CC/ (defined
below) is not a GCD domain.

W. S. McVoy and L. A. Rubel [8] showed that the Hardy algebra H1.D/ is
coherent, while the disc algebra A.D/ is not. In [10], it was also shown that the
Wiener algebra W C.D/ (of all absolutely convergent Taylor series in the open
unit disc D) is not coherent. In Section 4, we will show that the ring W C.CC/
is not coherent, in the same manner as the noncoherence of W C.D/ was shown
in [10, Theorem 3, p. 226].

The Hermiteness of H1.D/ was first shown by V. Tolokonnikov (see for ex-
ample [21], [12, §10, p. 293]). A. Quadrat has proved in [15, Corollary 3.30] that
H1.D/ is a projective free ring, which implies in particular that it is Hermite. The
Hermiteness of A.D/ and W C.D/ follows from [6] and the fact that their max-
imal ideal ideal space is homeomorphic to the closed unit disc D. Indeed, Lin’s
theorem (Proposition 2.10 below) says that a Banach algebra whose maximal ideal
space is contractible is a Hermite ring. We will show that the maximal ideal space
of W C.CC/ is homeomorphic to the closed unit disc, and hence, by [6], the ring
W C.CC/ is Hermite as well.

Throughout the article, we will use the following notation:

CC WD ¹s 2 C j Re.s/ � 0º:

Definition 1.2. We denote byW C.CC/ the set of all functions F W CC ! C such
that F.s/ D Ofa.s/Cf0 (s 2 CC), where fa 2 L1.0;1/, f0 2 C, and Ofa denotes
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the Laplace transform of fa:

Ofa.s/ D

Z 1
0

e�stfa.t/dt; s 2 CC:

Equipped with pointwise operations and the norm kF kWC D kfakL1 C jf0j,
W C.CC/ is a Banach algebra.

Remark 1.3. 1. From the application point of view, the above algebra arises as
natural classes of transfer functions of stable distributed parameter systems
in control theory; see [13].

Following [11], we use the notation W C.CC/ in order to highlight the simi-
larity with W C.D/ and call W C.CC/ the Wiener–Laplace algebra.

2. The algebraic properties of W C.CC/ investigated in this article have impor-
tant consequences in control theory:

The relevance in control theory of the question whether or not W C.CC/ is
a GCD domain can be found in [13]: Let R denote a ring of stable transfer
functions, and Q.R/ the field of fractions of R. Then every transfer function
p 2 Q.R/ admits a weak coprime factorisation iff R is a GCD domain.

The importance of the coherence property in control theory can be found
in [15, Theorem 3.24, p. 286]. In fact, our Theorem 1.4 answers a question
raised in [14, p. 30].

The motivation for proving thatW C.CC/ is a Hermite ring is that if a transfer
function G (with entries from the field of fractions of W C.CC/) has a right
(or left) coprime factorisation, then G has a doubly coprime factorisation,
and then the standard Youla–Kučera parameterisation yields all stabilising
controllers for G. For further details, see [24, Theorem 66, p. 347].

Our main results are the following:

Theorem 1.4. The ring W C.CC/ is not a GCD domain.

Theorem 1.5. The ring W C.CC/ is not coherent.

Theorem 1.6. The ring W C.CC/ is Hermite.

The paper is structured as follows. In Section 2, we will first collect a few
auxiliary results needed to prove our main theorems. Subsequently in Sections 3, 4
and 5 we will prove Theorem 1.4, 1.5, and 1.6, respectively.
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2 Preliminaries

We begin by recalling different (but equivalent) versions of the corona theorem for

W C.CC/; see [3, p. 112] and [11, Proposition 4.4]. Let 3L1.0;1/ denote the set
of Laplace transforms of functions inL1.0;1/. Note also that by the non-discrete
version of the Riemann–Lebesgue Lemma

lim
s!1

Re.s/�0

F.s/ D 0

for any F 2 3L1.0;1/. Hence, every function in W C.CC/ admits a continuous
extension at infinity. In particular, W C.CC/ � H1.CC/, the set of bounded
analytic functions on the open right half plane.

Proposition 2.1. The following assertions hold:

1. The set of maximal ideals in W C.CC/ is given by

Ma D ¹f 2 W
C.CC/ j f .a/ D 0º; a 2 CC;

and

M1 D
3L1.0;1/ D ¹f 2 W C.CC/ j lim

s!1
Re.s/�0

f .s/ D 0º:

2. The set ¹�a j Re.a/ > 0º of point evaluations �a.f / D f .a/, where f 2
W C.CC/, is dense in the maximal ideal space of W C.CC/.

3. For every n-tuple .f1; : : : ; fn/ of functions in W C.CC/ satisfying

ı WD inf
Re.s/>0

nX
jD1

jfj .s/j > 0;

there exists a solution .g1; : : : ; gn/ 2 W C.CC/n of the Bézout equationPn
jD1 gjfj D 1.

Using a general procedure that allows to pass from n-tuples to matrices (see [24,
p. 340]), we obtain the following matricial version of the corona theorem:

Proposition 2.2. Let R D W C.CC/. Let F 2 Rn�k . Then the following are
equivalent:

1. There exists a G 2 Rk�n such that G.s/F.s/ D Ik , s 2 CC.

2. There exists a ı > 0 such that F.s/�F.s/ � ı2Ik , s 2 CC.
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Here Ik is the identity matrix in Ck and F � is the conjugate transpose (or
adjoint) of F . We note that conditions 1 or 2 imply that, automatically, n � k;
in particular the rank of every k � k-submatrix of F.s/ is k. Condition 2, also, is
equivalent to

3. kF.s/Œx�k2 � ıkxk2 for every x 2 Ck , s 2 CC.

In the following, the maximal ideal M0, being the kernel of the complex homo-
morphism F 7! F.0/, will play an important role. Since every maximal ideal is
closed, the set M0 is a commutative Banach subalgebra of W C.CC/. Obviously
the subalgebra M0 has no identity element. But there is a substitute, namely the
notion of the bounded approximate identity, which will be useful in the sequel.

Definition 2.3. LetR be a commutative Banach algebra (without identity element).
Then R has a bounded approximate identity if there exists a bounded sequence
.en/n of elements en in R such that for any f 2 R, limn!1 kenf � f k D 0.

It is known that the maximal ideal M0 has a bounded approximate identity;
see [11, Theorem 4.2.(a), p. 6].

Proposition 2.4. Let en.s/ WD
s

sC 1
n

(s 2 CC), n 2 N. Then .en/n2N is a bounded

approximate identity for M0.

We will also need the following amazing factorisation theorem:

Theorem 2.5 (Varopoulos, [23]). Let R be a commutative Banach algebra with
a bounded approximate identity. Then for every sequence .an/n�1 in R there
exists a sequence .bn/n�1 in R as well as an element c 2 R such that for all
n � 1, an D cbn.

The following was noted in [10, Remark after Theorem 1, p. 224] without proof.
A proof is given below. Our proof of the Theorem 1.4 will follow the same method.

Proposition 2.6 (Mortini–von Renteln, [10]). Let f1; f2 2 W C.D/ be defined as
follows:

f1.z/ WD .1 � z/
3 and f2.z/ WD .1 � z/

3e�
1Cz
1�z .z 2 D/:

Then f1; f2 do not have a greatest common divisor in W C.D/.

Proof. Suppose that d is a gcd and let f1 D dq1, f2 D dq2. Then q1 is not
invertible in W C.D/, otherwise f1 would divide f2, which is not the case. Since
the only zero of f1 is at z D 1, it follows that q1.1/ D 0. Similarly, q2.1/ D 0. So
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q1 and q2 belong to the maximal ideal m1 WD ¹f 2 W C.D/ j f .1/ D 0º, which
has a bounded approximate identity (see [2] and [11]). Hence by Theorem 2.5
(applied to .q1; q2; 0; 0; 0; : : : /), there is a common factor c 2 m1 of q1 and q2.
Thus k WD dc divides f1 and f2. But d is a gcd of f1; f2, and so k must divide
d , say dch D d for some h 2 W C.D/. Since f1 is never zero on D, neither is d .
So we obtain that on D, ch D 1. But c 2 m1 and h is bounded and continuous on
the closed unit disc. So by passing the limit as z ! 1 in ch D 1, we obtain the
contradiction that 0 D 1.

Instead of f1 and f2 above, we will use the following in the case of W C.CC/:

Lemma 2.7. For Re.s/ > 0, let

F1.s/ WD

�
1 �

1

s C 1

�3
and F2.s/ WD

�
1 �

1

s C 1

�3
e�

sC2
s :

Then F1; F2 2 W C.CC/. Moreover, F1; F2 2M0.

Proof. It is easy to see that F1 2 W C.CC/. It was also noted in [10] that f2
given by f2.z/ WD .1 � z/3e�

1Cz
1�z (z 2 D) belongs to W C.D/. So if the complex

numbers an (n � 0) are defined via

.1 � z/3e�
1Cz
1�z D a0 C a1z C a2z

2
C a3z

3
C � � � ; z 2 D; (1)

then
P1
kD0 jakj <1. But if Re.s/ > 0, then 1

sC1
2 D, and so

F2.s/ D

�
1 �

1

s C 1

�3
e�

sC2
s D

�
1 �

1

s C 1

�3
e
�
1C 1

sC1

1� 1
sC1

D a0 C a1
1

s C 1
C a2

�
1

s C 1

�2
C a3

�
1

s C 1

�3
C � � � : (2)

We have k 1
sC1
kWC D 1 and so k. 1

sC1
/nkWC � k

1
sC1
kn
WC
D 1n D 1. SinceP1

kD0 jakj <1, it follows that the series

a0 C a1
1

s C 1
C a2

�
1

s C 1

�2
C a3

�
1

s C 1

�3
C � � � (3)

converges in norm to an element in W C.CC/. For fa 2 L1.0;1/, we have
j Ofa.s/j � kfakL1 (s 2 CC), and so for every F 2 W C.CC/, jF.s/j � kF kWC
(s 2 CC). Thus norm-convergence implies pointwise convergence. But by (2),
the pointwise limit for Re(s)> 0 is in fact F2. Thus F2 2 W C.CC/.
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That F1 2M0 is trivial. To see that F2 2M0, we observe that for s D xCiy 2
CC; s 6D 0, F2.s/ D . s

sC1
/3 e�1 e�

2
s and

js3e�2=sj D s3e
� 2x

x2Cy2 ! 0 as s ! 0:

We will need the result below (a Nakayama type lemma) in order to prove that
W C.CC/ is not coherent. An analytic proof can be given along the lines to the
analogous result for W C.D/ [10, Lemma 1]:

Lemma 2.8. Let L ¤ .0/ be an ideal in W C.CC/ contained in the maximal ideal
M0. If L D LM0, that is, if every function F 2 L can be factorised in a product
F D HG of two functions H 2 L and G 2 M0, then L cannot be finitely
generated.

We will also need the following technical result, the proof of which is basically
a repetition of key steps from Browder’s proof of Cohen’s factorisation theorem;
see [1, Theorem 1.6.5, p. 74]. It uses the fact that M0 has a bounded approximate
identity. For a detailed exposition, see also [18, Lemma 2.8].

Lemma 2.9. Let R1; R2 2 M0 and ı > 0. Let U.W C.CC// denote the set of
all invertible elements in W C.CC/. Then there exists a sequence .Gn/n2N in
W C.CC/ such that

1. for all n 2 N, Gn 2 U.W C.CC//;

2. .Gn/n2N is convergent in W C.CC/ to a limit G 2M0;

3. for all n 2 N, kG�1n Ri �G
�1
nC1RikWC � ı=2

n, i D 1; 2.

We now state Lin’s result, which will be used to show that W C.CC/ is Her-
mite; [6, Theorem 3, p. 127]. Recall that a topological space, X , is said to be
contractible if there exists a continuous map � W X � Œ0; 1�! X and x0 2 X such
that �.x; 0/ D x for all x and �.x; 1/ D x0.

Proposition 2.10. Let R be a commutative Banach algebra with identity. If the
maximal ideal space X.R/ of the Banach algebra is contractible, then R is a Her-
mite ring.

3 W C.CC/ is not a GCD domain

Proof of Theorem 1.4. We claim that F1; F2 (defined as in Lemma 2.7) have no
gcd. Suppose, on the contrary, thatD is a gcd, and let F1 D DQ1 and F2 D DQ2
with Q1;Q2 2 W C.CC/.
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Step 1. Q1 is not invertible in W C.CC/. If not, then D D F1Q
�1
1 and so

F2 D DQ2 D F1.Q
�1
1 Q2/. In particular, for s ¤ 0, we have e�

sC2
s D

Q�11 Q2 2 W
C.CC/, which is not the case, since limR3!!0 e

�
i!C2
i! does not

exist, while limR3!!0Q
�1
1 .i!/Q2.i!/ does (because Q�11 Q2 2 W C.CC/),

a contradiction.
Since we have that limCC3s!1 F1.s/ D 1 ¤ 0, it follows from F1 D DQ1

and the fact that W C.CC/-functions have a continuous extension at infinity, that
limCC3s!1Q1.s/ ¤ 0. So by the Corona Theorem for W C.CC/ (Proposi-
tion 2.1), we conclude that Q1 has a zero in CC. But the only zero of F1 is 0,
and since F1 D DQ1, we have that this zero of Q1 must be 0. Consequently,
Q1.0/ D 0, that is, Q1 2M0.

Step 2. Also,Q2 is not invertible inW C.CC/. OtherwiseD D F2Q�12 and F1 D

F2.Q
�1
2 Q1/, so that for s ¤ 0, we have 1 D e�

sC2
s .Q�12 Q1/, and so e

sC2
s D

Q�12 Q1. But limR3!!0 e
i!C2
i! does not exist, while limR3!!0Q

�1
2 .i!/Q1.i!/

does (because Q�12 Q1 2 W
C.CC/), a contradiction.

Since we have that limCC3s!1 F2.s/ D e
�1 ¤ 0, it follows from F2 D DQ2

that limCC3s!1Q2.s/ ¤ 0. Again by the Corona Theorem for W C.CC/, we
conclude that Q2 has a zero in CC. But the only zero of F2 is 0, and since
F2 D DQ2, we have Q2 2M0 as well.

Step 3. So Q1 and Q2 belong to the maximal ideal M0 which has a bounded
approximate identity, by Proposition 2.4. From Theorem 2.5 (applied to the se-
quence .Q1;Q2; 0; 0; 0; : : : /), it follows that there is a common factor G 2 M0

of Q1 and Q2. Thus K WD DG divides F1 and F2. But D is a gcd of F1; F2, and
so K must divide D, say DGH D D for some H 2 W C.CC/. Since F1 is never
zero for s ¤ 0, neither is D. So we obtain that for s ¤ 0, GH D 1. But G 2M0,
and H is bounded and continuous in CC. Hence by passing the limit as s ! 0 in
GH D 1, we obtain the contradiction that 0 D 1.

Remark 3.1. (1) In a similar manner, one can also show that A is not a GCD
domain, where A denotes the set of all functions F W CC ! C such that

F.s/ D Ofa.s/C

1X
kD0

fke
�stk .s 2 CC/;

where fa 2 L1.0;1/, .fk/k�0 2 `1, t0 D 0 and tk > 0 for k D 1; 2 : : : .
A is a Banach algebra when it is equipped with pointwise operations and the

norm: kF kA WD kfakL1 C k.fk/k�0k`1 .
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(2) Recall that an integral domain R is said to be pre-Bézout if for every a; b 2
R for which there exists a greatest common divisor d , there exist x; y 2 R such
that d D xaC yb.

However, as opposed to W C.CC/, which is a pre-Bézout domain [11, Theo-
rem 1.5], it turns out that A is not a pre-Bézout domain. Indeed, consider the
elements U1; U2 2 A given by

U1.s/ WD
1

s C 1
and U2.s/ WD e

�s:

Note that U1 is an outer function in H1 and U2 an inner function. Then 1 is
a greatest common divisor of U1 and U2, but if there exist G1; G2 2 A such that
1 D G1U1 CG2U2, then by passing to the limit s !C1, s 2 R, and using

lim
.R3/s!1

U1.s/ D 0 D lim
.R3/s!1

U2.s/;

we obtain the contradiction that 1 D 0.

4 W C.CC/ is not coherent

We use the same approach as the one used to show the noncoherence of W C.D/
in [10, Theorem 3, p. 226]. Nevertheless, we record the details here for the sake
of convenience of the reader.

Proof of Theorem 1.5. We present two principal ideals I and J such that I \ J

is not finitely generated.
Let

P.s/ D

�
1 �

1

1C s

�3
and S.s/ D e�

sC2
s

for Re.s/ > 0. Note that P D F1 and PS D F2, the functions in Lemma 2.7.
Also, S 2 H1, since jS j � e�1.

By Lemma 2.7, F1; F2 2 M0. We define the ideals I D .P / and J D .PS/.
Let

K WD ¹PSF j F 2 W C.CC/ and SF 2 W C.CC/º:

We claim that K D I \ J . Trivially K � I \ J . To prove the reverse inclusion,
let G 2 I \ J . Then there exist two functions F and H in W C.CC/ such that
G D PH D PSF . Hence SF D H 2 W C.CC/. So G 2 K.
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Let L denote the ideal

L WD ¹F 2 W C.CC/ j SF 2 W
C.CC/º:

Then K WD PSL.
We first show that L �M0. Let F 2 L. We have

lim
!&0

F.i!/S.i!/ D lim
r&0

F.r/S.r/ D 0;

since F is bounded in CC and limr&0 S.r/ D 0. Since for ! 2 R n ¹0º we have

S.i!/ D e�1 e�
2
i! ;

it follows that S.i!/ is invertible and jŒS.i!/��1j D e�1. Thus

lim
!&0

F.i!/ D lim
!&0

F.i!/S.i!/ŒS.i!/��1 D 0;

and so F 2M0. Consequently, L �M0.
We will show that L D LM0. Let F 2 L. Then F 2 M0. Also, since jS j is

bounded by 1 on Re.s/ > 0 and F.0/ D 0, it follows that SF 2 M0. We would
like to factor F D HG with H 2 L and G 2 M0. Applying Lemma 2.9 with
R1 WD F 2 M0 and R2 WD SF 2 M0, for any ı > 0, there exists a sequence
.Gn/n2N in W C.CC/ such that

1. Gn 2 U.W C.CC// (n 2 N).

2. .Gn/n2N is convergent in W C.CC/ to a limit G 2M0.

3. kG�1n F �G�1nC1F kWC �
ı
2n

, kG�1n SF �G�1nC1SF kWC �
ı
2n

(n 2 N).

Put

Hn WD G
�1
n F and Kn WD G

�1
n SF:

Then Hn 2 M0. Also Kn 2 M0. The estimates above imply that .Hn/n2N and
.Kn/n2N are Cauchy sequences in W C.CC/. Since M0 is closed, they converge
to elements H and K, respectively, in M0: Hn D G�1n F ! H and Kn D
G�1n SF D SHn ! K.

Let H1.CC/ denote the Hardy space of all bounded analytic functions in the
open right half plane equipped with the norm k'k1 WD supRe.s/>0 j'.s/j, ' 2
H1.CC/. If fa 2 L1.0;1/ and f0 2 C, then we have

j Ofa.s/C f0j � j Ofa.s/j C jf0j � kfakL1 C jf0j .s 2 CC/;
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and so it follows that kF k1 � kF kWC for allF 2 W C.CC/. Hence convergence
in W C.CC/ implies convergence in H1.CC/, and so

Hn
H1.CC/
������! H (since Hn

WC.CC/
������! )

SHn
H1.CC/
������! SH (since Hn

WC.CC/
������! H and S 2 H1.CC/)

SHn
H1.CC/
������! K (since Kn

WC.CC/
������! K)

and so SH D K. Also, in W C.CC/ norm we have

F D lim
n!1

HnGn D HG:

SinceH and SH D K belong to M0 � W
C.CC/, we see thatH 2 L. Moreover,

as G 2M0, we have got the desired factorisation and L D LM0.
But L ¤ .0/, since P 2 L. By Lemma 2.8, it follows that L cannot be finitely

generated. Therefore, PSL D I \ J is not finitely generated.

Remark 4.1. 1. The ideal L in the above proof can be interpreted as an ideal of
denominators; see [4, p. 396]. Indeed, using the fact thatPS 2 W C.CC/, we
have S 2 Q.W C.CC//, where Q.W C.CC// denotes the field of fractions
of W C.CC/. The ideal of denominators L of S , namely

L D ¹d 2 W C.CC/ j dS 2 W
C.CC/º

is the ideal of W C.CC/ consisting of all possible denominators of S , to-
gether with 0, when written as a fraction of elements fromW C.CC/; see the
book by Matusumura [7].

2. Following the proof in [10], the second author had proved that A is also not
coherent [18]. The following functions were used there:

P.s/ D
.1 � e�s/3

s C 1
and S.s/ D e�

1Ce�s

1�e�s :

Another way to see thatW C.CC/ is not a GCD domain, is to use the following
observation together with Theorem 1.5 and the fact that W C.CC/ is a pre-Bézout
domain (see [11]):

Observation 4.2. Let R be a pre-Bézout domain. Let f; g 2 R. Suppose that the
intersection of the associated principal ideals .f / and .g/ is not finitely generated.
Then f and g have no greatest common divisor.
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Proof. Assuming the contrary, let d be a greatest common divisor of f and g and
write f D dF; g D dG. Then gcd.F;G/ D 1. We claim that .f / \ .g/ D
.dFG/. In fact, one trivially has that .dFG/ � .f / \ .g/. Now let h D xdF D
ydG. Then d.xF � yG/ D 0. Since there are now divisors of zero, and d 6D 0,
xF D yG. Now R has the pre-Bézout property; hence 1 D aF C bG for some
a; b 2 R. Thus y D yaF C b.yG/ D yaF C b.xF / D F.ya C bx/. So
h D y.dG/ D F.yaC bx/dG 2 .dFG/. So .f / \ .g/ � .dFG/.

5 W C.CC/ is a Hermite ring

Proof of Theorem 1.6. Consider the algebra

AC WD

²
F

�
1C z

1 � z

�
.z 2 D/

ˇ̌̌
F 2 W C.CC/

³
;

with pointwise operations and the same norm as in W C.CC/, that is,



z 7! F

�
1C z

1 � z

�




AC
WD kF kWC.CC/; F 2 W C.CC/:

Then this is a Banach algebra that is isometrically isomorphic to W C.CC/. Since
lims!1;s2CC F.s/ exists for each element F 2 W C.CC/, we see that every
f 2 AC admits a continuous extension to z D 1 and hence AC � A.D/. Now we
will show that the maximal ideal space of AC is homeomorphic to the closed unit
disc D in C.

Using the formula

1 D �
f � f .a/

f .a/
C

f

f .a/

whenever f 2 AC and f .a/ 6D 0, a 2 D, we see that

Ma WD ¹f 2 A
C
j f .a/ D 0º

is a maximal ideal in AC. But these are all the maximal ideals of AC. In fact, let
M be any maximal ideal in AC and suppose that M is not contained in Ma for
any a 2 D. Then by a compactness argument, there exists finitely many functions
f1; : : : ; fn 2 A

C so that
Pn
jD1 jfj j � ı > 0 on D. Moving back to the algebra

W C.CC/, we see from the corona theorem 2.1 that the ideal generated by the
functions w 7! f .w�1

wC1
/, Re.w/ > 0 is W C.CC/. Hence .f1; : : : ; fn/ is not

proper either. This contradiction shows that M � Ma for some a 2 D. The
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maximality of Ma now implies that M D Ma. Finally, since D is compact, it is
easy to see that the map ‰ W D ! X.AC/; a 7! ˆa is a homeomorphism; here
X.AC/ is the space of nonzero multiplicative linear functionals on AC endowed
with the Gelfand topology and ˆa is the evaluation functional at a.

To sum up, we have shown that the maximal ideal space of AC can be identified
with D.

Since D is contractible, it follows that the maximal ideal space of W C.CC/
is contractible. The claim that W C.CC/ (and also AC) are Hermite rings now
follows via Lin’s result given in Proposition 2.10.

Remark 5.1. 1. The second author proved that A is also Hermite [19].

2. It can be shown that a commutative ring R with identity, and having Bass
stable rank equal to 1 is a Hermite ring; see [22, p. 3155]. It is known that
the Bass stable rank of W C.CC/ is 1; see [9, Theorem 1.2]. So this gives
another proof of Theorem 1.6.

We conclude this note by showing that AC is not contained in W C.D/.

Proposition 5.2. The following assertions hold:

1. If f 2 W C.D/, then f .1�z
2
/ 2 AC.

2. For ˛ > 0,

f˛.z/ D .1 � z/
˛e�

1Cz
1�z 2 W C.D/ ” ˛ > 1=2

but f˛ 2 AC for all ˛ > 0;

3. f˛
�
s�1
sC1

�
D

2˛

.1Cs/˛
e�s 2 3L1.0;1/I

4. kzkAC D 3.

Proof. To show 1 and 4, we have to observe that z D F
�
zC1
z�1

�
, where F.s/ D

s�1
sC1
D 1 � 2

sC1
D 1 � 2be�t . Now let f 2 W C.D/, say f .z/ D

P1
nD0 anz

n

with
P1
nD0 janj < 1. As in the proof of Lemma 2.7, we see that the function F

given by F.s/ D f
�
1
1Cs

�
2 W C.CC/. Replacing s by 1Cz

1�z
, z 2 D, we get that

f
�
1�z
2

�
D F

�
1Cz
1�z

�
2 AC. But it is obvious that h.z/ WD

P
an
�
1�z
2

�n
2 W C.D/

since


1�z
2




WC.D/ D 1, and so the series for h is a Cauchy-sequence in W C.D/.

For 3, we observe that trivially, f˛
�
s�1
sC1

�
D

2˛

.1Cs/˛
e�s DW G.s/. But G.s/ is

the Laplace transform of the L1.0;1/-function

g.t/ D 2˛
e�.t�1/u.t � 1/

�.1 � ˛/.t � 1/1�˛
;
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where u.t/ is the Heaviside function given by

u.t/ D

´
0 if t < 0;

1 if t > 0:

Thus f˛ 2 AC for each ˛ > 0.
The following proof that f˛ 2 W C.D/ is from Udo Klein [5]. Let

gˇ .z/ WD .1 � z/
�ˇ�1 exp

�z

z � 1
; ˇ WD �˛ � 1; � D 2:

Then f˛ D e�1gˇ . Hence it will suffice to show that gˇ 2 W C.D/ if and
only ˇ < �3

2
. The Taylor coefficients of g though are (more or less by defini-

tion) generalised Laguerre polynomials. Indeed, we have the following expansion
(see [20, p. 100]):

gˇ .z/ D

1X
nD0

L.ˇ/n .�/zn:

The result now follows since the asymptotic behaviour of the terms L.ˇ/n .�/ is
given by Fejér’s formula (see [20, p. 198])

L.ˇ/n .�/ D
1
p
�
e
�
2 ��

ˇ
2
� 1
4n

ˇ
2
� 1
4 cos

�p
4n� �

ˇ�

2
�
�

4

�
CO.n

ˇ
2
� 3
4 /:
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fractional ideal approach to SISO systems. Systems and Control Letters, 50:135–
148, no. 2, 2003.

[14] A. Quadrat. An introduction to internal stabilization of linear infinite dimensional
systems. École Internationale d’Automatique de Lille (02–06/09/02): Contrôle de
systèmes à paramètres répartis: Théorie et Applications, Revue e-STA, vol. 1, no. 1,
2002.

[15] A. Quadrat. The fractional representation approach to synthesis problems: an al-
gebraic analysis viewpoint. Part I: (Weakly) doubly coprime factorizations. SIAM
Journal on Control and Optimization, 42:266–299, 2003.

[16] M. von Renteln. Divisibility structure and finitely generated ideals in the disc alge-
bra. Monatshefte für Mathematik, 82:51–56, 1976.

[17] M. von Renteln. Hauptideale und äussere Funktionen im Ring H1. (German)
Archiv der Mathematik (Basel), no. 5, 28:519–524, 1977.

[18] A. J. Sasane. Noncoherence of a causal Wiener algebra used in control theory. Ab-
stract and Applied Analysis, Volume 2008, Article ID 459310, 13 pages. Note 2

Please
up-
date [19],
if
possible.

[19] A. J. Sasane. The Hermite property of a causal Wiener algebra used in control theory.
To appear in Complex Analysis and Operator Theory.



16 R. Mortini and A. Sasane
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