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Abstract. Let I be any index set. We consider the Banach algebra
Ce + ℓ

2(I) with the Hadamard product, and prove that its Bass and
topological stable ranks are both equal to 1. We also characterize divi-
sors, maximal ideals, closed ideals and closed principal ideals. For I = N
we also characterize all prime z-ideals in this Banach algebra.

1. Introduction

The Hadamard product f ⊙ g of power series f and g is defined by

(f ⊙ g)(z) :=

∞∑

n=0

anbnz
n, where f(z) =

∞∑

n=0

anz
n and g(z) =

∞∑

n=0

bnz
n.

Algebras of power series with the Hadamard product, and the structure of
their ideals have been studied in several works; see for example Brooks [1],
Caveny [3], Brück and Müller [2], Render and Sauer [8], and Render [7].

In this article, we study the algebra of square summable sequences, in-
dexed by an arbitrary index set I with respect to the Hadamard product.
We use the idea of summability of a series where the terms depend on any
set I of indices whatsoever and where consequently the terms of the series
are not ordered; see for example Laurent Schwartz [10, I.I.I]. This definition
is recalled below:

Definition 1.1. Let I be any set of indices and (ui)i∈I be a family of
complex numbers parameterized by the set of indices I. Then the series∑

i∈I

ui is said to be summable with sum S and is written
∑

i∈I

ui = S if for

every ǫ > 0, there is a finite subset of indices J ⊂ I such that for any finite

subset of indices K with J ⊂ K, we have |S − SK | ≤ ǫ, where SK :=
∑

i∈I

ui.

It can be shown that if
∑

i∈I

ui is summable with sum S, then all the terms

are zero except for a at most countable subset C ⊂ I, that is, ui = 0 for all
i 6∈ C.
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Definition 1.2. Define ℓ2(I) to be the set of all families of complex numbers

a = (ai)i∈I parameterized by I such that
∑

i∈I

|ai|
2 is summable.

With addition and scalar multiplication defined term-wise, this is a com-
plex vector space, and it becomes a complex algebra with the Hadamard
product, defined by:

(a⊙ b)i = aibi (i ∈ I), a = (ai)i∈I , b = (bi)i∈I ∈ ℓ2(I).

Moreover, it is a Banach algebra with the norm

‖a‖2 :=

√∑

i∈I

|ai|2.

However it does not have an identity element. We unitize the Banach algebra
by attaching the identity element e, to obtain the Banach algebra Ce+ℓ2(I),
consisting of all expressions of the type αe+ a, where α ∈ C and a ∈ ℓ2(I).
The multiplication ⊙ is extended from ℓ2(I) to Ce + ℓ2(I) as follows: if
α, β ∈ C and a, b ∈ ℓ2(I), then

(αe+ a) ⊙ (βe+ b) = αβe + βa+ αb+ a⊙ b.

The norm on Ce + ℓ2(I) is given by ‖αe + a‖ = |α| + ‖a‖2, for α ∈ C and
a ∈ ℓ2(I). We will denote the Banach algebra Ce+ ℓ2(I) by A. For a given
element x = αe + a ∈ A, where α ∈ C and a = (ai)i∈I ∈ ℓ2(I), we call the
ai’s the Fourier coefficients of a (and of x).

A standard model of A in case I = N by holomorphic functions in the
disk D = {z | |z| < 1} can be constructed as follows. The elements of A can
be viewed as functions f of the form

f(z) = α
1

1 − z
+

∞∑

n=1

anz
n−1 =

∞∑

n=1

(α+ an)zn−1 (z ∈ D) ,

where α ∈ C, and
∞∑

n=1

anz
n−1 ∈ H2(D).

Here H2(D) denotes the Hardy space of the unit disk. The multiplication
⊙ in ℓ2(N) now corresponds to convolution in H2(D). The unit element in
this model for A is the function e, given by

e(z) =
1

1 − z
(z ∈ D) .

Our main results are the following:

(1) In Section 2, we describe the maximal ideal space of A as a topologi-
cal space (when it is equipped with the Gelfand topology). We show
that the maximal ideal space is homeomorphic with the Alexandroff
compactification I∞ of the index set I, where I is given the discrete
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topology. Moreover, we show that the covering dimension of the
maximal ideal space of A is 0.

(2) We show in Section 3 that the Bass and topological stable rank of
A are both equal to 1. Moreover, A has unit 1-stable range.

(3) In Section 4 a necessary and sufficient condition for x ∈ A to be a
divisor of a given z ∈ A is given.

(4) In Section 5, we characterize all closed ideals of A. Moreover, we
describe closed principal ideals.

(5) In Section 6, we study prime ideals of A. In particular, we investigate
which z-ideals are prime, and prove that every prime ideal is con-
tained in kerϕ∞ = ℓ2(I). Finally, when I is countable, we establish
a correspondence between free ultrafilters on I and all nonmaximal,
prime z-ideals of A contained in kerϕ∞ = ℓ2(I).

2. The maximal ideal space of A

In this section we will describe the maximal ideal space of A. In particular,
we will show that the maximal ideal space of A equipped with the Gelfand
topology can be identified with the one point Alexandroff compactification
I∞ of I, where I is given the discrete topology.

Theorem 2.1. The maximal ideal space of A is given by

∆ = {ϕi|i ∈ I} ∪ {ϕ∞},

where for α ∈ C and a = (ai)i∈I ∈ ℓ2(I),

ϕi(αe+ a) := α+ ai (i ∈ I),

ϕ∞(αe+ a) := α.

Proof. One can check that ϕi (i ∈ I) as well as ϕ∞ are complex homomor-
phisms.

Suppose on the other hand, that ϕ is a complex homomorphism. For
j ∈ I, define ej ∈ ℓ2(I) by

(1) ej(i) =

{
1 if i = j,
0 if i 6= j.

We note that

ei ⊙ ej =

{
ei if i = j,
0 if i 6= j.

Thus

ϕ(ei)ϕ(ej) = ϕ(ei ⊙ ej) =

{
ϕ(ei) if i = j,
0 if i 6= j.

Hence it follows that ϕ(ei) ∈ {0, 1} for all i ∈ I. We have the following two
cases:
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1◦ There exists an index i∗ ∈ I such that ϕ(ei∗) = 1. For j ∈ I, we
then have

ϕ(ej) = ϕ(ej) · 1 = ϕ(ej) · ϕ(ei∗) =

{
1 if j = i∗,
0 if j 6= i∗.

Because ϕ(e) = 1, we conclude ϕ(αe + a) = α + ϕ(a) = α + ai∗ =
ϕi∗(αe+ a), for all α ∈ C and a ∈ ℓ2(I). Consequently, ϕ = ϕi∗ .

2◦ For all indices i ∈ I, we have ϕ(ei) = 0. By using the continuity of
ϕ we then have

ϕ(αe + a) = α+
∑

i∈I

aiϕ(ei) = α = ϕ∞(αe+ a),

for all α ∈ C and a ∈ ℓ2(I). Consequently, ϕ = ϕ∞.

This completes the proof. �

Analogous to [7, Theorem 4], from the functional calculus for Banach
algebras, we have the following consequence of the above Theorem 2.1:

Corollary 2.2. Let N0 := N∪{0} and D := {z ∈ C | |z| < 1}. Suppose that
U is an open neighbourhood of 0 ∈ C and ϕ : U → C is holomorphic with
ϕ(0) = 0. Let

f =
∑

k∈Nn
0

akz
k ∈ H2(Dn)

(here zk := zk1

1 . . . zkn
n for k = (k1, . . . , kn) ∈ Nn

0 ), be such that ak ∈ U for
all k ∈ Nn

0 . Then

F :=
∑

k∈Nn
0

ϕ(ak)zk ∈ H2(Dn).

(Here H2(Dn) denotes the Hardy space of the polydisk Dn.)

Proof. This follows from the fact that the spectrum of f (when f is consid-
ered as an element in the Banach algebra A with I = Nn

0 ), is contained in
U . �

Endowed with the weak-∗ topology τ∗, (∆, τ∗) is a compact Hausdorff
space.

Lemma 2.3. All the one point sets {ϕi}, i ∈ I are clopen sets in (∆, τ∗).
If I is an infinite set, then {ϕ∞} is closed, but not open in (∆, τ∗).

Proof. By the very definition of the weak-∗ topology, given an a ∈ ℓ2(I),
its Gelfand transform, â is a continuous function on ∆. Let us now take a
equal to ei ∈ ℓ2(I) for a fixed i (where we use the notation from (1)). We
have

â(ϕ) = ϕ(a) = ϕ(ei) =






1 if ϕ = ϕi,
0 if ϕ = ϕj and j 6= i,
0 if ϕ = ϕ∞.
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Thus if D
(
1, 1

2

)
denotes the open disk in C around 1 with radius 1

2 , then

{ϕi} = êi
−1

(
D

(
1,

1

2

))

is open. Also, if D
(
0, 1

2

)
denotes the open disk in C around 0 of radius 1

2 ,
then

∆ \ {ϕi} = êi
−1

(
D

(
0,

1

2

))

is open as well. So {ϕi}, i ∈ I are clopen sets in (∆, τ∗).
Since {ϕi}, i ∈ I are all open, so is their union. Hence

ϕ∞ = ∆ \

(⋃

i∈I

{ϕi}

)

is closed. If {ϕ∞} is also open, then the weak-∗ topology would be the dis-
crete topology (that is, when every subset is open). In the discrete topology
only sets with finitely many points are compact. So if I is infinite, {ϕ∞}
cannot be open, since we know that ∆ is compact, and it has an infinite
number of elements. �

We now recall the construction of the Alexandroff compactification. From
now on, we will assume that I is an infinite index set. Equipped with the
discrete topology, I is obviously not compact. Hence we take a new element,
say ∞, and define the Alexandroff topology τc on I∞ := I ∪ {∞} as follows:

(1) All open sets in I are open sets in I∞.
(2) All sets of the form {∞} ∪ U are open, where U is open in I and

I \ U is compact.

The restriction of τc to I is the discrete topology, and so the only compact
subsets of I are finite sets. All open sets V in τc with ∞ ∈ V have the form
V = {∞} ∪ J , where J is all of I except for a finite number of points.

Theorem 2.4. The topological spaces (∆, τ∗) and (I∞, τc) are homeomor-
phic.

Proof. We consider the embedding ι : (∆, τ∗) → (I∞, τc) given by ι(ϕi) = i
(i ∈ I), and ι(ϕ∞) = ∞. It is bijective.

We prove that ι is continuous by showing that pre-images of open sets
are open. This is trivial for open subsets of I. Now let V be an open set in
(I∞, τc) such that ∞ ∈ V . Then V = {∞} ∪ J , where J = I \K for some
finite subset K of I. We have

ι−1 (V ) = {ϕ∞} ∪ {ϕi | i ∈ I \K} = ∆ \

(
⋃

i∈K

{ϕi}

)

︸ ︷︷ ︸
=:F

.

Since each {ϕi} (i ∈ K) is closed, and since K is finite, the set F is closed
as well. Hence ι−1 (V ) = ∆ \F is open in ∆. Consequently, ι is continuous.
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By the topological result that a one-to-one continuous function between
compact Hausdorff spaces has a continuous inverse, we conclude that ι must
be a homeomorphism. �

Theorem 2.5. The covering dimension of (∆, τ∗) is zero.

Proof. Since the topological spaces (∆, τ∗) and (I∞, τc) are homeomorphic,
we simply prove that the covering dimension of (I∞, τc) is zero. We know
from [6, Corollary, p. 192] that a normal space has covering dimension zero
if and only if for all open sets U and all closed sets F such that F ⊂ U ,
there exists an open set V with empty boundary such that F ⊂ V ⊂ U . So
assume that F is closed and U is open in (I∞, τc) and F ⊂ U . Then we have
the following two cases:

1◦ ∞ 6∈ F . But F is closed subset of a compact Hausdorff space. Hence
F is compact in I∞, and so in I. Thus F is a finite set, since in I
we have the discrete topology. But then V := F is clopen in I, and
so it has empty boundary.

2◦ ∞ ∈ F . Then ∞ belongs to the open set U , and so U = {∞} ∪ J ,
where J is all of I except for a finite set K. But the boundary of
U is the boundary of its complement. Thus the boundary of U is
the boundary of the finite set K, which is clopen, and therefore it is
void. Consequently, V := U does the job.

This completes the proof. �

3. The Bass and topological stable ranks of A

In this section, we prove that the topological stable rank of A is 1. It
follows that the Bass stable rank of A is then equal to 1 as well. We recall
the pertinent definitions below:

Definition 3.1. Let R be a commutative ring with an identity element,
denoted by 1. Let n ∈ N. An element a = (a1, . . . , an) ∈ Rn is called
unimodular if there exists a b = (b1, . . . , bn) ∈ Rn such that

n∑

k=1

bkak = 1.

We denote by Un(R) the set of unimodular elements of Rn.
We say that a = (a1, . . . , an) ∈ Un(R) is reducible, if there exist elements

h1, . . . , hn−1 ∈ R such that

(a1 + h1an, . . . , an−1 + hn−1an) ∈ Un−1(R).

The Bass stable rank of R, is the least n ∈ N such that every a ∈ Un+1(R)
is reducible, and it is infinite if no such integer n exists.

Now let R denote a commutative unital Banach algebra. The topological
stable rank of R, is the minimum n ∈ N such that Un(R) is dense in Rn, and
it is infinite if no such integer exists.
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Theorem 3.2. The topological stable rank of A is 1.

Proof. We prove that the invertible elements of the Banach algebra A are
dense. Suppose that α ∈ C and a ∈ ℓ2(I) and let ǫ > 0.

First choose a nonzero β ∈ C such that |α− β| < ǫ
2 . Next choose a finite

subset J ⊂ I such that for all i ∈ I \ J , |ai| <
β
2 . (Such a choice of J is

possible; see [10, Note, p. 18].)
Next choose the finitely many complex numbers bj (j ∈ J) such that

|β + bj | > 0 and
∑

j∈J

|aj − bj |
2 <

ǫ2

4
.

Finally, for i ∈ I \ J , define the complex numbers bi by bi = ai. Then
b := (bi)i∈I ∈ ℓ2(I).

We claim that βe+ b is invertible in A. Indeed for i ∈ I \ J , we have

|ϕi(βe+ b)| = |β + bi| = |β + ai| ≥ |β| − |ai| ≥ |β| −
|β|

2
=

|β|

2
> 0.

Furthermore, for the finitely many j ∈ J , we have |ϕj(βe+b)| = |β+bj| > 0.
Finally, |ϕ∞(βe+ b)| = |β| > 0. Hence

inf
ϕ∈∆

|ϕ(βe + b)| > 0,

and so βe+ b is invertible in A. Moreover,

‖(αe+a)− (βe+b)‖ = |α−β|+‖a−b‖2 <
ǫ

2
+

√∑

j∈J

|aj − bj|2 <
ǫ

2
+
ǫ

2
= ǫ.

This completes the proof. �

Recall that a commutative ring R with an identity element is said to have
unit 1-stable range if whenever a, b ∈ R satisfy aR + bR = 1, there exist
units u, v ∈ R such that au + bv = 1. By Theorem 3.2, we can also show
that in fact the ring A has unit 1-stable range:

Corollary 3.3. A has unit 1-stable range.

Proof. Suppose that the pair (a, b) ∈ A2 is unimodular, that is, there exist
x, y ∈ A such that x ⊙ a + y ⊙ b = e. Since the topological stable rank of
A is 1, it follows that we can approximate x, y by units u, v, respectively, to
any degree of accuracy. We have

u⊙ a+ y ⊙ b = e− ((x− u) ⊙ a+ (y − v) ⊙ b)︸ ︷︷ ︸
=:h∈A

.

By choosing u, v sufficiently close to x, y, respectively, we can ensure that
‖h‖ < 1, and so (e − h)−1 ∈ A. Hence U ⊙ a + V ⊙ b = e, where U :=
u⊙ (e − h)−1 and V := v ⊙ (1 − h)−1 are units. Consequently, A has unit
1-stable range. �
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In fact for any real or complex Banach algebra R with topological stable
rank 1, a similar proof as that of Corollary 3.3 shows that R also has unit
1-stable range.

Corollary 3.3 is in sharp contrast to a result of the first author and Ray-
mond Mortini [9, Corollary 3], where it was shown that if H(G) denotes the
ring of holomorphic functions in a planar domain G ⊂ C, equipped with
pointwise addition and pointwise multiplication, then every subring R such
that

C ( R ⊂ H(G)

does not have unit 1-stable range!
We also note that Corollary 3.3 implies in particular that the Bass stable

rank of A is 1.

Corollary 3.4. The Bass stable rank of A is 1.

4. Divisors in A

In this section we give a necessary and sufficient condition for x ∈ A to
be a divisor of a given z ∈ A. Define the zero set of the Gelfand transform
as

Z(x̂) := {ϕ ∈ I∞ | x̂(ϕ) = 0}.

For a divisor x of z, there exists a y ∈ A such that x⊙ y = z, which implies

Z(ẑ) = Z(x̂ŷ) = Z(x̂) ∪ Z(ŷ)

and so Z(x̂) ⊂ Z(ẑ).

Theorem 4.1. Let the index set I be infinite, x = αe+ a, z = γe+ c ∈ A,
Z(x̂) ⊂ Z(ẑ), and assume that α 6= 0. Then x divides z, that is, there exists
y = βe+ b ∈ A such that x⊙ y = z.

Proof. The equation x⊙ y = z is equivalent to

(α+ ai)(β + bi) = (γ + ci) (i ∈ I) and αβ = γ,

where b ∈ ℓ2(I). By assumption α 6= 0. In light of the last condition, we
define β ∈ C by

β :=
γ

α
.

We now construct the sequence b ∈ ℓ2(I). Let J denote the (at most count-
able) set of indices such that aj 6= 0 or cj 6= 0. In order to define bi (i ∈ I),
we consider the following two cases separately:

1◦ i ∈ I \ J . In this case we have ai = 0 and ci = 0. Consequently,
bi := 0 will do.

2◦ i ∈ J . The equation α + ai = 0 can be satisfied for only finitely
many indices i ∈ {j1, · · · , jN} ⊂ J (since α 6= 0 and ai → 0, where
the latter means that for any ǫ > 0, there exists a finite subset K of
I such that for each i 6∈ K, |ai| ≤ ǫ).



PROPERTIES OF C · e + ℓ2(I) 9

Suppose that i ∈ {j1, · · · , jN} ⊂ J . In this case we have α+ai = 0.
It follows that γ+ cj = 0 since Z(x̂) ⊂ Z(ẑ). Again, bi := 0 does the
job.

Now suppose, on the other hand, that i ∈ J \ {j1, · · · , jN}. Then
we must solve

β + bi =
γ + ci
α+ ai

,

that is,

bi =
γ + ci
α+ ai

−
γ

α
=
αci − γai

α(α + ai)
.

We note that since (|α+ai|)i∈J\{j1,··· ,jN} is bounded below away from

0 (because α 6= 0 and ai → 0), we have
∑

i∈J\{j1,··· ,jN} |bi|
2 <∞.

Thus, in all cases we defined bi, and we have b ∈ ℓ2(I). �

The next result characterizes divisors in the remaining case when α = 0
(note that the condition Z(x̂) ⊂ Z(ẑ) implies that γ = 0 as well).

Theorem 4.2. Let the index set I be infinite, x = αe+ a, z = γe+ c ∈ A,
Z(x̂) ⊂ Z(ẑ), and assume that α = γ = 0. Define J := {j ∈ I | aj 6= 0}.
Then x divides z, that is, there exists y = βe+ b ∈ A such that x⊙ y = z if
and only if

β := lim
j∈J

cj
aj

exists and
∑

j∈J

∣∣∣∣
cj
aj

− β

∣∣∣∣
2

< +∞ .

(If J is finite, then β := 0, bj :=
cj

aj
(j ∈ J), bi := 0 (i ∈ I \ J) will do.)

Proof. The equation x⊙ y = z is equivalent to ai(β+ bi) = ci (i ∈ I), where
b ∈ ℓ2(I).

Assume that x⊙ y = z has a solution y ∈ A. Then

β = lim
j∈J

(β + bj) = lim
j∈J

cj
aj

exists and is finite. Moreover,

∑

j∈J

∣∣∣∣
cj
aj

− β

∣∣∣∣
2

=
∑

j∈J

|bj |
2 < +∞.

Now assume that

β := lim
j∈J

cj
aj

exists and
∑

j∈J

∣∣∣∣
cj
aj

− β

∣∣∣∣
2

< +∞.

Then we define bi := 0 for all indices i /∈ J , and define

bj =
cj
aj

− β, j ∈ J.

Then b = (bi)i∈I ∈ ℓ2(I), and since ai(β + bi) = ci for all i ∈ I, we have
x⊙ y = z, where y := βe+ b ∈ A. �
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Theorem 4.2 shows that x divides z if, for example, J is finite or cj 6= 0
only for finitely many indices j.

5. Closed ideals in A

In this section we characterize all closed ideals of A. For a given closed

subset B ⊂ I∞ we define

iB := {x ∈ A | x̂(ϕ) = 0 for all ϕ ∈ B}

It is an easy exercise to show that iB is a closed ideal. For closed sets this
defining set B is unique, that is:

Theorem 5.1. If B1, B2 are closed subsets of I∞ such that iB1
= iB2

, then
B1 = B2.

Proof. Assume that iB1
= iB2

, but B1 6= B2. Without loss of generality, we
may assume that there exists j1 ∈ B1 \B2. Two cases are possible for j1:

1◦ j1 = ∞. Since B2 is a closed subset of the compact Hausdorff space
I∞, it follows that B2 is compact. Since ∞ 6∈ B2, we must have
that B2 ⊂ I, and so B2 is compact in I. Because I has the discrete
topology, we know that the only compact subsets of I are ones which
are finite. Therefore B2 is finite. Defining x := e−

∑
j∈B2

ei, we see

that x ∈ iB2
, while x /∈ iB1

(since ∞ ∈ B1 and x̂(∞) = 1 6= 0).
2◦ j1 6= ∞. But then ej1 6∈ iB1

(since j1 ∈ B1), while ej1 ∈ iB2
(since

j1 6∈ B2).

This completes the proof. �

Following the ideas in [2], we prove the following characterization of closed
ideals.

Theorem 5.2. Let the index set I be infinite. An ideal c is closed in A if
and only if c = iB for some closed B ⊂ I∞. In fact, B =

⋂
x∈c

Z(x̂).

Proof. If B ⊂ I∞ is closed, then c := iB is always a closed ideal. So we
assume that c is an arbitrary closed ideal. Define the closed set

B :=
⋂

x∈c

Z(x̂) = {ϕ ∈ ∆ | x̂(ϕ) = 0 for all x ∈ c}.

Obviously we have the inclusion c ⊂ iB . We now prove the reverse implica-
tion. To this end, we distinguish two cases: there exists w = δe+ d ∈ c with
δ 6= 0 or we have c ⊂ kerφ∞:

1◦ Suppose that there exists w = δe + d ∈ c with δ 6= 0. We have
B ⊂ Z(ŵ). Since Z(ŵ) ⊂ I is compact, and I has dicrete topology,
we can conclude that Z(ŵ), and hence also B, must be finite.

Claim: There exists x ∈ c such that Z(x̂) = B.
Let us denote by J the set of at most countable many indices with

nonzero Fourier coefficients of d = w−δe. For all j ∈ J \B, we must
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have δ + dj 6= 0, while for all j ∈ B we have dj = −δ. Since B is
finite we may write

w = δe+
∑

j∈J

djej = δe+
∑

j∈B

djej +
∑

j∈J\B

djej ,

that is,

w = δ



e−
∑

j∈B

ej



+
∑

j∈J\B

djej .

Since for all j ∈ J \B we have δ + dj 6= 0, it follows that

ej = w ⊙

(
ej

δ + dj

)
∈ c, j ∈ J \B.

Thus w ∈ c now implies that ej ∈ c for all j ∈ J \ B. Hence∑
j∈J\B djej ∈ c as well, because c is closed. Therefore

x := w︸︷︷︸
∈c

−
∑

j∈J\B

djej

︸ ︷︷ ︸
∈c

= δ



e−
∑

j∈B

ej





belongs to c. This proves the claim.

Given z ∈ iB , we have B ⊂ Z(ẑ), that is, Z(x̂) ⊂ Z(ẑ). By
Theorem 4.1, there exists a y ∈ A such that x⊙ y = z, and so z ∈ c

(because x ∈ c). Consequently, iB ⊂ c in the first case.
2◦ Now suppose that c ⊂ kerϕ∞. It follows that ∞ ∈ B. Let z ∈ iB be

given, and let J be the index set of nonzero Fourier coefficients cj of
z. We must prove that z ∈ c. For j ∈ J \B there exist xj ∈ c such
that x̂j(j) = aj 6= 0. Hence for j ∈ J \B, we have

ej = xj ⊙

(
ej
aj

)
∈ c,

because xj ∈ c. Since B ⊂ Z(ẑ), we have

z =
∑

j∈J

cjej =
∑

j∈J\B

cjej .

Let J \B = {j1, j2, j3, . . . }. Hence starting with the partial sums of
z, namely,

zn =

n∑

k=1

cjk
ejk

,

we conclude that all partial sums zn belong to c. Thus also z ∈ c,
proving the reverse implication iB ⊂ c in this second case when
c ⊂ kerϕ∞.

This completes the proof. �
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The question now arises: when is a closed ideal principal? We answer this
in Theorem 5.4, but first we make the following observation.

Lemma 5.3. Let the index set be infinite, and let c be a closed ideal in A,
and let B :=

⋂
x∈c

Z(x̂). If c is principal and c = (x0) for some x0 ∈ A,
then we have B = Z(x̂0).

Proof. We know that c = iB .
Since x0 ∈ c, we have B =

⋂
x∈c

Z(x̂) ⊂ Z(x̂0).
If x ∈ c = (x0), then x = x0 ⊙ y for some y ∈ A, and so x̂ = x̂0ŷ. Thus

it follows that Z(x̂0) ⊂ Z(x̂). Since this happens with each x ∈ c, it follows
that Z(x̂0) ⊂

⋂
x∈c

Z(x) = B. Consequently, B = Z(x̂0). �

Theorem 5.4. Let the index set be infinite, and let c be a closed ideal in
A, and let B :=

⋂
x∈c

Z(x̂).

(1) If c is principal and c = (x0), where x0 = αe + a, a ∈ ℓ2(I) and
0 6= α ∈ C, then B is finite.

(2) If B is finite, then

x0 := e−
∑

j∈B

ej

is a generator for c.
(3) If c is principal and c = (x0), where x0 ∈ ℓ2(I), then I \B is finite.
(4) If I \B is finite, then c is principal, and a generator is given by

x0 :=
∑

i∈I\B

ei.

Proof. We know that c = iB .

(1) Assume that c is principal and c = (x0), where x0 = αe+a, a ∈ ℓ2(I)
and 0 6= α ∈ C. By Lemma 5.3, B = Z(x̂0). Now we will show that
Z(x̂0) is finite. Since α 6= 0, we must have α + aj = 0 for all
j ∈ Z(x̂0). But ai → 0 (that is, for every ǫ > 0, there exists a finite
subset K of I such that for each i ∈ I \K, |ai| ≤ ǫ), and so there
are only finitely many indices i ∈ I such that α + ai = 0. Hence
B = Z(x̂) is finite.

(2) For the reverse assertion we now assume that B is finite. Define

x0 := e−
∑

j∈B

ej .

Then we have

Z(x̂0) = B =
⋂

x∈c

Z(x̂).

So for a given z ∈ c = iB , there holds that Z(x̂0) ⊂ Z(ẑ). From
Theorem 4.1, there exists y ∈ A such that x0⊙y = z. Consequently,
iB ⊂ (x0). Since Z(x̂0) = B, it is clear that x0 ∈ iB , and so we have
(x0) ⊂ iB . Hence (x0) = iB = c.
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(3) Now assume that c is principal, c = (x0), where x0 ∈ ℓ2(I). By
Lemma 5.3, B = Z(x̂0). Since x0 ∈ ℓ2(I), I \ Z(x̂0) is at most
countable, and so also I \ B must be at most countable. We must
prove that it is in fact finite. Suppose, on the contrary, that I \B is
infinite, say I \B = {j1, j2, j3, · · · }. We have

x0 =
∑

i∈I

aiei =
∑

j∈I\B

ajej =
∑

k∈N

ajk
ejk
.

We now define

z :=
∑

k∈N

(−1)kajk
ejk
.

Of course we have Z(x̂0) = Z(ẑ) = I \ B, but the limit (see the
notation of Theorem 4.2)

β := lim
j∈I\B

cj
aj

= lim
k∈N

(−1)k

doesn’t exist. By Theorem 4.2, it follows that z /∈ (x0), which is a
contradiction, since we know that z ∈ iB = c. Consequently, I \ B
must be finite.

(4) Assuming that I \B is finite, define

x0 :=
∑

k∈I\B

ek.

Clearly, Z(x̂0) = B, and so x0 ∈ iB = c. Thus (x0) ⊂ c. For
the reverse inclusion, we use Theorem 4.2. If z ∈ c, then we have
B =

⋂
x∈c

Z(x̂) ⊂ Z(ẑ), and so Z(x̂0) ⊂ Z(ẑ). But the set of indices
J of nonzero Fourier coefficients of x0 is I \B, which is finite. So by
Theorem 4.2, we obtain that z is divisible by x0, that is, z ∈ (x0).
Consequently, c ⊂ (x0).

This completes the proof. �

6. Prime ideals in A

The results in this section follow closely some of the results on prime
ideals from Gillman and Jerison [4, 2.9, 2.11, 14.G.3], but there the results
were proved for the ring of real-valued continuous functions on a topological
space.

6.1. Which z-ideals are prime?

Definition 6.1.

(1) If x ∈ A, then the zero set Z(x) of x ∈ A is

Z(x) = Z(x̂) (⊂ I∞).

(2) If i is an ideal in A, then the zero set Z[i] of the ideal i is

Z[i] = {Z(x) | x ∈ i}.
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(3) An ideal i in A is called a z-ideal if whenever x ∈ A is such that
Z(x) ∈ Z[i], then we have x ∈ i.

(4) A nonempty subfamily F of Z[A] is called a z-filter in Z[A] if
(a) ∅ 6∈ F ,
(b) if Z1, Z2 ∈ F , then Z1 ∩ Z2 ∈ F ,
(c) if Z1 ∈ F , Z2 ∈ Z[A], and Z1 ⊂ Z2, then Z2 ∈ F .

Lemma 6.2. Let x ∈ A. Then x̂∗ and |x̂| are the Gelfand transforms of
some elements from A, where ·∗ denotes complex conjugation. Moreover, if
x̂ is real-valued, then max{x̂, 0}, min{x̂, 0} are also the Gelfand transforms
of some elements from A.

Proof. Let x = αe + a, α ∈ C, a = (ai)i∈I ∈ ℓ2(I). Define z = |α|e + ζ,
where ζ = (|α+ ai| − |α|)i∈I . We have

‖ζ‖2
2 =

∑

i∈I

∣∣|α+ ai| − |α|
∣∣2 ≤

∑

i∈I

|α+ ai − α|2 =
∑

i∈I

|ai|
2 = ‖a‖2

2 <∞,

and so ζ ∈ ℓ2(I). Thus z ∈ A. Moreover,

ẑ(ϕ∞) = |α| = |x̂(ϕ∞)|,

ẑ(ϕi) = |α| + |α+ ai| − |α| = |α+ ai| = |x̂(ϕi)|,

and so ẑ = |x̂|.
Similarly, with y := α∗e+ (a∗i )i∈I , we have that y ∈ A and ŷ = x̂∗.
Observing that

max{x̂, 0} =
x̂+ |x̂|

2
and min{x̂, 0} =

x̂− |x̂|

2
,

the remaining claims are also proved. �

Lemma 6.3. If i is a proper ideal in A, then Z[i] is a z-filter in Z[A].

Proof. Since i does not contain a unit, ∅ 6∈ Z[i].
Let Z1 = Z(x1), Z2 = Z(x2) ∈ Z[i], where x1, x2 ∈ i. By Lemma 6.2,

there exist z1, z2 ∈ A such that ẑ1 = x̂1
∗ and ẑ2 = x̂2

∗. Since i is an ideal,
it follows that z1 ⊙ x1 + z2 ⊙ x2 ∈ i. Hence

Z(x̂1)∩Z(x̂2) = Z(|x̂1|
2+|x̂2|

2) = Z(ẑ1x̂1+ẑ2x̂2) = Z(z1⊙x1+z2⊙x2) ∈ Z[i],

and so Z1 ∩ Z2 ∈ Z[i].
Finally, let Z1 = Z(x1), where x1 ∈ i, and let Z2 = Z(x2) ⊃ Z1, where

x2 ∈ A. Since i is an ideal, it follows that x2 ⊙ x1 ∈ i. Thus

Z2 = Z1 ∪ Z2 = Z(x2 ⊙ x1) ∈ Z[i].

So Z[i] is a z-filter in Z[A]. �

Theorem 6.4. For any z-ideal i in A, the following are equivalent:

(1) i is prime.
(2) i contains a prime ideal.
(3) For all x, y ∈ A, x̂ŷ = 0, then x ∈ i or y ∈ i.
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(4) For every x ∈ A such that x̂ is real-valued, there is a zero set in Z[i]
on which x̂ does not change sign.

Proof. (1) implies (2): Trivial.

(2) implies (3): Suppose that i contains a prime ideal p. If x, y ∈ A satisfy

x̂ŷ = 0, then x̂⊙ y = 0, and so x ⊙ y = 0 ∈ p. Since p is prime, it follows
that x ∈ p or y ∈ p. Consequently, x ∈ i or y ∈ i.

(3) implies (4): Suppose that x ∈ A is such that x̂ is real-valued. Consider

ϕ := max{x̂, 0} and ψ := min{x̂, 0}.

From Lemma 6.2, there exist u, v ∈ A such that û = ϕ and v̂ = ψ. We have
ûv̂ = ϕψ = 0, and so by the hypothesis, u ∈ i or v ∈ i. But if u ∈ i, then for
all i ∈ Z(û) ∈ Z[i], we have x̂ ≤ 0. And if v ∈ i, then for all i ∈ Z(v̂) ∈ Z[i],
we have x̂ ≥ 0.

(4) implies (1): Let u, v ∈ A be such that u⊙ v ∈ i. Consider the function

ϕ := |û| − |v̂|.

By Lemma 6.2, there exists an x ∈ A such that x̂ = ϕ. By the hypothesis,
there is a zero set J ∈ Z[i] on which ϕ is nonnegative, say. Then for all
i ∈ J , |û| ≥ |v̂|. But this implies that every zero of û in J is also a zero of
v̂. Hence

Z(v) ⊃ J ∩ Z(u) = J ∩ Z(u⊙ v) ∈ Z[i].

Since i is a z-ideal, it follows that v ∈ i. The proof in the case when ϕ is
nonpositive is similar. Consequently, i is prime. �

6.2. Every prime ideal is contained in kerϕ∞.

Theorem 6.5. If a nonzero prime ideal in A is contained in a maximal
ideal and is not equal to it, then the maximal ideal is kerϕ∞.

Proof. Let p be a prime ideal in A and suppose that p ( kerϕi for some
i ∈ I∞. Thus there exists an x ∈ (kerϕi) \ p. But x ∈ kerϕi implies that

x⊙ ei = ϕi(x⊙ ei)ei = 0 .

Since p is prime, 0 = x ⊙ ei ∈ p, and x is not in p, we must have ei ∈ p,
contradicting p ⊂ kerϕi. �

6.3. Description of all prime z-ideals when I = N. In this section we
establish a one-to-one correspondence between free ultrafilters and nonmax-
imal prime z-ideals when the index set is countable. First we recall the
definition of an ultrafilter.

Definition 6.6. A filter on a setX is a collection F of subsets ofX satisfying

(F1) X ∈ F , but ∅ 6∈ F .
(F2) If U ∈ F and U ⊂ V ⊂ X, then V ∈ F .
(F3) A finite intersection of sets in F is in F .
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An ultrafilter on a set X is a filter F on X which is maximal with respect to
inclusion, that is, it is a filter F for which any other filter F ′ on X satisfying
F ⊂ F ′ actually satisfies F ′ = F .

An ultrafilter F on a set X is called a free ultrafilter if
⋂

U∈F U = ∅.

In order to prove Theorem 6.8, we will need the following characterization
of ultrafilters; see for example [5, p. 83, L.(e)].

Proposition 6.7. A filter F on a set X is an ultrafilter if and only if for
every set U ⊂ X, either U ∈ F or X \ U ∈ F .

Theorem 6.8. The mapping

F 7→ p := {x ∈ A | Z(x) \ {∞} ∈ F}

is one-to-one from the family of all free ultrafilters on N onto the family of
all nonmaximal, prime z-ideals of A contained in kerϕ∞.

Proof. Let F denote a free ultrafilter on N and define

p := {x ∈ A | Z(x) \ {∞} ∈ F}.

First we show that p is a nonmaximal, prime z-ideal of A contained in
kerϕ∞.

(1) p is an ideal.
0 ∈ p, since Z(0) \ {∞} = N ∈ F .
Given x, y ∈ p, we have Z(x) \ {∞} ∈ F and Z(y) \ {∞} ∈ F .

Hence Z(x + y) \ {∞} ⊃ (Z(x) \ {∞}) ∩ (Z(y) \ {∞}) ∈ F . So
Z(x+ y) \ {∞} ∈ F , as it is a superset of a set in the filter F .

Finally, let x ∈ p and y ∈ A. Then Z(x⊙y) = Z(x)∪Z(y) ⊃ Z(x).
So Z(x⊙ y) \ {∞} ∈ F , since it contains Z(x) \ {∞} ∈ F .

(2) p is not trivial and not all of A.
Since F is an ultrafilter, given subset U ⊂ N, either U ∈ F or

N \ U ∈ F . Taking U = {1}, we have either e − e1 ∈ p or e1 ∈ p.
Since neither e− e1 nor e1 is 0, we conclude that p is different from
the zero ideal.

Since ∅ 6∈ F , it follows that p cannot contain a unit of A.
(3) p is a prime ideal.

Let x, y ∈ A be such that x ⊙ y ∈ p. But then we have that
U := Z(x⊙ y) \ {∞} = (Z(x) \ {∞})∪ (Z(y) \ {∞}) ∈ F . If neither
Z(x) \ {∞} nor Z(y) \ {∞} belong to F , then their complements
do belong to F , and so does the intersection of these complements,
which is equal to N\(Z(x⊙y)\{∞}) = N\U . But this furthermore
implies that ∅ = U ∩ (N \ U) ∈ F , a contradiction. Thus either x or
y belongs to p. Consequently, p is prime.

(4) p is a z-ideal.
Given x ∈ A such that Z(x) = Z(y) for a y ∈ p, we have that

Z(x) \ {∞} = Z(y) \ {∞} ∈ F , and so x ∈ p.
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(5) p is contained in kerϕ∞.
Since F is a free ultrafilter on N, we have

⋂
U∈F U = ∅. So it

follows that
⋂

x∈p
Z(x) ⊂ {∞}. Hence p is not contained in any of

the maximal ideals kerϕn, n ∈ N. By Theorem 6.5, it follows that p

is contained in kerϕ∞.
(6) p is not maximal.

Suppose that p = kerϕ∞. Defining x =
∑∞

n=1
1
n
en, we see that

x ∈ kerϕ∞ = p. Since Z(x) = {∞}, we have ∅ = Z(x) \ {∞} ∈ F ,
a contradiction.

Now p denote a nonmaximal prime z-ideal in kerϕ∞. We now show that

F := {Z(x) \ {∞} | x ∈ p}

is a free ultrafilter on N.

(1) F is a filter.
(F1) N belongs to F since 0 ∈ p. Also, ∅ 6∈ F since otherwise there

exists an element x ∈ p such that Z(x) = {∞}, and we prove
now that this implies that p = kerϕ∞. Let y ∈ kerϕ∞ \ p.
By Lemma 6.2, x̂∗ = x̂0 and ŷ∗ = ŷ0 for some x0, y0 ∈ A. So
Z(x⊙ x0 + y ⊙ y0) = Z(x) ∩ Z(y) = {∞} = Z(x). Since p is a
z-ideal, we conclude that x⊙ x0 + y⊙ y0 ∈ p. Because x ∈ p, it
follows that y ⊙ y0 ∈ p. By assumption we have y 6∈ p, and so
y0 ∈ p. But this leads to a contradiction since Z(y) = Z(y0) and
p being a z-ideal, gives y ∈ p. So no such function y ∈ kerϕ∞\p

can exist.
(F2) Next we show that that if U ∈ F and U ⊂ V , then V ∈ F .

Take x ∈ p such that Z(x) \ {∞} = U . Since V ⊂ N, we can
find a y ∈ A such that Z(y) \ {∞} = V (for example, we can
take y =

∑
n 6∈V

1
n
en). But then x ⊙ y ∈ p and furthermore

Z(x⊙ y) \ {∞} = (Z(x) \ {∞}) ∪ (Z(y) \ {∞}) = U ∪ V = V .
Consequently, V ∈ F .

(F3) If U, V ∈ F , the we now show that U ∩ V ∈ F . Take x, y ∈ p

such that Z(x)\{∞} = U and Z(y)\{∞} = V . Let x0, y0 ∈ A
be such that x̂0 = x̂∗ and ŷ0 = ŷ∗. Then the intersection
U∩V = Z(x⊙x0+y⊙y0)\{∞} ∈ F because x⊙x0+y⊙y0 ∈ p.
Thus a finite intersection of sets in F is in F .

Hence F is a filter.
(2) F is an ultrafilter.

We will use the characterization of ultrafilters given in Proposi-
tion 6.7. Let U ⊂ N be given. Take functions x, y ∈ kerϕ∞ such that
Z(x)\{∞} = U and Z(y)\{∞} = N\U (for example, x :=

∑
n 6∈U

1
n
en

and y :=
∑

n∈U
1
n
en do the job). But then Z(x⊙y) = N∪{∞} = N∞,

that is, x⊙y = 0 ∈ p. Since p is prime, either x ∈ p or y ∈ p, proving
that either U ∈ F or N \ U ∈ F . Consequently, F is an ultrafilter.
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(3) F is free.
Suppose on the contrary that F is not free, that is, there exists

a n ∈ N such that n ∈
⋂

U∈F U . Since F is an ultrafilter, it follows
that either {n} ∈ F or N \ {n} ∈ F . We consider the two cases
separately:

1◦ N \ {n} ∈ F . This is impossible because n ∈
⋂

U∈F U .
2◦ {n} ∈ F . Then every superset of {n} also belongs to F , that

is, F = {U ⊂ N | n ∈ U}. This means that every Gelfand
transform vanishing at n belongs to p since p is a z-ideal. In-
deed, if y ∈ A is such that n ∈ Z(y), then Z(y) ∈ F , and so
there exists a x ∈ p such that Z(y) = Z(x) \ {∞}. Thus either
we have that Z(y) = Z(x) ∈ Z[p] (which implies by the z-ideal
property of p that y ∈ p) or Z(y)∪{∞} = Z(x). But the latter
implies Z(y ⊙

∑
n∈N

1
n
en) = Z(y) ∪ {∞} = Z(x) ∈ Z[p], which

implies, by the z-ideal property of p, that y ⊙
∑

n∈N

1
n
en ∈ p.

But since p is prime, we have y ∈ p because
∑

n∈N

1
n
en 6∈ p

(otherwise Z(
∑

n∈N

1
n
en) \ {∞} = ∅ ∈ F , which is absurd. So

we have shown that every function vanishing at n belongs to p.
But this implies that p = kerϕn, showing kerϕn = p ⊂ kerϕ∞,
a contradiction. Thus the case {n} ∈ F is impossible as well.

Consequently, the ultrafilter F is free.

With the above defined ultrafilter F corresponding to the given prime ideal
p, we can check that

p = {x ∈ A | Z(x) \ {∞} ∈ F}.

Hence the mapping in the statement of the theorem is onto.
Finally we show that the mapping is one-to-one. Suppose the two distinct

ultrafilters F and F ′ give rise to the same prime ideal p, that is,

p = {x ∈ A | Z(x) \ {∞} ∈ F} and p = {x ∈ A | Z(x) \ {∞} ∈ F ′}.

We can assume without loss of generality that U ∈ F\F ′. If x :=
∑

n 6∈U
1
n
en,

then Z(x) = U , and so x ∈ p. But then U = Z(x) \ {∞} ∈ F ′, a contradic-
tion. �

Remark 6.9. The set of all free ultrafilters on N is very large. Indeed, it
can be indentified with the set βN \ N, where βN denotes the Stone-Čech-
compactification of N. From [4], Theorem 9.2, we known that the cardinality
of βN is

|βN| = 2c and |βN \ N| = 2c ,

where c denotes the cardinality of R, that is 2ℵ0 . Hence there are many
nonmaximal prime z-ideals in Theorem 6.8.

An interesting open question that now arises is what the analogue of
Theorem 6.8 would be when I is uncountably infinite.
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