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Abstract. Let K denote a compact real symmetric subset of C and let
AR(K) denote the real Banach algebra of all real symmetric continuous
functions on K which are analytic in the interior K◦ of K, endowed
with the supremum norm. We characterize all unimodular pairs (f, g)
in AR(K)2 which are reducible.

In addition, for an arbitrary compact K in C, we give a new proof (not
relying on Banach algebra theory or elementary stable rank techniques)
of the fact that the Bass stable rank of A(K) is 1.

Finally, we also characterize all compact real symmetric sets K such
that AR(K), respectively CR(K), has Bass stable rank 1.
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1. Introduction

The concept of stable rank of a ring was introduced by H. Bass [2] to
study some stabilisation questions in algebraic K-theory. We recall this
notion below:

Definition 1.1. Let A be a commutative ring with an identity element,
denoted by 1. Let n ∈ N = {1, 2, 3, . . . }. An element a = (a1, . . . , an) ∈ An

is called unimodular if there exists a b = (b1, . . . , bn) ∈ An such that

n∑

k=1

bkak = 1.

We denote by Un(A) the set of unimodular elements of An.
We say that a = (a1, . . . , an) ∈ Un(A) is reducible (in A), if there exist

h1, . . . , hn−1 ∈ A such that (a1 + h1an, . . . , an−1 + hn−1an) ∈ Un−1(A).
The Bass stable rank of A, denoted by bsr A, is the least n ∈ N such that

every a ∈ Un+1(A) is reducible, and it is infinite if no such integer n exists.

The Bass stable rank of several complex Banach algebras of analytic func-
tions is well known: for example if K compact in C, then the Bass stable
rank of A(K) is 1, where A(K) denotes the set of all continuous functions
on K that are analytic in the interior K◦ of K; see [5, Theorem 2.3] and
[13].

In [17], Brett Wick considered reducibility questions in the real Banach
algebra AR(D) consisting of those elements of the disk algebra A(D) which
have real Fourier coefficients, or equivalently, those elements from the disk
algebra that satisfy the symmetry condition f(z) = (f(z∗))∗ for all z ∈ D.
(Throughout this article, we use the following notation.)

Notation 1.2. We use z∗ to denote the complex conjugate of z, and we use
Ω to denote the closure of the set Ω ⊂ C.

Bass and topological stable ranks of AR(D) play an important role in
control theory in the problem of stabilization of linear systems. We refer
the reader to [11] and [16] for background on the connection between stable
rank and control theory.

In this article, we study the reducibility of corona pairs, in some real
Banach algebras of “real symmetric” functions. We define these in Defini-
tion 1.4 below.

Definition 1.3. Let K denote a compact subset of C and let A(K) denote
the complex Banach algebra of all continuous functions on K which are
analytic in the interior K◦ of K, endowed with the supremum norm:

‖f‖∞ = sup
z∈K

|f(z)|,

whereas R(K) denotes the uniform closure of all rational functions with
poles off K.
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Definition 1.4. IfK is real symmetric (that is, z ∈ K if and only if z∗ ∈ K),
we use the symbol AR(K) (respectively RR(K)) to denote the set of functions
f belonging to A(K), (respectively R(K)) that are real symmetric, that is,

f(z) = (f(z∗))∗ (z ∈ K).

Moreover, CR(K) denotes the set of complex-valued, bounded, continuous
functions f defined on K, that satisfy f(z) = (f(z∗))∗ (z ∈ K).

R[z] denotes the set of all polynomial functions with real coefficients, while
R(z) denotes the set of all rational functions which are ratios of polynomials
from R[z].

2. bsr, tsr RR(K) ≤ 2

In this section we prove that if C \ K has only finitely many connected
components, then tsr AR(K) ≤ 2 and so bsr AR(K) ≤(tsr AR(K) ≤)2. We
will do this by first computing the topological stable rank (defined below)
and using the known fact that the Bass stable rank is bounded above by the
topological stable rank (Proposition 2.2).

Definition 2.1. [12] Let A denote a commutative unital Banach algebra.
The topological stable rank of A, denoted by tsr A, is the minimum n ∈ N

such that Un(A) is dense in An, and it is infinite if no such integer exists.

We recall the following result [4, Theorem 3, p. 293]:

Proposition 2.2. Let A be a commutative unital real (or complex) Banach
algebra. If Un(A) is a dense subset of An, then bsr A ≤ n.

We will use the following fact several times in some of our proofs.

Lemma 2.3. Let A be a ring such that R[z] ⊂ A ⊂ AR(K). If the Bass
stable rank of A is 1, then K ∩ R is totally disconnected.

Proof. If K ∩ R is not totally disconnected, then there exists a closed con-
nected subset L of K ∩ R which is not a singleton, so two different real
numbers a, b belong to L ⊂ R. But then the interval [a, b] is contained in L.
(If not, we have c ∈ R \ L such that a < c < b. Since L is closed, it follows
that for a sufficiently small r, we have that (c − r, c + r) ⊂ R \ L, and so
L splits into the disjoint closed union L = ([a, c − r] ∩ L) ∪ ([c+ r, b] ∩ L).)
But then the unimodular pair

(
z − a+b

2 , (z − a)(z − b)
)

is not reducible by
the intermediate value theorem for real continuous functions on the interval
[a, b], a contradiction. Hence K ∩ R is totally disconnected. �

Theorem 2.4. Let K be a real symmetric subset of C.

(1) The topological stable rank of RR(K) is at most 2.
(2) The topological stable rank of RR(K) is equal to 1 if and only if

K◦ = ∅ and K ∩ R is totally disconnected.
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Proof. 1◦ We will show that U2(RR(K)) is dense in RR(K)2. Take (f, g) ∈
RR(K)2 and approximate f, g by real symmetric rational functions r, s, re-
spectively. Since r ∈ R(z), we have the following representation for r:

r(z) =
C

∏
(z − rj)

∏
(z − wj)(z − w∗

j )

q
,

where C, rj are real numbers, q ∈ R[z] has no zeros in K and wj denote the
non-real zeros of r. If r and s have a common root in K, then we replace
rj, wj , w

∗
j by rj + ǫ, wj + ǫ, w∗

j + ǫ with a sufficiently small real ǫ so that the
new real symmetric rational function r̃ has no common root with s in K.
Thus (r̃, s) ∈ U2(RR(K)) is near (f, g). So tsr RR(K) ≤ 2.

2◦ Suppose that K◦ = ∅ and K ∩ R is totally disconnected. We must show
that U1(RR(K)) is dense in RR(K). Let f ∈ RR(K). Given ǫ > 0, by the
definition of RR(K) we can find a real symmetric rational function r with
poles off K such that ‖f − r‖∞ < ǫ/2. Since r ∈ R(z) has poles off K, it
again has the following representation:

r(z) =
C

∏
(z − rj)

∏
(z − wj)(z − w∗

j )

q
,

where C, rj are real numbers, q ∈ R[z] has no zeros in K and wj denote
the non-real zeros of r. If r has any zeros in K, then since K ∩ R is totally
disconnected, we can replace rj by rj + δ with sufficiently small δ > 0, such
that rj +δ ∈ R\K. Since K◦ is void we can replace all non-real zeros wj , w

∗
j

by wj + ρ,w∗
j + ρ∗, where |ρ| is small such that the new real symmetric

rational function r̃ has no zeros in K and moreover ‖r − r̃‖∞ < ǫ/2. Since
r̃ ∈ R(z) has zeros and poles off K, it is invertible in RR(K), and we also
have ‖f − r̃‖∞ < ǫ.

Suppose now that the topological stable rank of RR(K) = 1, that is
U1(RR(K)) is dense in RR(K). Then by Proposition 2.2, it follows that the
Bass stable rank of RR(K) = 1 as well. By Lemma 2.3, K ∩ R is totally
disconnected.

If K◦ is not empty we show that U1(RR(K)) is not dense in RR(K), a
contradiction. Note that U1(RR(K)) is the set of units in RR(K), and f is
invertible as an element in RR(K) only if it has no zero in K. Now consider
z0 in the interior K◦ of K, and let the open disk D(z0, r) be contained in
K◦. But by Hurwitz’s theorem, the uniform limit of a sequence of nowhere-
vanishing analytic functions on a connected open set U is either identically
zero or has no zeros in U ; see [1, Theorem 2, p.178]. So taking any function
in RR(K) with finitely many zeros in D(z0, r), say (z − z0)(z − z∗0), we
see that it cannot be the uniform limit of a sequence in U1(RR(K)). So
tsr RR(K) > 1. �

In light of Theorem 2.4, Proposition 2.2 yields the following:
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Corollary 2.5. Let K denote a real symmetric compact subset of C. The
Bass stable rank of RR(K) is at most 2.

Of course it is natural to ask for conditions for Bass stable rank 1.

Lemma 2.6. Let K denote a real symmetric compact subset of C such
that K ∩ R is totally disconnected. Then the set of elements u · r, where
u ∈ RR(K)−1 and the real symmetric rational function r ∈ RR(K) has only
non-real zeros, is dense in RR(K).

Proof. Let f ∈ RR(K). Given ǫ > 0, by the definition of RR(K) we can find a
real symmetric rational function r with poles offK such that ‖f−r‖∞ < ǫ/2.
Since r ∈ R(z) has poles off K, it again has the following representation:

r(z) =
C

∏
(z − rj)

∏
(z − wj)(z − w∗

j )

q
,

where C, rj are real numbers, q ∈ R[z] has no zeros in K and wj denote
the non-real zeros of r. If r has any zeros in K, then since K ∩ R is totally
disconnected, we can replace rj by rj + δ with sufficiently small δ > 0, such
that rj + δ ∈ R \K. The new real symmetric rational function r̃ has only
non-real zeros in K and has the form u · r from the assertion. Moreover
‖r − r̃‖∞ < ǫ/2. Hence we conclude ‖f − r̃‖∞ < ǫ. �

Theorem 2.7. Let K denote a real symmetric compact subset of C. The
Bass stable rank of RR(K) is 1 if and only if K ∩ R is totally disconnected.

Proof. If the Bass stable rank of RR(K)) is equal to 1, then by Lemma 2.3,
K ∩R is totally disconnected. Assuming that K ∩R is totally disconnected
we must show that every unimodular pair (f, g) is reducible. For unimodular
(f, g) ∈ U2(RR(K)) there exist α, β ∈ RR(K) such that

α(z)f(z) + β(z)g(z) = 1 (z ∈ K).

We now approximate α by functions of the form u · r, where u ∈ RR(K)−1

and r has only non-real zeros; see Lemma 2.6. To be precise

‖u · r − α‖∞ · ‖f‖∞ < 1/2.

This gives

|u(z)r(z)f(z) + β(z)g(z)| = |1 + (u(z)r(z) − α(z))f(z)| ≥ 1 − 1/2 = 1/2

for all z ∈ K. Hence

u · r · f + β · g =: U ∈ RR(K)−1.

Claim: (ur, g) is reducible, that is, there exists h ∈ RR(K) such that
ur + hg ∈ RR(K)−1.
To this end we look at the product representation

r(z) =
C

∏
(z − wj)(z − w∗

j )

q
,
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where C, rj are real numbers, q ∈ R[z] has no zeros in K and wj denote
the non-real zeros of r. It is enough to show that (

∏
(z − wj)(z − w∗

j ), g) is
reducible. For the moment we will work with the complex Banach algebra
R(K). The Bass stable rank of R(K) is 1, see Corach and Suarez [6, Theo-
rem 3.1]. Fix a non-real zero w of r. Then the unimodular pair ((z−w), g) is
reducible in R(K), i.e. there exists a k ∈ R(K) such that z−w+k(z)g(z) is
invertible in R(K). By symmetrization we conclude that z−w∗+k(z∗)∗g(z)
is also invertible in R(K). Multiplying both results shows that

νw := (z−w)(z−w∗)+

(
k(z)(z − w∗) + k(z∗)∗(z − w) + k(z)k(z∗)∗g(z)︸ ︷︷ ︸

=:kw(z)

)
g(z)

is invertible in R(K). But νw, kw are real symmetric and consequently, by
taking the product of the νw corresponding to each non-real zero w, we see
that (ur, g) is reducible in RR(K). Starting from

ur + hg = v ∈ RR(K)−1

we conclude

urf + hfg = vf.

Recalling now that

urf + βg = U ∈ RR(K)−1

gives us

vf + (β − hf)g = U ∈ RR(K)−1.

This shows that (f, g) is reducible. �

Now we make the assumption that C\K has only finitely many connected
components. Then the real symmetric rational functions with poles off K
are dense in AR(K) (and so AR(K) = RR(K)). Indeed, given f ∈ AR(K)
and ǫ > 0, Mergelyan’s theorem gives the existence of a rational function r̃
with poles off K such that

‖f − r̃‖∞ < ǫ/2.

The desired real symmetric rational function r can now be obtained simply
by symmetrization:

r(z) :=
r̃(z) + (r̃(z∗))∗

2
(z ∈ K).

Then r has poles off K and ‖f − r‖∞ < ǫ.

Corollary 2.8. Let K denote a real symmetric compact subset of C such
that C \K has only finitely many connected components. Then Bass stable
rank and topological stable rank of AR(K) is at most 2.
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3. Preliminaries

3.1. Lemmas on zero and level sets. In this subsection, we collect some
technical lemmas on zero sets and level sets.

Definition 3.1. For g ∈ A(K) the zero set Zg of g is

Zg := {z ∈ K | g(z) = 0},
and for δ > 0 the level set Zg(δ) of g is

Zg(δ) := {z ∈ K | |g(z)| ≤ δ}.
Of course the inclusion Zg ⊂ Zg(δ) holds.

The following property of level sets and zero sets will play an important
role in the sequel.

Lemma 3.2. Let K denote a compact subset of C. For every function
g ∈ A(K) and every δ > 0 the following holds.

(1) Every component of C \ Zg(δ) contains a component of C \K.
(2) Every component of C \ Zg contains a component of C \K.

These assertions also hold if K◦ = ∅.

Proof. Obviously, there is only one unbounded component G∞ of the com-
plement, because Zg(δ) (respectively Zg) is compact. But then the un-
bounded component of C \K belongs to G∞.

(1): Let G denote a bounded component of C \ Zg(δ).

Claim: If there exists a bounded component G of the complement C\Zg(δ),
then we must have G ∩ (C \K) 6= ∅.

Assuming the contrary, there exists a bounded component of C \ Zg(δ)
such that G ⊂ K. If K◦ = ∅, then no such open G exists, so we are done.
If K◦ 6= ∅, then we proceed as follows. Being in the complement of the
level set, we must have |g(z)| ≥ δ for all z ∈ ∂G ⊂ K. On the other hand,
|g(z)| ≤ δ for all z ∈ ∂G ⊂ K, because

∂G ⊂ ∂(C \ Zg(δ)) = ∂Zg(δ) ⊂ Zg(δ).

This gives |g(z)| = δ for all z ∈ ∂G. The maximum modulus theorem now
shows that in fact we must have G ⊂ Zg(δ), a contradiction. Hence no
such bounded component of the complement of Zg(δ) can exist. Thus G
must intersect a component C of C \K. By connectedness we now conclude
C ⊂ G, proving the assertion.

(2): The proof for C \ Zg is entirely similar. �

In order to facilitate handling zero sets, we prove the following result, in
which we enclose the zero set by finitely many closed sets.
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Lemma 3.3. Let K denote a real symmetric compact subset of C, and let U
denote an open real symmetric neighborhood of K in C. If g ∈ AR(K), then
for all δ > 0, there exist finitely many closed sets H1, . . . ,HN ⊂ U lying
symmetrically with respect to the real axis, that is, Hj = H∗

k for certain j, k,
with the following properties:

(1) Zg ⊂ ⋃N
j=1Hj and (

⋃N
j=1Hj) ∩K ⊂ Zg(δ).

(2) Hj ∩Hk = ∅ (j 6= k).
(3) 1◦ If no real zero of g belongs to Hj then Hj ∩K ∩R = ∅, Hj ∩K

belongs entirely to the upper (respectively lower) half plane and
Hj ∩K = H∗

k ∩K for some j 6= k.
2◦ If at least one real zero belongs to Hj (that is, x0 ∈ Zg∩Hj∩R),

then Hj = H∗
j holds and Hj is connected.

(4) If the zero z0 belongs to Hj then there exists a disc D with center z0
such that D ∩K ⊂ Hj.

Before we prove this lemma, we make the following observations:

Remarks 3.4.

(1) A construction of the covering sets in K is possible if the components
of the (relatively) open sets H := {z ∈ K | |g(z)| < δ} are open.
This is the case ifH is locally connected, for example ifK is bounded
by finitely many pairwise disjoint Jordan curves.

(2) A similar result is true in case g ∈ A(K), where K is compact but
not necessarily real symmetric. The corresponding covering of the
zero set intersected with K belongs to Zg(δ) and consists of pairwise
disjoint, connected sets. Assertions (1), (2) and (4) remain true.

Proof. We extend the real symmetric continuous function g from K likewise
to the closure U , the extension being denoted by g0. The zero set Zg ⊂ K
is compact, and so finitely many components Kj , j = 1, . . . ,M , of the
open set H := {z ∈ U | |g0(z)| < δ} will suffice to cover Zg. Since H is
symmetric with respect to the real axis, its components are symmetric as
well. Unfortunately, the closures Kj need not be disjoint. However, we may

take the closed connected components of
⋃N

j=1Kj , and there are at most M
such components. These components are symmetric as well.

To ensure all four assertion we must eventually truncate the closed sets
Kj:

1◦ If no real zero of g belongs to the set Kj , then |g(z)| ≥ ρj > 0 for all

z ∈ (Kj∩K∩R)×(|Im(z)| ≤ δj) for a sufficiently small δj > 0. Hence

no zero of g belongs to z ∈ (Kj∩K∩R)×(|Im(z)| ≤ δj). We truncate

as follows: Hj := Kj ∩ K ∩ (Im(z) ≥ δj) (and a corresponding

reflected set H∗
j in the lower half plane). The closed set Kj ∩ K

splits in two closed sets belonging entirely to the upper (respectively
lower) half plane.
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2◦ If at least one real zero of g belongs to Kj, then we don’t truncate,

that is, Hj := Kj . By symmetry we have Hj = H∗
j and Hj = Kj is

connected, because Kj is.

All the zeros of g belong to exactly one closed set Kj , j = 1, . . . ,N , by
construction.

To prove the last assertion take a small disc D with center z0 ∈ Zg ∩Hj

such that D ⊂ {|Im(z)| ≥ δj} in case 1◦ above and |g(z)| < δ holds for all

z ∈ D∩K. By the construction, D∩K ⊂ ⋃N
j=1Hj. Because the sets Hj are

compact and pairwise disjoint, they have a positive distance from each other.
So choosing the radius of the disc D small enough gives D ∩K ⊂ Hj. �

3.2. Factorization theorem for units. We begin with the following defi-
nition sign-functions, and prove Theorem 3.6 on units, which will be needed
later.

Definition 3.5. A sign-function χ ∈ AR(K) is a function satisfying χ2 = 1
on K. (Note that K may be disconnected.)

Theorem 3.6 (Units). Let K denote a real symmetric compact subset of C

and let A denote one of the algebras AR(K), CR(K) respectively. For any
unit u ∈ A−1 we have two factorizations:

(F1) u = p · exp(H), where p denotes a real symmetric invertible rational
function p ∈ A−1 and a function H ∈ C(K)

(F2) u = p · χ · exp(h), where p denotes a real symmetric invertible ra-
tional function p ∈ A−1, χ ∈ A is a sign-function, and h is a real
symmetric function in A.

The rational function p in (F1) is the same as that in (F2).

Proof. First of all we prove the theorem in case A = CR(K).

(F1): We prove the existence of a real symmetric rational function p with
poles off K and H ∈ C(K) such that u = p · exp(H).

Without symmetry this would be the assertion of Theorem 4.29 in [3].
The need for symmetry causes some difficulty in the proof in [3], and so we
include it in modified form:

By an affine transformation, preserving symmetry, we may assume that

K ⊂ (0, 1) × (−1, 1) =: Q.

Tietze’s Theorem gives a continuous extension f0 : Q → C of u from K to
Q. It can be chosen to be real symmetric. Let

L := f−1
0 ({0}) .

This is a closed subset of Q disjoint from K, so by compactness there exists
an r > 0 such that

|z − w| ≥ r (z ∈ K, w ∈ L).
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Let m be a positive integer such that

m >

√
2

r

and consider the squares

Qj,k :=

[
j − 1

m
,
j

m

]
×

[
k − 1

m
,
k

m

]
with center pj,k :=

j − 1/2

m
+ i

k − 1/2

m

for all j, k ∈ {1, . . . ,m}, and their reflections

Qj,k :=

[
j − 1

m
,
j

m

]
×

[
k + 1

m
,
k

m

]
with center pj,k :=

j − 1/2

m
+ i

k + 1/2

m

for all k = −m, . . . ,−1 and j = 1, . . . ,m.
As will be seen in a moment, the two symmetrically situated squares Qj,−1

and Qj,1 play a different role.

Hence we define the rectangles Rj := Qj,−1∪Qj,1 with center pj := j−1/2
m ,

j = 1, . . . ,m. We define

K := {(j, k) | 1 ≤ j, |k| ≤ m and Qj,k ∩K 6= ∅}
K∅ := {(j, k) | 1 ≤ j, |k| ≤ m and Qj,k ∩K = ∅} .

By symmetry we have either the case that both (j,−1) and (j, 1) belong to
K, or the case that both (j,−1) and (j, 1) belong to K∅, hence we have

Rj ⊂
⋃

(j,k)∈K

Qj,k or Rj ⊂
⋃

(j,k)∈K∅

Qj,k, (j = 1, . . . m).

We have that K ⊂ K1, where K1 is the closed set defined by

K1 :=
⋃

(j,k)∈K

Qj,k,

and from the choice of m and r it also follows that

K1 ⊂ Q \ L.
Note that either Rj ⊂ K1 or Rj ∩K1 = ∅ holds for j = 1, . . . ,m. Let f1 be
the restriction of f0 to K1. Since K1 is a union of squares Qj,k, each interval{

j
m

}
×

[
k−1
m , k

m

]
and each interval

[
j−1
m , k

m

]
×

{
k
m

}
, k = 1, . . . ,m, either lies

wholly in K1 or meets K1 only at endpoints or does not meet K1 at all. By
symmetry this is also true for the reflected squares in the lower half plane.
At each endpoint where f1 is not already defined give it the value 1. Then
for any interval I = [a, b] of the above kind which does not lie wholly in K1,
f1(a), f1(b) are non-zero complex numbers and f1 is not defined in (a, b).
Extending the continuous function with values log f1(a), log f1(b) from the
compact set {a, b} to [a, b] gives a function which when exponentiated gives
a continuous extension of f1 to a map of I into C \ {0}.

In order to preserve symmetry we now proceed in a different manner than
in [3]:
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By symmetry we have a real symmetric, continuous, zero-free extension
f2 of f1 to the closed set

K2 := K1 ∪
( m⋃

j=1

⋃

2≤|k|≤m

∂Qj,k

)

of the rectangle Q. The same is true for the boundaries of the rectangles
Rj, j = 1, . . . ,m. Note that the values on the boundary ∂Rj are already
defined by the values in K2. We arrive at a symmetric, continuous, zero-free
extension f3 of f2 to the closed set

K3 := K2 ∪
( m⋃

j=1

∂Rj

)

of the rectangle Q. The definitions of K∅ and K1 then show that

K3 ∩Qj,k = ∂Qj,k for (j, k) ∈ K∅ and |k| ≥ 2

and

K3 ∩Rj = ∂Rj for (j,−1) and (j, 1) ∈ K∅.

For each such (j, k) there exists an integer nj,k such that (z − pj,k)
nj,kf3(z)

(respectively (z − pj)
njf3(z)) has a zero-free, continuous extension Fj,k to

Qj,k (respectively Rj), see [3, Theorems 4.23 and 4.24]. Note that we can use
reflection to obtain pn,−k = p∗n,k and nj,−k = nj,k. Hence we can consistently
define F0 on the rectangle Q by

F0(z) := f3(z)
∏

(j,k)∈K∅, |k|≥2

(z − pjk)
nj,k

∏

(j,±1)∈K∅

(z − pj)
nj

for z ∈ K3, and

F0(z) := Fj′,k′(z)
∏

(j,k)∈K∅\(j′k′), |k|≥2

(z − pjk)
nj,k

∏

(j,±1)∈K∅, j 6=j′

(z − pj)
nj

for all z ∈ Qj′,k′ with (j′k′) ∈ K∅ and all z ∈ Rj′ , (j
′,±1) ∈ K∅. This func-

tion is continuous and zero-free on Q, and so it has a continuous logarithm
there. The restriction to K gives the desired symmetric product form. This
completes the proof of (F1).

(F2): Because the units u and p are real symmetric, we derive

exp(H(z)) = exp((H(z∗))∗) (z ∈ K).

Hence for all z ∈ K, there exists an integer k = k(z) such that

H(z) − (H(z∗))∗ = 2kπi,

and so
H(z) + (H(z∗))∗

2
= (H(z∗))∗ + kπi.

But the difference in the first identity is a bounded continuous function on
K, and so only finitely many integers kj , j = 1, . . . ,m can occur. Thus K
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splits in disjoint compact sets Kj , j = 1, . . . ,m, and the sign-function χ is
given by

χ(z) := exp(−kjπi) (z ∈ Kj , j = 1, . . . ,m).

Defining h ∈ CR(K) by

h(z) =
H(z) + (H(z∗))∗

2
(z ∈ K),

we conclude that

exp(H(z)) = exp((H(z∗))∗) = exp(h(z)) · χ(z) (z ∈ K),

hence
u = p · exp(H) = p · χ · exp(h).

Note that as u, p, h are real symmetric, χ is real symmetric as well.

The remaining case A = AR(K) now follows from the first case as follows.
By the holomorphic inverse function theorem applied to z 7→ exp(z), we see
that it has a local holomorphic inverse around each point z0, say gz0

. Thus
z 7→ h(z) = gz0

(u(z)χ(z)(p(z))−1) is holomorphic near z0 as well. �

3.3. Lemma on relocation of poles. In Sections 5 and 6, we will often
use the following useful fact.

Lemma 3.7. Let K,L denote compact sets in C with L ⊂ K and every
component of C \L contains a component of C \K. Suppose that f ∈ C(K)
is such that

f(z) = p(z) exp(k(z)) (z ∈ L),

where k ∈ C(L) and p is a rational function with poles and zeros off L.
Then:

(1) There exists a rational function p̃ and a k̃ ∈ C(L) such that

f(z) = p̃(z) exp(k̃(z)) (z ∈ L),

and p̃ has its poles and zeros off K.
(2) If K,L, p, k are in addition real symmetric, then we can ensure that

the p̃, k̃ constructed in (1) above are real symmetric as well.

In other words, we can shift the poles and zeros of p from C \L to C \K.
In our applications later, typically L = Zg, where g ∈ A(K).

Proof. Let a denote a pole or zero of p belonging to the component G of
C \ L. By assumption every component of C \ L contains a component of
C \K, and so there is a common point b ∈ G∩ (C \K). Because L does not
separate a and b (that is, they lie in the same connected component G of
the complement of L), it follows from Eilenberg’s theorem [3, Exercise 4.36]
that there exists a logarithm l ∈ C(L) such that

z − a

z − b
= exp(l(z)) (z ∈ L).

Thus the claim in (1) follows.
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If in addition K,L, p are real symmetric, then in the above we have

z − a∗

z − b∗
= exp((l(z∗))∗) (z ∈ L∗ = L).

Consequently,
z − a

z − b
· z − a∗

z − b∗
= exp(l(z) + (l(z∗))∗)

for all z ∈ L. �

4. Reducibility in real symmetric subalgebras of AR(K)

In this section, we will prove our main result in Theorem 4.1.

Theorem 4.1. Let K denote a real symmetric compact subset of C. The
following assertions are equivalent for any unimodular pair (f, g) ∈ AR(K)2:

(1) There exists a sign-function χ ∈ AR(K), an invertible rational func-
tion p ∈ AR(K)−1, a continuous function l ∈ C(K) such that

for all z ∈ Zg,
χ(z) · f(z)

p(z)
= exp(l(z)), and

for every real zero z of g,
χ(z) · f(z)

p(z)
> 0.

(2) (f, g) is reducible in AR(K), that is, there exists a unit u ∈ AR(K)−1

and there exists k ∈ AR(K) such that f + kg = u.

Remarks 4.2.

(1) There always exists a continuous logarithm h for χ(z) · f(z)/p(z) on
Zg provided that C \Zg is connected, see [3, Corollary 4.33], and by
Tietze’s theorem, this can be extended to a continuous function on
K.

(2) Since the complex algebra A(K) has Bass stable rank 1 (see for
instance [5, Theorem 2.3], [13] or Theorem 5.1), there always exists
a k ∈ A(K) and a unit u ∈ A(K)−1 such that f + kg = u. Again we
can deduce u = χ · p · exp(v) for a sign-function χ, and certain p, v ∈
A(K) by the analogue of the unit representation. The important
point is that for reducibility in AR(K), we must have real symmetric
functions χ, p, v and the positivity on real zeros of g.

Proof. (2)⇒(1): If there exists k ∈ AR(K) and a unit u ∈ AR(K)−1 such
that f + kg = u, we use Theorem 3.6 to factor u = p · χ · exp(l), where
p ∈ AR(K)−1, l ∈ CR(K) and χ ∈ AR(K) is a sign-function. Obviously,

for all z ∈ Zg,
χ(z) · f(z)

p(z)
= exp(l(z)) and

for all real zeros of g,
χ(z) · f(z)

p(z)
> 0.



14 R. RUPP AND A. SASANE

(1)⇒(2): Now assume that there exists a sign-function χ ∈ AR(K), an
invertible rational function p ∈ AR(K)−1, a function l ∈ C(K) such that

for all z ∈ Zg,
χ(z) · f(z)

p(z)
= exp(l(z)) and

for all real zeros of g,
χ(z) · f(z)

p(z)
> 0.

We abbreviate

f0 :=
χ · f
p

.

Step 1: There exist functions h, k ∈ CR(K) with continuous partial deriva-
tives in the interior K◦ of K, such that f0 +h ·g = exp(k). Moreover, ∂h

∂z ,
∂k
∂z

are bounded in K◦.
We think of f0, g as extended to a sufficiently small real symmetric neigh-

borhood U ⊃ K. To be precise: f, χ are extended symmetrically to U .
Since (f0, g) is unimodular in CR(K), there exists δ > 0 and a sufficiently

small real symmetric neighborhood U ⊃ K such that |f0(z)| + |g(z)| ≥ 4δ
for all z ∈ U . The level sets with respect to U are denoted by

ZU
g (δ) := {z ∈ U | |g(z)| ≤ δ} .

By assumption, we have a continuous logarithm of f0 on Zg.

Claim: For sufficiently small δ > 0 there exists L ∈ C(U) such that

χ(z) · f(z)

p(z)
= exp(L(z)) (z ∈ ZU

g (2δ))

and L(z) = l(z) (z ∈ Zg).
Fix a symmetric, continuous extension l0 of l to U . For sufficiently small

δ > 0 we have

Re (f0(z) exp(−l0(z)) > 1/2 (z ∈ ZU
g (2δ)).

Hence there exists a continuous logarithm w of the function f0 exp(−l0); the
principal branch of the logarithm will do. But then we have

f0(z) = exp(l0(z) + w(z)) (z ∈ ZU
g (2δ)).

This completes the proof of the Claim above.

By Lemma 3.3 (with 2δ instead of δ), there exist finitely many pairwise
disjoint closed sets H1, . . . ,HN ⊂ U lying symmetrically with respect to
the real axis, such that: Zg ⊂ ∪N

j=1Hj and |g(z)| ≤ 2δ holds there. Hence

|f0(z)| ≥ 2δ in the union of this sets intersected with K.
In particular, from the Claim above, there exist functions lj, continuous

in the closed sets Hj ⊂ ZU
g (2δ) such that

f0(z) = exp(lj(z)), (z ∈ Hj, j = 1, . . . ,N).

By assertion (3) of Lemma 3.3, we have Hj ∩K ∩ R = ∅ if no real zero of g
belongs to Hj. Moreover, Hj ∩K belongs entirely to the upper (respectively
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lower) half plane. The desired logarithm is very easy to obtain for these sets,
because they don’t intersect the real line. By symmetry we have Hj ∩K =
H∗

k ∩K for some j 6= k. Hence we may redefine lj(z) = (lk(z
∗))∗.

Thus only the case of a real zero x0 of g belonging to Hj remains to be
discussed. In this case Hj is connected. By assumption f0(x0) > 0 holds for
every real zero x0 of g. Because f0 is symmetric we derive

f0(z) = exp(lj(z)) = exp((lj(z
∗))∗) (z ∈ Hj = H∗

j ).

Because Hj is connected and lj is continuous in Hj, there exists an integer
m such that

lj(z) = (lj(z
∗))∗ + 2mπi (z ∈ Hj = H∗

j ).

Restricting to the real zero x0 ∈ Hj ∩ R of g gives Im lj(x0) = mπ. As
f0(x0) = exp(lj(x0)) > 0, the integer m must be even. Now lj −mπi is the
desired symmetric logarithm of f0 on Hj = H∗

j .
Let χj denote a smooth real symmetric function being identically 1 on Hj

and identically 0 outside a neighborhoodW ⊂ U ofHj sufficiently small such
that this neighborhood doesn’t intersect the other sets Hk and |g(z)| ≤ 3δ
(z ∈ K ∩W ). Observe that the logarithm of f0 exists and is bounded on
ZU

g (2δ). Define the function k by

k :=
N∑

j=1

χj lj.

Of course ∂k
∂z is bounded in K◦. By construction k ∈ CR(K) and k(z) = lj(z)

(z ∈ Hj ∩ K, j = 1, . . . N). The desired function h can now be defined as
follows:

h(z) :=

{
exp k(z)−f0(z)

g(z) for z ∈ K \ Zg,

0 for z ∈ Zg.

This function belongs to CR(K) because by Lemma 3.3 for the zero z0 ∈ Hj

there exists a disc D with center z0 such that D ∩ K ⊂ Hj, so we have

h(z) = 0 for all z ∈ D ∩K. This implies also that ∂h
∂z is bounded in K◦.

Step 2: There exist h, k ∈ AR(K) such that f0 + hg = exp(k).
With the functions from Step 1, we define the real symmetric continuous

function on K

F :=
f0

f0 + hg
= f0 exp(−k).

Clearly
F

f0
· f0 +

1 − F

g
· g = 1.

Of course, we have that

F

f0
= exp(−k) and(1)

1 − F

g
= h exp(−k)(2)
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are real symmetric, continuous in K, ∂h
∂z ,

∂k
∂z are bounded in the interior K◦

of K. However, h, k are not necessarily analytic in K◦. Therefore we seek
for a u ∈ CR(K), which is continuously differentiable in K◦ such that

∂

∂z

[
exp(ug)

f0 + hg

]
= 0,

which implies the analyticity of F
f0

exp(ug) and F exp(ug). This yields the

inhomogeneous ∂-equation

∂u

∂z
=

1

f0 + hg
· ∂h
∂z

=: µ.

As is well known, one solution u to the ∂-equation is given by

(3) u(z) =
1

2πi

∫

K◦

µ(ζ)

ζ − z
dζ ∧ dζ (z ∈ K).

(See for instance [7, §1, Chap. VIII], where the result is given for the disc; in
the general case, given a point z0 ∈ K◦, we first consider a disc ∆ centered
around z0, and then split the integral in (3) into an integral over ∆ and over
K◦ \∆.) It is easy to check that u given by (3) is in fact real symmetric. It
is continuous on K because it is the convolution of the bounded function µ
and a L1-function.

We now “replace” the function F by F exp(ug). By multiplying (1) by
exp(ug), we obtain that the function

α :=
F

f0
exp(ug) = exp [ug − k]

belongs to AR(K), and α is an exponential. Using (2), we also see that the
function

β :=
1 − F exp(ug)

g
=

[
h+ f0

1 − exp(ug)

g

]
exp(−k)

is continuous up to all the boundary of K and is analytic in the interior K◦.
Since the identity

αf0 + βg = 1

holds, this completes Step 2.
Recalling the abbreviation f0 := χ·f

p we see that also (f, g) is reducible in

AR(K). �

We generalize this characterization to some subalgebras of AR(K), re-
stricting ourselves to compact symmetric subset K of C such that C\K has
finitely many components.

Definition 4.3. If K denotes a compact subset of C, then we say the corona
theorem holds for A (⊂ AR(K)) if the following is true for all n ∈ N:

(f1, . . . , fn) ∈ Un(A) if and only if there exists a δ > 0 such that for all
z ∈ K,

∑n
j=1 |fj(z)| ≥ δ, that is, if and only if the functions f1, . . . , fn have

no common zero in K.
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That the corona theorem holds for AR(K) follows easily from the corona
theorem for the complex algebra A(K) by symmetrization of the solution.
We refer the reader to [9] for a constructive proof (not using any Gelfand
theory nor Banach algebra theory) of the corona theorem for certain subal-
gebras of A(K) under mild assumptions on K.

Corollary 4.4. Let K denote a compact real symmetric subset of C such
that C \ K has finitely many components. Let A denote a subalgebra of
AR(K) containing all real symmetric rational functions with poles off K,
such that the corona theorem holds for A. The following are equivalent for
any unimodular pair (f, g) ∈ U2(A):

(1) There exists a sign-function χ ∈ AR(K), an invertible rational func-
tion p ∈ A−1 and a function l ∈ C(K) such that

for all z ∈ Zg,
χ(z) · f(z)

p(z)
= exp(l(z)), and

for every real zero z of g,
χ(z) · f(z)

p(z)
> 0.

(2) (f, g) is reducible in A, that is, there exists a unit u ∈ A−1 and there
exists a k ∈ A such that f + kg = u.

Proof. (2)⇒(1): Let there exist a k ∈ A ⊂ AR(K) and a unit u ∈ A−1 ⊂
AR(K)−1 (because of the corona theorem) such that f + kg = u. Using
Theorem 3.6, we can factor

u = p · χ · exp(l),

where the real symmetric rational p ∈ AR(K)−1 also belongs to A−1 because
of the corona theorem, the function χ ∈ AR(K) is a sign-function, and
l ∈ CR(K). Clearly,

for all z ∈ Zg,
χ(z) · f(z)

p(z)
= exp(l(z)), and

for all real zeros of g,
χ(z) · f(z)

p(z)
> 0.

(1)⇒(2): Assume that there exists a sign-function χ ∈ AR(K), an invertible
rational function p ∈ A−1 ⊂ AR(K)−1, and a function l ∈ C(K) such that

for all z ∈ Zg,
χ(z) · f(z)

p(z)
= exp(l(z)), and

for all real zeros of g,
χ(z) · f(z)

p(z)
> 0.

Using Theorem 4.1 the pair (f, g) is reducible in AR(K), that is, there exists
a unit u ∈ AR(K)−1 and there exists a k ∈ AR(K) such that

f + kg = u.
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Using Mergelyan’s theorem there exist rational functions kn with poles off K
converging uniformly to k on K. Because K is real symmetric, we can also
approximate by the symmetrization of kn, that is, the real rational functions

k̃n given by

k̃n(z) :=
kn(z) + (kn(z∗))∗

2
converge uniformly to k too. Since u is a unit in AR(K), we must have

|u(z)| > δ > 0 (z ∈ K).

Choose a real symmetric rational function kn ∈ A near k such that

|u(z) − (k(z) − kn(z))g(z)| > δ/2 > 0 (z ∈ K).

We conclude that f + kng = u − (k − kn)g (which belongs to the algebra
A) has no zeros in K and so it is invertible because of the corona theorem.
This completes the proof of the reducibility of (f, g) in A. �

5. Bass stable rank of A(K)

The methods developed in the previous sections can be applied to prove
that all unimodular pairs in A(K) (K compact in C), are reducible, that is,
the Bass stable rank of A(K) is 1. This is well known (see [5, Theorem 2.3],
[13]), but we present a proof which is independent of Banach algebra theory
and elementary stable rank theory.

Theorem 5.1. Let K denote a compact set in C. Then the stable rank of
the algebra A(K) is 1, that is, every unimodular pair (f, g) is reducible in
A(K).

Proof. Given an unimodular pair (f, g) in A(K), we must show the existence
of h ∈ A(K) and u ∈ A(K)−1, such that f + hg = u. By unimodularity, we
have a δ > 0 such that |f(z)| + |g(z)| ≥ 4δ for all z ∈ K. The function f is
continuous and zero-free in the zero set Zg. Using the unit representation
[3, Theorem 4.29] (Theorem 3.6 above without symmetry), we may write

(4) f(z) = p(z) · exp(k(z)) (z ∈ Zg),

where p denotes a rational function with poles off Zg, and k ∈ C(Zg). By
Lemma 3.2, every component of C \Zg contains a component of C \K. By
Lemma 3.7, we can shift the poles and zeros of p from C \ Zg to C \K.

As in the justification of the Claim in Step 1 of the proof of Theorem 4.1,
we extend (4) to the level set Zg(2δ) for sufficiently small δ, that is,

(5) f(z) = p(z) · exp(k(z)) (z ∈ Zg(2δ)),

where p denotes a rational function with poles off K and k ∈ C(Zg(2δ)).
The rest of the proof is now analogous to the proof of Theorem 4.1, that

is we use Lemma 3.3 (without symmetry of course) to facilitate handling the
zero set of g with finitely many closed connected, pairwise disjoint subsets
of U ⊃ K lying within ZU

g (δ). Then we use ∂-equations to make the smooth
solutions for reducibility analytic in K. �
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6. When is bsr CR(K), AR(K) = 1?

In Section 2, we gave a necessary and sufficient condition on K so that
the Bass stable rank of RR(K) is 1. In this section we give a similar char-
acterization for the algebras CR(K) and AR(K).

6.1. Topological theorems. We begin by proving two purely topological
theorems, which are probably well known to the workers in the field; see [13]
for a different characterization of the first one using the so called “boundary
principle”.

Theorem 6.1. Let K,L denote compact sets in C such that L ⊂ K. The
following assertions are equivalent:

(1) Every continuous zero-free function f ∈ C(L) can be extended to a
continuous zero-free function F ∈ C(K).

(2) Every component of C \ L contains a component of C \K.

Proof. (1)⇒(2): By assumption, every continuous zero-free f ∈ C(L) can
be extended to a continuous zero-free function F ∈ C(K). Assuming the
contrary of (2), there exists a component G of C\L containing no component
of C \ K, that is, G ⊂ K. Of course, G is not the unbounded component
of C \ L, because G ⊂ K. Fix a point w ∈ G. We conclude that w ∈ K
and w ∈ C \ L. By assumption we can extend the continuous, zero-free
function f ∈ C(L) given by f(z) := z−w to a continuous, zero-free function
F ∈ C(K). In particular, we have such an extension to the set L ∪G ⊂ K.
This contradicts Theorem 4.31 in [3].

(2)⇒(1): Let f ∈ C(L) be a function f which is zero-free in the compact set
L. Using the unit representation result [3, Theorem 4.29] (that is, Theorem
3.6 without symmetry), we may write

(6) f(z) = p(z) · exp(k(z)) (z ∈ L),

where p denotes a rational function with poles and zeros off L, and k ∈ C(L).
By assumption every component of C \ L contains a component of C \K.
Thus, applying Lemma 3.7, we can shift the poles and zeros of p from C \L
to C \K, and so

(7) f(z) = p(z) · exp(k(z)) (z ∈ L),

where p denotes a rational function with poles and zeros offK, and k ∈ C(L).
By Tietze’s extension theorem we can extend k continuously to ke ∈ C(K).
The desired extension F is now given by

F (z) := p(z) · exp(ke(z)) (z ∈ K).

This completes the proof. �

So Lemma 3.2 now shows that given g ∈ A(K), then every continuous,
zero-free function can likewise be extended from the level set Zg(δ) to K.
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Theorem 6.2. Let K,L denote compact, real symmetric sets in C such that
L ⊂ K. The following assertions are equivalent:

(1) Every continuous zero-free function f ∈ CR(L) can be extended to a
continuous zero-free function F ∈ CR(K).

(2) Every component of C \L contains a component of C \K and every
sign-function χ ∈ CR(L) can be extended to a continuous zero-free
function χe ∈ CR(K).

Proof. (1)⇒(2): By assumption, every continuous zero-free f ∈ CR(L) can
be extended to a continuous zero-free function F ∈ CR(K). If there exists a
component G of C \L containing no component of C \K, then G ⊂ K (see
the implication (1) ⇒ (2) in the proof of Theorem 6.1). Of course, G is not
the unbounded component of C \ L, because G ⊂ K. Fix a point w ∈ G.
We conclude that

w ∈ K and w ∈ C \ L.
By assumption we can extend the continuous, zero-free function f ∈ CR(L)
given by f(z) := (z − w)(z − w∗) to a continuous, zero-free function F ∈
CR(K). Fix a number r > sup |G| = sup |G∗| and let D := {z ∈ C | |z| ≤ r}.
With these abbreviations we define the auxiliary function H on D by the
formula:

H(z) :=

{
(z −w)(z − w∗) for z ∈ D \ (G ∪G∗) ,
F (z) for z ∈ G ∪G∗.

From [D \ (G ∪G∗)] ∩ (G ∪G∗) ⊂ ∂ (G ∪G∗) ⊂ ∂G ∪ ∂G∗ ⊂ L ∪ L∗ = L it
follows that H is well defined, continuous and zero-free in the closed disk D
(note that w ∈ G), hence there exists a continuous logarithm φ:

H(z) = exp(φ(z)) (z ∈ D) .

In particular,

(z − w)(z − w∗) = exp(φ(z)) (r − ε ≤ |z| ≤ r).

Taking the logarithm locally shows that φ is analytic, and so

1

z − w
+

1

z − w∗
= φ′(z) (r − ε < |z| < r).

Integration along the circle |z| = r − ε/2 gives the contradiction 4πi = 0.
Hence no such component G ⊂ K can exist. By (1) we can extend every
sign-function χ ∈ CR(L), because it is zero-free in L. Thus we have proved
all assertions in (2).

(2)⇒(1): Let f ∈ CR(L) be a function which is zero-free in the compact set
L. Using the unit representation Theorem 3.6, we may write

(8) f(z) = p(z) · χ(z) · exp(k(z)) (z ∈ L),

where p is a real symmetric rational function with poles and zeros off L, χ ∈
CR(L) is a sign-function, and k ∈ CR(L). By assumption every component
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of C \L contains a component of C \K. Using Lemma 3.7, we can shift the
poles and zeros of p from C \L to C \K while respecting symmetry, that is,

(9) f(z) = p(z) · χ(z) · exp(k(z)) (z ∈ L),

where p denotes a real symmetric rational function with poles and zeros off
K, χ ∈ CR(L) is a sign-function, and k ∈ CR(L). By Tietze’s extension
theorem we can extend k continuously and real symmetric to ke ∈ CR(K).
By assumption (2) there exists a zero-free extension χe ∈ CR(K) of χ. The
desired extension is now given by F , which is defined as follows:

F (z) := p(z) · χe(z) · exp(ke(z)) (z ∈ K).

This completes the proof. �

6.2. A technical lemma.

Lemma 6.3. Let K be real symmetric compact set in C, and let g ∈ CR(K)
with nonempty zero set Zg ⊂ K be given. Moreover, assume that K ∩ R is
totally disconnected. Then for every sign-function χ ∈ CR(Zg), there exists
a zero-free real symmetric extension χe ∈ CR(K).

Proof. We split K into the upper part K+ belonging to the closed upper
half plane and the lower part K− belonging to the closed lower half plane.
Since K ∩ R is totally disconnected, its covering dimension is 0; see [10].

If K ∩R is empty, it is easy to construct a real symmetric extension of χ
to K: As a sign-function, we must have two sets K−1,K1 ⊂ K+ such that
χ(z) = ±1, for z ∈ K±1, respectively. Then we have the logarithm l(z) = iπ
on K−1 and l(z) = 0 on K1, and by Tietze’s theorem we can extend l
continuously to K+. Because K ∩ R is empty, we may use reflection to the
lower half plane to achieve a real symmetric extension of l to K. Define
χe ∈ CR(K) by

χe(z) :=

{
exp(l(z)) for z ∈ K+,
exp((l(z∗))∗) for z ∈ K−.

So we may assume that K ∩ R is nonempty and has dimension zero. With
the notation S0 := {−1, 1}, we can apply Theorem III.2 in [10] to obtain a
real valued continuous extension χ0 ∈ C(K ∩ R) of the restriction of χ to
Zg ∩R with values in S0. So we obtain the sign-function χ0. Hence we may
extend the domain of χ by

χ1(z) :=

{
χ(z) for z ∈ Zg \ R,
χ0(z) for z ∈ K ∩ R.

Using Tietze’s theorem, we extend χ1 continuously to K. Take a continuous
function g1 vanishing exactly on K ∩ R. Then Zgg1

= Zg ∪ (K ∩ R). It
follows that the pair (χ1, gg1) is unimodular in the complex Banach algebra
C(K+). But then the complement of the inversion set

I := {λ ∈ C | (χ1 − λ, gg1) is unimodular}
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satisfies C \ I = χ1(Zgg1
) ⊂ {−1, 1}. Hence the complement of the inversion

set I is connected and λ = 0 belongs to it, so a result of Corach and Suarez
(see for example [13, Proposition 1.3]) tells us that (χ1, gg1) is reducible.
Thus there exist k ∈ C(K+), U ∈ C(K+)−1 such that χ1 + kgg1 = U . In
particular,

U(z) = χ0(z) ∈ R (z ∈ K ∩ R).

Hence the unit

χe(z) :=

{
U(z) for z ∈ K+

(U(z∗))∗ for z ∈ K−

is well-defined and is an extension of χ. �

6.3. When is bsr AR(K) = 1? The following result answers a question
posed in [14]:

Theorem 6.4. Let K denote a real symmetric compact set in C. The
following assertions are equivalent:

(1) The Bass stable rank of AR(K) is 1.
(2) K ∩ R is totally disconnected.

Proof. (1)⇒(2): Suppose that every unimodular pair is reducible. By Lemma
2.3, it follows that K ∩ R is totally disconnected.

(2)⇒(1): We must show that every unimodular pair (f, g) is reducible. Uni-
modularity implies the existence of a δ > 0 such that |f(z)| + |g(z)| ≥ δ
(z ∈ K). Hence the real symmetric function f restricted to the set L = Zg

is zero-free. By Theorem 3.6 for the compact real symmetric set Zg, there
exists a real symmetric rational function p with poles and zeros off Zg, and
a sign-function χ ∈ CR(Zg) such that

(10) f(z) = p(z) · χ(z) · exp(h(z)) (z ∈ Zg).

We think of h as extended continuously to all of K by Tietze’s Theorem,
i.e. h ∈ CR(K). Using Lemma 3.2, every component of C \ Zg contains a
component of C \K. From Lemma 3.7, we can shift the poles and zeros of
p from C \ Zg to C \K while respecting symmetry, that is,

(11) f(z) = p(z) · χ(z) · exp(h(z)) (z ∈ Zg),

where p denotes a real symmetric rational function with poles and zeros
off K, χ ∈ CR(Zg) is a sign-function on Zg and h ∈ CR(K). Since K ∩ R

is totally disconnected, Lemma 6.3 now shows the existence of a zero-free
extension χe ∈ CR(K) of χ. By Theorem 3.6 the real symmetric unit χe ∈
CR(K) can be factored as

χe(z) = q(z) · ψ(z) · exp(k(z)) (z ∈ K),

where q denotes a real symmetric rational function with poles and zeros off
K, ψ denotes a sign-function on K and k ∈ CR(K). Consequently,

f(z) · ψ(z)

p(z) · q(z) = exp(h(z) + k(z)) (z ∈ Zg).
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We note that exp(l(z) + k(z)) > 0 for all z ∈ Zg ∩ R since h + k ∈ CR(K).
In each open component G of K, ψ is either identically +1 or identically
−1, and hence analytic there. Thus in fact ψ ∈ AR(K). Theorem 4.1 now
implies that the unimodular pair (f, g) is reducible. So the stable rank of
AR(K) is 1. �

6.4. When is bsr CR(K) = 1? Now we are in a position to calculate the
Bass stable rank for CR(K) for certain compact sets K. Surprisingly, the
characterisation is not the same as for the complex Banach algebra C(K).
Indeed, a result of Vaserstein [15, Theorem 7, p.104] gives:

bsr C(K) = 1 if and only if K◦ = ∅.

In the case of the real algebra CR(K) we have the following:

Theorem 6.5. Let K denote a real symmetric compact set in C. The
following assertions are equivalent:

(1) The Bass stable rank of CR(K) is 1 .
(2) The interior K◦ of K is empty and K ∩ R is totally disconnected.

Proof. (1)⇒(2): Suppose that every unimodular pair is reducible. Let L
denote a real symmetric compact set in K. Let f0 denote any real symmetric
zero-free continuous function on the real symmetric compact set L ⊂ K.
Since each compact set in C is a Gδ-set, there exists a continuous function
g0 ∈ C(K) such that Zg0

= L; see [8, p. 15]. But then

g(z) := g0(z) · (g0(z∗))∗

defines a real symmetric function g ∈ CR(K) such that Zg = L = L∗.
By Tietze’s theorem, we can extend f0 to a real symmetric continuous f ∈
CR(K). Now the unimodular pair (f, g) must be reducible, hence f+hg = u
for certain h, u ∈ CR(K), u zero-free in K. But u is a real symmetric zero-
free continuous extension of f0 from L to K. Theorem 6.2 now implies that
every component of C \ L contains a component of C \K.

Next we will show that K◦ is empty. Assuming the contrary let ∆ be
an open disc such that ∆ ⊂ K, and let C be the boundary of ∆. It is
easy to see that we can arrange that ∆ is contained in the upper half plane
{z | Im(z) > 0}. Then L := C ∪C∗ is real symmetric, compact, and L ⊂ K.
Hence from the above, it follows that every component of C \ L contains
a component of C \ K. But one of the components of C \ L is ∆, which
would now contain a component of C \K, and hence a point outside K, a
contradiction. This proves that K◦ is empty.

That K ∩ R is totally disconnected follows from Lemma 2.3.

(2)⇒(1): By assumption, the interior K◦ is void, i.e. AR(K) = CR(K), and
K ∩ R is totally disconnected. By Theorem 6.4, the Bass stable rank of
AR(K), and hence that of CR(K), is 1. �
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7. Open questions

We end this paper with some open questions. Corollary 2.8 says that if K
is a real symmetric compact subset of C such that C \K has finitely many
connected components, then bsr AR(K) is at most 2. We suspect that this
might always be the case, and so we have the following questions:

(1) IfK is a real symmetric compact subset of C, then is bsr AR(K) ≤ 2?
(2) IfK is a real symmetric compact subset of C, then what is tsr AR(K)?
(3) Find necessary and sufficient conditions for tsr AR(K) = 1.

In light of the results in this article, analogous questions for CR(K) can also
be posed:

(1) IfK is a real symmetric compact subset of C, then is bsr CR(K) ≤ 2?
(2) IfK is a real symmetric compact subset of C, then what is tsr CR(K)?
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[5] G. Corach and F.D. Suárez. Extension problems and stable rank. Topology and its

Applications, 21:1-8, 1985.
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