IDEAL STRUCTURE AND STABLE RANK OF Ce + £2(1)
WITH THE HADAMARD PRODUCT

RUDOLF RUPP AND AMOL SASANE

ABSTRACT. Let I be any index set. We consider the Banach algebra
Ce + ¢*(I) with the Hadamard product, and prove that its Bass and
topological stable ranks are both equal to 1. We also characterize divi-
sors, maximal ideals, closed ideals and closed principal ideals. For I = N
we also characterize all prime z-ideals in this Banach algebra.

1. INTRODUCTION

The Hadamard product f ® g of power series f and g is defined by
(fOg)(z) = Zanbnz", where f(z) = Z apz" and g(z) = Z bpz".
n=0 n=0 n=0

Algebras of power series with the Hadamard product, and the structure of
their ideals have been studied in several works; see for example Brooks [1],
Caveny [3], Briick and Miiller [2], Render and Sauer [8], and Render [7].

In this article, we study the algebra of square summable sequences, in-
dexed by an arbitrary index set I with respect to the Hadamard product.
We use the idea of summability of a series where the terms depend on any
set I of indices whatsoever and where consequently the terms of the series
are not ordered; see for example Laurent Schwartz [10, I.LI]. This definition
is recalled below:

Definition 1.1. Let I be any set of indices and (u;)ie; be a family of

complex numbers parameterized by the set of indices I. Then the series

Zui is said to be summable with sum S and is written Zu, = S if for

iel iel

every € > 0, there is a finite subset of indices J C I such that for any finite

subset of indices K with J C K, we have |S — S| < €, where Sk := Zuz
i€l

It can be shown that if Z u; is summable with sum S, then all the terms
el
are zero except for a at most countable subset C' C I, that is, u; = 0 for all

igC.
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Definition 1.2. Define ¢?(I) to be the set of all families of complex numbers

a = (a;);er parameterized by I such that Z |ag)? is summable.
i€l
With addition and scalar multiplication defined term-wise, this is a com-
plex vector space, and it becomes a complex algebra with the Hadamard
product, defined by:

(a®@b)i =ab; (i€l), a=(a)icr,b= (b)icr € *(I).

Moreover, it is a Banach algebra with the norm

lall2 == > lail?.
el

However it does not have an identity element. We unitize the Banach algebra
by attaching the identity element e, to obtain the Banach algebra Ce+¢?(I),
consisting of all expressions of the type ae + a, where a € C and a € £?(I).
The multiplication ® is extended from ¢2(I) to Ce + ¢2(I) as follows: if
a,B € C and a,b € (>(I), then

(e +a) ® (fe+b) =afe+ Ba+ab+a®b.

The norm on Ce + ¢2(I) is given by ||ae + a|| = |a| + ||al|z, for o € C and
a € (2(I). We will denote the Banach algebra Ce + ¢2(I) by A. For a given
element = ae + a € A, where a € C and a = (a;);es € (*(I), we call the
a;’s the Fourier coefficients of a (and of z).

A standard model of A in case I = N by holomorphic functions in the
disk D = {z | |z| < 1} can be constructed as follows. The elements of A can
be viewed as functions f of the form

1 = n—1 = n—1
f(z):al—z+7;a"2 znzz:l(a—i-an)z (zeD),

where a € C, and
o
Zanzn_l € H*(D).
n=1

Here H?(D) denotes the Hardy space of the unit disk. The multiplication
® in £2(N) now corresponds to convolution in H?(ID). The unit element in
this model for A is the function e, given by

e(z)zl—z

Our main results are the following:

(z€D).

(1) In Section 2, we describe the maximal ideal space of A as a topologi-
cal space (when it is equipped with the Gelfand topology). We show
that the maximal ideal space is homeomorphic with the Alexandroff
compactification I, of the index set I, where I is given the discrete
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topology. Moreover, we show that the covering dimension of the
maximal ideal space of A is 0.

(2) We show in Section 3 that the Bass and topological stable rank of
A are both equal to 1. Moreover, A has unit 1-stable range.

(3) In Section 4 a necessary and sufficient condition for z € A to be a
divisor of a given z € A is given.

(4) In Section 5, we characterize all closed ideals of A. Moreover, we
describe closed principal ideals.

(5) In Section 6, we study prime ideals of A. In particular, we investigate
which z-ideals are prime, and prove that every prime ideal is con-
tained in ker o, = £?(I). Finally, when I is countable, we establish
a correspondence between free ultrafilters on I and all nonmaximal,
prime z-ideals of A contained in ker po, = £2(I).

2. THE MAXIMAL IDEAL SPACE OF A

In this section we will describe the maximal ideal space of A. In particular,
we will show that the maximal ideal space of A equipped with the Gelfand
topology can be identified with the one point Alexandroff compactification
I, of I, where [ is given the discrete topology.

Theorem 2.1. The mazimal ideal space of A is given by
A =A{pili € I} U{poo},
where for o € C and a = (a;)ier € *(I),

vilae+a) == a+a; (1€1),
Yool +a) = a.

Proof. One can check that ¢; (i € I) as well as ¢ are complex homomor-
phisms.

Suppose on the other hand, that ¢ is a complex homomorphism. For
j € I, define e; € ¢*(I) by

N1 ifi=y,
(1) %@—{oiﬁ¢j
We note that
@9%—{Oiu#1
Thus
plei)ple) =elei®e) =\ g " iy 27

Hence it follows that ¢(e;) € {0,1} for all ¢ € I. We have the following two
cases:
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1° There exists an index i, € I such that ¢(e;,) = 1. For j € I, we
then have
oles) = ple) 1= pleg) plei) = o 1l 0
j j j is 0 if j # is.
Because p(e) = 1, we conclude p(ae +a) = a+ p(a) = a+a;, =
©;, (ae +a), for all @ € C and a € £?(I). Consequently, ¢ = ;..
2° For all indices 7 € I, we have ¢(e;) = 0. By using the continuity of
 we then have

plae+a) =a+ Y aip(e;) = a = pus(ac + a),
el
for all & € C and a € £2(I). Consequently, ¢ = @uo.
This completes the proof. O

Analogous to [7, Theorem 4], from the functional calculus for Banach
algebras, we have the following consequence of the above Theorem 2.1:

Corollary 2.2. Let Ny := NU{0} and D := {z € C| |z| < 1}. Suppose that
U is an open neighbourhood of 0 € C and ¢ : U — C is holomorphic with
©(0) =0. Let
f= Z apz® € H*(D")
kEND
(here 2F = zfl...z'nf" for k = (ki,...,k,) € Nij), be such that a, € U for
all k € Ni. Then

Fi=> o)k e H* (D).
keNy

(Here H?(D") denotes the Hardy space of the polydisk D".)

Proof. This follows from the fact that the spectrum of f (when f is consid-
ered as an element in the Banach algebra A with I = N}), is contained in
U. O

Endowed with the weak-* topology 7., (A,7y) is a compact Hausdorff
space.

Lemma 2.3. All the one point sets {p;}, i € I are clopen sets in (A, Ty).
If I is an infinite set, then {poo} is closed, but not open in (A, 7).

Proof. By the very definition of the weak-* topology, given an a € ¢%(I),
its Gelfand transform, @ is a continuous function on A. Let us now take a
equal to e; € £2(I) for a fixed i (where we use the notation from (1)). We
have
1 if o =g,
a(p) = pla) = p(e;) = § 0 if o =¢jand j # 1,
0 if o= Y.
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Thus if D (1, %) denotes the open disk in C around 1 with radius %, then

-5 (o(:3)

is open. Also, if D (0, %) denotes the open disk in C around 0 of radius %,

then
ey =a (p(0))

is open as well. So {¢;}, i € I are clopen sets in (A, 7).
Since {p;}, ¢ € I are all open, so is their union. Hence

e =0\ (Uten)
el
is closed. If {poo} is also open, then the weak-* topology would be the dis-
crete topology (that is, when every subset is open). In the discrete topology
only sets with finitely many points are compact. So if I is infinite, {poo}
cannot be open, since we know that A is compact, and it has an infinite
number of elements. U

We now recall the construction of the Alexandroff compactification. From
now on, we will assume that I is an infinite index set. Equipped with the
discrete topology, I is obviously not compact. Hence we take a new element,
say oo, and define the Alezandroff topology 7. on I, := I U {0} as follows:

(1) All open sets in I are open sets in I.
(2) All sets of the form {oco} UU are open, where U is open in I and
I'\ U is compact.

The restriction of 7, to I is the discrete topology, and so the only compact
subsets of I are finite sets. All open sets V in 7. with co € V have the form
V = {oo} U J, where J is all of I except for a finite number of points.

Theorem 2.4. The topological spaces (A, 7y) and (I, T.) are homeomor-
phic.

Proof. We consider the embedding ¢ : (A, 7.) — (I, 7c) given by t(p;) =1
(i € I), and 1(¢so) = 00. It is bijective.

We prove that ¢ is continuous by showing that pre-images of open sets
are open. This is trivial for open subsets of I. Now let V' be an open set in
(Iso, Te) such that co € V. Then V = {oc} U J, where J = I \ K for some
finite subset K of I. We have

V) = {pet Ui i € T\NK} = A\ <U{<Pi}> -
€K
=F
Since each {p;} (1 € K) is closed, and since K is finite, the set F' is closed
as well. Hence :=! (V) = A\ F is open in A. Consequently, ¢ is continuous.
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By the topological result that a one-to-one continuous function between
compact Hausdorff spaces has a continuous inverse, we conclude that ¢ must
be a homeomorphism. O

Theorem 2.5. The covering dimension of (A, 1) is zero.

Proof. Since the topological spaces (A, 7,) and (I, 7.) are homeomorphic,
we simply prove that the covering dimension of (I, 7.) is zero. We know
from [6, Corollary, p. 192] that a normal space has covering dimension zero
if and only if for all open sets U and all closed sets F' such that F C U,
there exists an open set V with empty boundary such that ' C V C U. So
assume that F' is closed and U is open in (I, 7.) and F' C U. Then we have
the following two cases:

1° oo & F. But F is closed subset of a compact Hausdorff space. Hence
F is compact in I, and so in I. Thus F is a finite set, since in I
we have the discrete topology. But then V := F'is clopen in I, and
so it has empty boundary.

2° oo € F. Then oo belongs to the open set U, and so U = {oco} U J,
where J is all of I except for a finite set K. But the boundary of
U is the boundary of its complement. Thus the boundary of U is
the boundary of the finite set K, which is clopen, and therefore it is
void. Consequently, V' := U does the job.

This completes the proof. O

3. THE BASS AND TOPOLOGICAL STABLE RANKS OF A

In this section, we prove that the topological stable rank of A is 1. It
follows that the Bass stable rank of A is then equal to 1 as well. We recall
the pertinent definitions below:

Definition 3.1. Let R be a commutative ring with an identity element,
denoted by 1. Let n € N. An element a = (ay,...,a,) € R" is called
unimodular if there exists a b = (by,...,b,) € R"™ such that

Zn: brap = 1.
k=1

We denote by U, (R) the set of unimodular elements of R™.
We say that a = (ay,...,ay,) € Uy(R) is reducible, if there exist elements
hi,...,hn_1 € R such that

(CLl + hlarn cesOp—1 T+ hn—lan) € Un—l(R)

The Bass stable rank of R, is the least n € N such that every a € U,+1(R)
is reducible, and it is infinite if no such integer n exists.

Now let R denote a commutative unital Banach algebra. The topological
stable rank of R, is the minimum n € N such that U, (R) is dense in R", and
it is infinite if no such integer exists.
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Theorem 3.2. The topological stable rank of A is 1.

Proof. We prove that the invertible elements of the Banach algebra A are
dense. Suppose that o € C and a € ¢2(I) and let ¢ > 0.
First choose a nonzero 3 € C such that |a — 8| < 5. Next choose a finite

subset J C I such that for all i € I\ J, |a;| < g (Such a choice of J is
possible; see [10, Note, p. 18].)
Next choose the finitely many complex numbers b; (j € J) such that

2
. _pl2 < &
|6+ bj| >0 and Z\a] bi|” < T
jeJ
Finally, for i € I\ J, define the complex numbers b; by b; = a;. Then
b:= (bi)ie[ S 62(1).
We claim that Se + b is invertible in A. Indeed for i € I\ J, we have

foi(e + 0] = 15+ b = 18 +ail 2 18]~ aa] = I - 12 = L

Furthermore, for the finitely many j € J, we have |p;(Be+b)| = |5+b;| > 0.
Finally, |¢oo(Be + b)| = |5] > 0. Hence

inf b)| >0
inf |(Be + )| > 0,

and so (e + b is invertible in A. Moreover,

€ € €
I(ae+a) = (Be+b)l| = la =B+ la—dll2 < 5+ Y la; = bl < gt =e
JjeJ

This completes the proof. O

Recall that a commutative ring R with an identity element is said to have
unit 1-stable range if whenever a,b € R satisfy aR + bR = 1, there exist
units u,v € R such that au + bv = 1. By Theorem 3.2, we can also show
that in fact the ring A has unit 1-stable range:

Corollary 3.3. A has unit 1-stable range.

Proof. Suppose that the pair (a,b) € A? is unimodular, that is, there exist
z,y € A such that x © a4+ y ® b = e. Since the topological stable rank of
A is 1, it follows that we can approximate x,y by units u, v, respectively, to
any degree of accuracy. We have

uOa+yob=e—((r—u)@a+(y—v)Ob).
=:heA

By choosing u, v sufficiently close to z,y, respectively, we can ensure that
|h|| < 1, and so (e — h)™' € A. Hence U ®a+V ®b = e, where U :=
u® (e—h)"tand V :=v® (1 — h)~! are units. Consequently, A has unit
1-stable range. O
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In fact for any real or complex Banach algebra R with topological stable
rank 1, a similar proof as that of Corollary 3.3 shows that R also has unit
1-stable range.

Corollary 3.3 is in sharp contrast to a result of the first author and Ray-
mond Mortini [9, Corollary 3], where it was shown that if H(G) denotes the
ring of holomorphic functions in a planar domain G C C, equipped with
pointwise addition and pointwise multiplication, then every subring R such
that

CC RC H(G)
does not have unit 1-stable range!

We also note that Corollary 3.3 implies in particular that the Bass stable
rank of A is 1.

Corollary 3.4. The Bass stable rank of A is 1.

4. DIVISORS IN A

In this section we give a necessary and sufficient condition for z € A to
be a divisor of a given z € A. Define the zero set of the Gelfand transform
as

Z(z) == {p € Ic | Z(¢) = 0}.

For a divisor z of z, there exists a y € A such that z ©® y = 2z, which implies
Z(z) = Z(zy) = Z(x) U Z(y)

and so Z(Z) C Z(%).

Theorem 4.1. Let the index set I be infinite, t = ae +a,z =ve+c € A,

Z(Z) C Z(2), and assume that a« # 0. Then z divides z, that is, there exists
y=PBe+bec A suchthat x Oy = z.

Proof. The equation z ® y = z is equivalent to
(a+a)(B+b)=(y+a) (i€l) and af=7,

where b € ¢2(I). By assumption a # 0. In light of the last condition, we
define g € C by

=7
Bi="1.

We now construct the sequence b € £2(I). Let J denote the (at most count-
able) set of indices such that a; # 0 or ¢; # 0. In order to define b; (i € I),
we consider the following two cases separately:

1° 4 € I'\ J. In this case we have a; = 0 and ¢; = 0. Consequently,

b; := 0 will do.
2° ¢ € J. The equation o + a; = 0 can be satisfied for only finitely
many indices i € {j1, -+ ,jn} C J (since a # 0 and a; — 0, where

the latter means that for any € > 0, there exists a finite subset K of
I such that for each i € K, |a;| < ¢).
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Suppose that i € {ji,---,jn} C J. In this case we have a+a; = 0.
It follows that v+ c¢; = 0 since Z(z) C Z(Z). Again, b; := 0 does the
job.

Now suppose, on the other hand, that i € J\ {j1,--- ,jn}. Then

we must solve
Ttéa

b; =
Bibi=To0

that is,

po— Y TG 0 Ak T
"Tata a alata)

We note that since (|a+a;|)ie s\ (), jy} is bounded below away from
0 (because o # 0 and a; — 0), we have > ;e n g5 . s |bi]? < o0.

Thus, in all cases we defined b;, and we have b € £2(I). O

The next result characterizes divisors in the remaining case when o = 0
(note that the condition Z(Z) C Z(z) implies that v = 0 as well).

Theorem 4.2. Let the index set I be infinite, t = ae + a,z = ve+c € A,
Z(z) C Z(Z), and assume that « = v = 0. Define J := {j € I | a; # 0}.
Then x divides z, that is, there exists y = fe +b € A such that x Oy = z if
and only if

Cj 2
- — [ <+4o0.
Py

c
= lim - ezists and
g := lim 2 |a

icJ a;
J jeJ

(If J is finite, then B :=0, b; ::Z_j- (G€J),b:=0(el\J)willdo.)

Proof. The equation z ®y = z is equivalent to a;(3+b;) = ¢; (i € I), where
be 2(I).
Assume that x © y = z has a solution y € A. Then

—h N = i
f=lim@B+b;) =lim o

exists and is finite. Moreover,

>

jeJ

2
= |bj]* < +oo.

jeJ

2
a;

Now assume that

2
e
- B8] < +o0.

a;

.G .
B3 = lim -~ exists and
jeJ a;

jeJ
Then we define b; := 0 for all indices ¢ ¢ J, and define
bj=2-8 el

aj

Then b = (b;)ies € £*(I), and since a;(3 + b;) = ¢; for all i € I, we have
r @y =z wherey:= e+ bec A O
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Theorem 4.2 shows that = divides z if, for example, J is finite or ¢; # 0
only for finitely many indices j.

5. CLOSED IDEALS IN A

In this section we characterize all closed ideals of A. For a given closed
subset B C I, we define

ip:={r e A|2(p)=0forall p € B}

It is an easy exercise to show that ip is a closed ideal. For closed sets this
defining set B is unique, that is:

Theorem 5.1. If By, By are closed subsets of I such that ip, =ip,, then
Bi = B».

Proof. Assume that ip, = ip,, but B; # By. Without loss of generality, we
may assume that there exists j; € By \ Bs. Two cases are possible for j;:

1° j; = oo. Since Bs is a closed subset of the compact Hausdorff space
I, it follows that B is compact. Since oo € By, we must have
that By C I, and so B is compact in I. Because I has the discrete
topology, we know that the only compact subsets of I are ones which
are finite. Therefore By is finite. Defining x :=e — jeB, €, We see
that z € ip,, while x ¢ ip, (since co € B; and Z(c0) =1 # 0).

2° ji1 # oo. But then e, & ip, (since j; € By), while e;, € ip, (since
J1 & Ba).

This completes the proof. O

Following the ideas in [2], we prove the following characterization of closed
ideals.

Theorem 5.2. Let the index set I be infinite. An ideal ¢ is closed in A if
and only if ¢ =ip for some closed B C I,. In fact, B =), .. Z(Z).

xreEC

Proof. If B C I is closed, then ¢ := ip is always a closed ideal. So we
assume that ¢ is an arbitrary closed ideal. Define the closed set

B::ﬂZ(fﬁ):{@EAVE\(@):Oforallec}.
zec
Obviously we have the inclusion ¢ C ig. We now prove the reverse implica-
tion. To this end, we distinguish two cases: there exists w = de +d € ¢ with
0 # 0 or we have ¢ C kergoo:
1° Suppose that there exists w = de +d € ¢ with § # 0. We have
B C Z(w). Since Z(w) C I is compact, and I has dicrete topology,
we can conclude that Z(w), and hence also B, must be finite.

Claim: There exists = € ¢ such that Z(z) = B.
Let us denote by J the set of at most countable many indices with
nonzero Fourier coefficients of d = w—de. For all j € J\ B, we must
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have 0 + d; # 0, while for all j € B we have d; = —4. Since B is
finite we may write

w:5€+2djej:5€+2dj€j+ Z djej,
jeJ jeB jEJ\B
that is,

w=27 e—Zej + Z dje;.

j€B jeJ\B
Since for all j € J\ B we have § + d; # 0, it follows that

ej:w@<6jjdj> €c¢, jeJ\B.

Thus w € ¢ now implies that e; € ¢ for all j € J\ B. Hence
> jesnn dje; € ¢ as well, because ¢ is closed. Therefore

zi=w - Z dje; =6 e—Zej

€c jeJ\B JEB
———
cc
belongs to ¢. This proves the claim.

Given z € ip, we have B C Z(%), that is, Z(z) C Z(Z). By
Theorem 4.1, there exists a y € A such that t ®y = z, and so z € ¢
(because z € ¢). Consequently, ip C ¢ in the first case.

Now suppose that ¢ C ker . It follows that co € B. Let z € ip be
given, and let J be the index set of nonzero Fourier coefficients c; of

z. We must prove that z € ¢. For j € J\ B there exist x; € ¢ such
that Z;(j) = a; # 0. Hence for j € J\ B, we have

€j
e, =x;0 =] €cr,
aj

because x; € ¢. Since B C Z(Zz), we have
Z = E Cj€j = E Cj€j.
=Y jE€JI\B

Let J\ B = {j1, 2,73, .- }. Hence starting with the partial sums of

z, namely,
n
“n = E :Cjkejk )
k=1

we conclude that all partial sums 2z, belong to ¢. Thus also z € ¢,
proving the reverse implication ig C ¢ in this second case when
¢ C ker .

This completes the proof. O
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The question now arises: when is a closed ideal principal? We answer this
in Theorem 5.4, but first we make the following observation.

Lemma 5.3. Let the index set be infinite, and let ¢ be a closed ideal in A,
and let B := (,c.Z(Z). If ¢ is principal and ¢ = (xq) for some zo € A,
then we have B = Z(xg).

Proof. We know that ¢ = ip.

Since g € ¢, we have B = (.. Z(Z) C Z(z0).

If x € ¢ = (x9), then z = 29 ® y for some y € A, and so T = Zgy. Thus
it follows that Z(zg) C Z(Z). Since this happens with each x € ¢, it follows
that Z(zo) C (e Z(z) = B. Consequently, B = Z(2y). O

Theorem 5.4. Let the index set be infinite, and let ¢ be a closed ideal in
A, and let B := (.. Z(T).

(1) If ¢ is principal and ¢ = (zg), where zg = ae +a, a € £2(I) and
0+# a € C, then B 1is finite.
(2) If B is finite, then
Ty =€ — Z e;

JjE€EB

reC

s a generator for c.
(3) If ¢ is principal and ¢ = (xg), where xg € £2(I), then I \ B is finite.
(4) If I\ B is finite, then ¢ is principal, and a generator is given by

xTo ‘= E €;.

icI\B
Proof. We know that ¢ = ip.

(1) Assume that ¢ is principal and ¢ = (z¢), where 29 = ae+a, a € £>(I)
and 0 # « € C. By Lemma 5.3, B = Z(zg). Now we will show that
Z(zg) is finite. Since a # 0, we must have a + a; = 0 for all
J € Z(xo). But a; — 0 (that is, for every € > 0, there exists a finite
subset K of I such that for each i € I\ K, |a;| < €), and so there
are only finitely many indices ¢ € I such that a + a; = 0. Hence
B = Z(Z) is finite.

(2) For the reverse assertion we now assume that B is finite. Define

xo =€ — Z e;.

jeB

Then we have
Z(x0) =B =) 2.

zec
So for a given z € ¢ = ip, there holds that Z(zg) C Z(Z). From
Theorem 4.1, there exists y € A such that g ®y = z. Consequently,
ip C (xg). Since Z(zg) = B, it is clear that x¢ € ip, and so we have
(zg) C ip. Hence (z9) =ip = .
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Now assume that ¢ is principal, ¢ = (zg), where 29 € ¢2(I). By
Lemma 5.3, B = Z(xg). Since zg € (2(I), I\ Z(Zg) is at most
countable, and so also I \ B must be at most countable. We must
prove that it is in fact finite. Suppose, on the contrary, that I\ B is
infinite, say I\ B = {j1,J2,J3, - }. We have

Trog = E a;e; = E ajej: E ajkejk.

il jeI\B keN
We now define
o k.. .
z = Z(—l) @, €y -
keN

Of course we have Z(zg) = Z(z) = I\ B, but the limit (see the
notation of Theorem 4.2)
s
= lim L = lim(-1)*
b jel}{lB a; klgl\ll( )
doesn’t exist. By Theorem 4.2, it follows that z ¢ (zp), which is a
contradiction, since we know that z € ip = ¢. Consequently, I \ B

must be finite.
Assuming that I\ B is finite, define

xTg - — E Ck.

keI\B

Clearly, Z(zog) = B, and so zo € ip = ¢. Thus (z9) C ¢. For
the reverse inclusion, we use Theorem 4.2. If z € ¢, then we have
B =, Z(Z) C Z(%), and so Z(xo) C Z(Z). But the set of indices
J of nonzero Fourier coefficients of z¢ is I \ B, which is finite. So by
Theorem 4.2, we obtain that z is divisible by xg, that is, z € (x¢).
Consequently, ¢ C (zg).

This completes the proof. O

6. PRIME IDEALS IN A

The results in this section follow closely some of the results on prime

(1)

(2)

ideals from Gillman and Jerison [4, 2.9, 2.11, 14.G.3], but there the results
were proved for the ring of real-valued continuous functions on a topological
space.

6.1. Which z-ideals are prime?

Definition 6.1.

If x € A, then the zero set Z(x) of © € Alis
Z(x)=2Z(Z) (CIx)-

If i is an ideal in A, then the zero set Z[i] of the ideal i is
Zi| ={Z(x) | z € i}.
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(3) An ideal i in A is called a z-ideal if whenever z € A is such that
Z(z) € Z[i], then we have x € i.
(4) A nonempty subfamily F of Z[A] is called a z-filter in Z[A] if
(a) 0 & F,
(b) if Z1,Z5 € F, then Z1 N Zy € F,
(C) if Z1 e F, Zy € Z[A], and Z1 C Zo, then Zy € F.

Lemma 6.2. Let © € A. Then T* and |Z| are the Gelfand transforms of
some elements from A, where -* denotes complex conjugation. Moreover, if
T is real-valued, then max{x,0}, min{x,0} are also the Gelfand transforms
of some elements from A.

Proof. Let x = ae +a, a € C, a = (a;)ie; € (*(I). Define z = |aje + ¢,
where ¢ = (|a + a;| — |a|)ier. We have

I3 =" lla+ail —lall* <3 lata—af =" Jal* = al} < o,

i€l i€l i€l
and so ¢ € £2(I). Thus z € A. Moreover,
Z(poo) = o] =12(p0)l,
2pi) = ol +la+ail — o] = |a+ai| = |2(#)],

and so z = |Z|.
Similarly, with y := a*e + (a});er, we have that y € A and y = z*.
Observing that

~ T+ |T P T—|z
max{z,0} = +2| | and min{z,0} = 2| |,
the remaining claims are also proved. O

Lemma 6.3. Ifi is a proper ideal in A, then Z[i] is a z-filter in Z[A].

Proof. Since i does not contain a unit, () ¢ Z[i].

Let Zhy = Z(x1),Z2 = Z(x2) € Z[i], where z1,22 € i. By Lemma 6.2,
there exist 21,22 € A such that 23 = 77" and 25 = Z»". Since i is an ideal,
it follows that 21 ® 1 + 20 ® o € i. Hence
Z(@)NZ(@3) = Z(|71*+7e?) = Z(A71+572) = Z(21021+20x,) € Z]i],

and so Z1 N Zy € Z]i|.
Finally, let Z1 = Z(x1), where 21 € i, and let Zy = Z(x2) D Z;, where
x9 € A. Since i is an ideal, it follows that xo ® 21 € i. Thus
Zo=71UZy = Z(:L‘g @1‘1) € Z[l]
So Z|i] is a z-filter in Z[A]. O

Theorem 6.4. For any z-ideal i in A, the following are equivalent:
(1) i is prime.
(2) i contains a prime ideal.
(3) For allxz,y € A, 2y =0, then x €1 or y € i.
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(4) For every x € A such that T is real-valued, there is a zero set in Z|i]
on which T does not change sign.

Proof. (1) implies (2): Trivial.

(2) implies (3): Suppose that i contains a prime ideal p. If z,y € A satisfy

7y = 0, then 3:/®\y =0, and so x @y = 0 € p. Since p is prime, it follows

that x € p or y € p. Consequently, x € ior y € i.

(3) implies (4): Suppose that x € A is such that ¥ is real-valued. Consider
¢ :=max{Z,0} and ¢ :=min{Z,0}.

From Lemma 6.2, there exist u,v € A such that & = ¢ and ¥ = ¢». We have
uv = 1y = 0, and so by the hypothesis, u € i or v € i. But if u € i, then for
all i € Z(u) € Z]i], we have T < 0. And if v € i, then for all i € Z(v) € Z[i],
we have 7 > 0.

(4) implies (1): Let u,v € A be such that u ® v € i. Consider the function
p = [ul — [v].
By Lemma 6.2, there exists an « € A such that ¥ = ¢. By the hypothesis,
there is a zero set J € ZJi| on which ¢ is nonnegative, say. Then for all
i € J, |u] > [0]. But this implies that every zero of @ in J is also a zero of
v. Hence
Zw)>JNZu)=JNZuev) e Z[.

Since i is a z-ideal, it follows that v € i. The proof in the case when ¢ is
nonpositive is similar. Consequently, i is prime. U

6.2. Every prime ideal is contained in ker ¢,.

Theorem 6.5. If a nonzero prime ideal in A is contained in a maximal
ideal and is not equal to it, then the maximal ideal is ker o .

Proof. Let p be a prime ideal in A4 and suppose that p C ker ¢; for some
i € Io. Thus there exists an = € (ker ¢;) \ p. But = € ker ; implies that

rOe =pi(x®e)e =0.

Since p is prime, 0 = z ® e; € p, and zx is not in p, we must have e¢; € p,
contradicting p C ker ;. O

6.3. Description of all prime z-ideals when [ = N. In this section we
establish a one-to-one correspondence between free ultrafilters and nonmax-
imal prime z-ideals when the index set is countable. First we recall the
definition of an ultrafilter.

Definition 6.6. A filter on a set X is a collection F of subsets of X satisfying

(F1) X e F,but 0 ¢ F.
(F2) fUe€e Fand U CV C X, then V € F.
(F3) A finite intersection of sets in F is in F.
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An ultrafilter on a set X is a filter 7 on X which is maximal with respect to
inclusion, that is, it is a filter F for which any other filter 7/ on X satisfying
F C F' actually satisfies F' = F.

An ultrafilter F on a set X is called a free ultrafilter if (.U = 0.

In order to prove Theorem 6.8, we will need the following characterization
of ultrafilters; see for example [5, p. 83, L.(e)].

Proposition 6.7. A filter F on a set X is an ultrafilter if and only if for
every set U C X, either U € F or X \U € F.

Theorem 6.8. The mapping
Frop={zecAl|Z(x)\{x}eF}

18 one-to-one from the family of all free ultrafilters on N onto the family of
all nonmazimal, prime z-ideals of A contained in ker pq.

Proof. Let F denote a free ultrafilter on N and define
p={rxeA|Z(x)\{x} e F}

First we show that p is a nonmaximal, prime z-ideal of A contained in
ker oo .

(1) p is an ideal.

0 € p, since Z(0) \ {00} =N e F.

Given z,y € p, we have Z(z) \ {oo} € F and Z(y) \ {0} € F.
Hence Z(z +y) \ {oo} O (Z(z) \ {oc}) N (Z(y) \ {o0}) € F. So
Z(x+y)\{oco} € F, as it is a superset of a set in the filter F.

Finally, let € pandy € A. Then Z(x0y) = Z(x)UZ(y) D Z(z).
So Z(x ®y) \ {oo} € F, since it contains Z(z) \ {0} € F.

(2) p is not trivial and not all of A.

Since F is an ultrafilter, given subset U C N, either U € F or
N\ U € F. Taking U = {1}, we have either e —e; € p or e; € p.
Since neither e — e; nor e; is 0, we conclude that p is different from
the zero ideal.

Since () ¢ F, it follows that p cannot contain a unit of A.

(3) p is a prime ideal.

Let z,y € A be such that  ©® y € p. But then we have that
U:=Z(xzoy)\{oo} = (Z(z)\{cc})U(Z(y) \ {oo}) € F. If neither
Z(z) \ {oo} nor Z(y) \ {oo} belong to F, then their complements
do belong to F, and so does the intersection of these complements,
which is equal to N\ (Z(z®y)\ {oc}) = N\ U. But this furthermore
implies that ) = U N (N\ U) € F, a contradiction. Thus either z or
y belongs to p. Consequently, p is prime.

(4) p is a z-ideal.

Given z € A such that Z(z) = Z(y) for a y € p, we have that

Z(z)\ {0} =Z(y) \ {0} € F, and so = € p.
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(5) p is contained in ker po.

Since F is a free ultrafilter on N, we have ;.U = 0. So it
follows that (,c, Z(z) C {oc}. Hence p is not contained in any of
the maximal ideals ker ¢,,, n € N. By Theorem 6.5, it follows that p
is contained in ker .

(6) p is not mazimal.

Suppose that p = ker 9. Defining z = > 7, %en, we see that
x € ker oo = p. Since Z(z) = {oo}, we have ) = Z(z) \ {0} € F,
a contradiction.

Now p denote a nonmaximal prime z-ideal in ker po,. We now show that

Fi=A{Z(x)\ {oc} | € p}

is a free ultrafilter on N.

(1) F is a filter.

(F1) N belongs to F since 0 € p. Also, () € F since otherwise there
exists an element x € p such that Z(z) = {oo}, and we prove
now that this implies that p = ker po. Let y € ker g \ p.
By Lemma 6.2, 7* = 7y and * = ¢ for some zg,y9 € A. So
Z(xOxo+yOuyo) = Z(x)NZ(y) = {oo} = Z(x). Since p is a
z-ideal, we conclude that x ©® xg +y ® yo € p. Because x € p, it
follows that y ® yo € p. By assumption we have y & p, and so
Yo € p. But this leads to a contradiction since Z(y) = Z(yo) and
p being a z-ideal, gives y € p. So no such function y € ker v \ p
can exist.

(F2) Next we show that that if U € F and U C V, then V € F.
Take = € p such that Z(x) \ {oco} = U. Since V' C N, we can
find a y € A such that Z(y) \ {00} = V (for example, we can
take y = anv %en). But then z ® y € p and furthermore
Z(x ©y) \{oo} = (Z(x) \ {oo}) U (Z(y) \ {o0}) =U UV =V.
Consequently, V € F.

(F3) If U,V € F, the we now show that U NV € F. Take z,y € p
such that Z(z)\ {oc} =U and Z(y) \ {o0} = V. Let zg,y0 € A
be such that g = 7* and g9 = y*. Then the intersection
UNV =Z(x0xo+yOyo)\{oo} € F because xOxo+yOyo € p.
Thus a finite intersection of sets in F is in F.

Hence F is a filter.

(2) F is an ultrafilter.

We will use the characterization of ultrafilters given in Proposi-
tion 6.7. Let U C N be given. Take functions x,y € ker ¢, such that
Z(z)\{oo} = U and Z(y)\{oo} = N\U (for example, x := >, s le,
andy := Y s 2e, do the job). But then Z(z@y) = NU{oo} = N,
that is, z©®y = 0 € p. Since p is prime, either = € p or y € p, proving
that either U € F or N\ U € F. Consequently, F is an ultrafilter.
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(3) F is free.

Suppose on the contrary that F is not free, that is, there exists
an € N such that n € (;c-U. Since F is an ultrafilter, it follows
that either {n} € F or N\ {n} € F. We consider the two cases
separately:

1° N\ {n} € F. This is impossible because n € [z U.

2° {n} € F. Then every superset of {n} also belongs to F, that
is, F = {U C N | n € U}. This means that every Gelfand
transform vanishing at n belongs to p since p is a z-ideal. In-
deed, if y € A is such that n € Z(y), then Z(y) € F, and so
there exists a x € p such that Z(y) = Z(z) \ {oo}. Thus either
we have that Z(y) = Z(x) € Z[p] (which implies by the z-ideal
property of p that y € p) or Z(y) U {oo} = Z(x). But the latter
implies Z(y © Yoy 2en) = Z(y) U {oc} = Z(z) € Z[p], which
implies, by the z-ideal property of p, that y © > %en € p.
But since p is prime, we have y € p because ) .y %en Zp
(otherwise Z(},cn 1€,) \ {00} = 0 € F, which is absurd. So
we have shown that every function vanishing at n belongs to p.
But this implies that p = ker ¢,, showing ker ¢, = p C ker ¢,
a contradiction. Thus the case {n} € F is impossible as well.

Consequently, the ultrafilter F is free.

With the above defined ultrafilter F corresponding to the given prime ideal
p, we can check that

p={xecA| Z(z)\{cc} € F}.

Hence the mapping in the statement of the theorem is onto.
Finally we show that the mapping is one-to-one. Suppose the two distinct
ultrafilters F and F’ give rise to the same prime ideal p, that is,

p={zecA|Z(x)\{oo} €F} and p={recA|Z(x))\ {0} e F}

We can assume without loss of generality that U € F\F'. If z := anU %en,

then Z(z) = U, and so x € p. But then U = Z(z) \ {oc} € F/, a contradic-
tion. U

Remark 6.9. The set of all free ultrafilters on N is very large. Indeed, it
can be indentified with the set SN\ N, where SN denotes the Stone-C'ech-
compactification of N. From [4], Theorem 9.2, we known that the cardinality
of ON is

|ON| = 2¢and [N\ N| =2¢,

where ¢ denotes the cardinality of R, that is 280, Hence there are many
nonmaximal prime z-ideals in Theorem 6.8.

An interesting open question that now arises is what the analogue of
Theorem 6.8 would be when [ is uncountably infinite.
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