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Tolokonnikov’s Lemma for Real H∞ and the
Real Disc Algebra

Kalle Mikkola and Amol Sasane

Abstract. We prove Tolokonnikov’s Lemma and the inner-outer factorization
for the real Hardy space H∞

R , the space of bounded holomorphic (possibly
operator-valued) functions on the unit disc all of whose matrix-entries (with
respect to fixed orthonormal bases) are functions having real Fourier coeffi-

cients, or equivalently, each matrix entry f satisfies f(z) = f(z) for all z ∈ D.
Tolokonnikov’s Lemma for H∞

R means that if f is left-invertible, then f
can be completed to an isomorphism; that is, there exists an F , invertible
in H∞

R , such that F =
[

f fc

]
for some fc in H∞

R . In control theory,
Tolokonnikov’s Lemma implies that if a function has a right coprime factor-
ization over H∞

R , then it has a doubly coprime factorization in H∞
R . We prove

the lemma for the real disc algebra AR as well. In particular, H∞
R and AR are

Hermite rings.
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1. Introduction

In this paper, we prove Tolokonnikov’s Lemma for the real Hardy spaceH∞
R

, which
is defined below, and for the real disc algebra AR, the subspace of H∞

R
functions

having a continuous extension to the closed unit disc (Section 4).
We begin by introducing some notation. We will denote the complex plane

by C, the unit disc {z ∈ C | |z| < 1} by D, and the unit circle {z ∈ C | |z| = 1}
by T.

The work of the first author was supported by Magnus Ehrnrooth Foundation.



440 K. Mikkola and A. Sasane Comp.an.op.th.

Throughout this article X and Y denote separable complex Hilbert spaces
with fixed orthonormal bases.1 L(X,Y ) denotes the complex Banach space of
bounded linear operators from X to Y , equipped with the operator norm.

If M is a matrix (possibly infinite), then M denotes the matrix obtained
from M by taking the complex conjugate of each entry of M ; that is, M jk := Mjk

for every j, k.
H∞(L(X,Y )) denotes the Banach space of functions f : D → L(X,Y ) that

are holomorphic and bounded, equipped with the supremum norm

‖f‖∞ := sup
z∈D

‖f(z)‖L(X,Y ) .

We denote by H2(X) the Hilbert space of functions f : D → X that are holomor-
phic in D such that

‖f‖2 := sup
0<r<1

(
1
2π

∫ 2π

0

‖f(reiθ)‖2
Xdθ

) 1
2

<∞ .

Definition 1.1. We denote by H∞
R

(L(X,Y )) the set comprising functions f ∈
H∞(L(X,Y )) such that

f(z) = f(z) for all z ∈ D .

H∞
R

(L(X,Y )) is a Banach space over R with the supremum norm ‖ · ‖∞. We call
the elements of H∞

R
(L(X,Y )) real (or real-symmetric).

Analogously, we define the real Hilbert space H2
R
(X).

An operator A ∈ L(X,Y ) is called real if it is real as a constant function
in H∞

R
, or equivalently, if its matrix entries are real numbers.

Tolokonnikov’s Lemma says that ifX⊂Y , dim(X)<∞ and f ∈H∞(L(X,Y )),
then the following two statements are equivalent:

1. (Left invertibility) There exists g ∈ H∞(L(Y,X)) such that gf ≡ IX .
2. (Complementation to an isomorphism) There exists F ∈ H∞(L(Y )) such

that F |X = f and F−1 ∈ H∞(L(Y )).
For a proof of Tolokonnikov’s Lemma, see for instance §10 in Appendix 3

of [3], and also [6,7]. When X and Y are both finite dimensional, then this lemma
simply says that the ring H∞ (of scalar functions, with pointwise addition and
multiplication) is Hermite. For background on Hermite rings, we refer the reader
to [2]. Tolokonnikov’s Lemma was generalized to the case when X is not necessar-
ily finite dimensional by Sergei Treil in [8]. Following his proof, we establish the
following result in this article.

1This allows us to identify any A ∈ L(X, Y ) with the corresponding (possibly infinite) matrix

and makes A well defined. One easily verifies that αA + B = αA + B, AB = A B, (A) = A,

A
∗

= A∗, A−1 = (A)−1, and A∗
jk := Akj for every j, k, when α ∈ C and A and B are linear

operators or vectors of compatible dimensions. Moreover, for any L(X, Y )-valued function f we

have f ∈ H∞ iff f(·) ∈ H∞.
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Theorem 1.2. Let X,Y be complex Hilbert spaces, and let f ∈ H∞
R

(L(X,Y )). Then
the following are equivalent:

1. There exists a g ∈ H∞
R

(L(Y,X)) such that gf ≡ IX .
2. There exists a complex Hilbert space Xc and there exists a function F ∈
H∞

R
(L(X ⊕Xc, Y )) such that F−1 ∈ H∞

R
(L(Y,X ⊕Xc)) and F (z)|X = f(z)

for all z ∈ D (and a.e. on T).

If X is a finite dimensional subspace of Y , then in Theorem 1.2 the space Xc

can be chosen to be the orthogonal complement of X in Y , but the same is not
true when X is infinite dimensional.

Using Theorem 1.2, we also obtain an analogous result for the real disk alge-
bra AR.

The motivation for proving Tolokonnikov’s Lemma in the real case arises
from control theory, where it plays an important role in the problem of stabiliza-
tion of linear systems. Indeed, Tolokonnikov’s Lemma implies that if a transfer
function G has a right (or left) coprime factorization, then G has a doubly co-
prime factorization, and the standard Youla parameterization yields all stabilizing
controllers for G. For background on the relevance of Tolokonnikov’s Lemma in
control theory and further details, we refer the reader to Vidyasagar [9].

In applications in control theory, the linear systems and transfer functions
have real coefficients, and so in this context it is important to consider real
functions, since otherwise the controllers obtained would be physically meaning-
less. With the real doubly coprime factorization provided by Theorem 1.2 one
can parameterize all real stabilizing controllers by restricting to real parameters
in the Youla formula; see, for example, Curtain and Zwart [1], Staffans [5] or
Vidyasagar [9].

It is known (see for instance Wick [11]) that a real version of the operator-
valued Corona Theorem holds true: if g ∈ H∞(L(Y,X)) is the left inverse of a real
function f ∈ H∞(L(X,Y )), then so is the symmetrization g̃ := 1/2(g + g(·)) ∈
H∞

R
(L(Y,X)) (see Lemma 3.1(1)). We remark that also real versions of (the

operator-valued cases) of the Hartman Theorem, Nehari Theorem and Adamjan–
Arov–Krein Theorem can be obtained analogously (the symmetrization of a so-
lution is again a solution if the original data is real), although for the latter two
theorems the verification requires further technical details, which we omit.

However, Tolokonnikov’s Lemma does not allow for such a straightforward
real variant, because the symmetrization of an invertible matrix need not be in-
vertible!

In order to prove our main result (Theorem 1.2 above), we will need a real
version of the operator-valued canonical inner-outer factorization in the Hardy
space H∞, which we prove first in Section 2, and in Section 3 we give the proof of
Theorem 1.2. Finally, as a corollary to Theorem 1.2, we also derive a real version of
Tolokonnikov’s Lemma for the operator-valued analogue of the real disc algebra in
Section 4. To our knowledge, our results are new even in the finite-dimensional case.
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2. Inner-outer factorization

In this section we will prove a real version of the canonical inner-outer factor-
ization for operator-valued functions from the Hardy class. We start with some
observations on real and complex spaces, operators and functions.

Real functions can be characterized in several ways.

Lemma 2.1. A function f ∈ H∞(L(X,Y )) is real iff f(z) is real for each z ∈
(−1, 1). An equivalent condition is that f̂(n) is real for each n ∈ N. If f is real,
then so is f ′.

Proof. 1◦ If f = f (̄·) on nondiscrete subset of D, then f = f (̄·) on D, hence then f
is real. But f (̄·) = f on (−1, 1), so the first equivalence holds.

2◦ If f is real, then f ′(z) = limR�h→0 h
−1(f(z + h) − f(z)) is real for z ∈

(−1, 1), because f(z + h) and f(z) are real; thus, then f is real, by 1◦.
3◦ If f is real, then so is f̂(n) = f (n)(0)/n! ∀n ∈ N, by 2◦ and induction.

Conversely, if f̂(n) is real for each n, then f(z) =
∑

n∈N
f̂(n)zn is real for each

z ∈ (−1, 1). �
Definition 2.2. If (V, 〈·, ·〉) is a real Hilbert space, then by VC we denote the complex
Hilbert space V +iV , with the natural scalar multiplication (where i(v+iṽ) := −ṽ+
iv), and inner product given by 〈w+iw̃, v+iṽ〉C := 〈w, v〉+〈w̃, ṽ〉+i〈w̃, v〉−i〈w, ṽ〉.

We omit the proof of the following obvious claim.

Lemma 2.3. If B is an orthonormal basis of a real Hilbert space V , then B is also
an orthonormal basis of the complex Hilbert space VC.

Recall that every f ∈ H∞(L(X,Y )) has a boundary function (the nontan-
gential limit a.e.) that we denote by the same symbol f : T → L(X,Y ). (See for
example [4].)

Definition 2.4. We call f ∈ H∞(L(X,Y )) inner if f(z)∗f(z) = I a.e. on T, or
equivalently, if multiplication by f is an isometry from H2(X) to H2(Y ).

f ∈ H∞(L(X,Y )) is called outer if {fϕ | ϕ ∈ H2(X)} is dense in H2(Y ).

An equivalent, equally standard definition is given in [4]. We now establish
the inner-outer factorization.

Theorem 2.5. If f ∈ H∞(L(X,Y )), then there exists a Hilbert space W and
functions finn : D → L(W,Y ), fout : D → L(X,W ) such that f = finnfout,
finn ∈ H∞(L(W,Y )) is inner, and fout ∈ H∞(L(X,W )) outer.

If f is real, then we can also ensure that finn and fout are real.

Proof. Except for the last claim about making the factors real, the result is given
in §1.6.4.(b) of [4]. We first outline the construction of finn and W as in [4], and
then we prove that finn and fout can be made real whenever f is real.

The closure E := clos(fH2(X)) is an S-invariant subspace of H2(Y ). Here S
denotes the shift operator, Sϕ(z) = zϕ(z), ϕ ∈ H2(Y ). Define W = E � SE,
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and let finn be defined as follows: finn(ζ)ϕ = ϕ(ζ), ζ ∈ D, ϕ ∈ W . Then finn ∈
H∞(L(W,Y )) is inner and E = finnH

2(W ). Moreover, fout defined by fout(ζ) =
finn(ζ)∗f(ζ) for ζ ∈ T is outer.

Let A := clos(fH2
R
(X)) and V :=A � SA= {ϕ ∈ A | 〈ϕ, Sψ〉 = 0 ∀ψ ∈ A}.

Then A and V are real Hilbert spaces. Let B = {ϕ1, ϕ2, ϕ3, . . .} be an orthonormal
basis of V . One easily verifies that

W = (A+ iA) � S(A+ iA)

=
{
ϕ+ iϕ̃ ∈ A+ iA | 〈ϕ+ iϕ̃, Sψ + iSψ̃〉 = 0 ∀ψ, ψ̃ ∈ A

}

= V + iV.

By Lemma 2.3, it follows that B is also an orthonormal basis of W ; we fix it as
the canonical basis of W (the one used in the definition of “real”).

Any ϕ ∈ W can be written as
∑

k wkϕk with (wk)k≥1 ∈ �2. Here �2 denotes
the space of square-summable sequences with values in C. Now

finn(z)ϕ = ϕ(z) =
∑

k

wkϕk(z) ∈ Y ,

and so
(
finn(z)ϕ

)
j

= ϕ(z)j =
∑

k

wk

[
ϕk(z)

]
j
∈ C (2.1)

for all j. But also
(
finn(z)ϕ

)
j

=
∑

k

[
finn(z)

]
jk
wk . (2.2)

Since (2.1) and (2.2) hold for all ϕ ∈ W , we obtain [finn(z)]jk = [ϕk(z)]j. Thus
for all j, k,

[
finn(z̄)

]
jk

=
[
ϕk(z̄)

]
j

=
[
ϕk(z)

]
j

=
[
finn(z)

]
jk

since each ϕk is real. Consequently, finn(z̄) = finn(z), and so finn is real. Finally,
fout = f∗

innf is real as well. �

Remarks 2.6. We make the following observations:

1. In Theorem 2.5 above, we have dim Y ≥dimW ≤ dimX (since finn(z)∗finn(z)
= I for some z ∈ T and fout(0) has dense range).

2. We write f ∈ H2
strong(L(X,Y )) if f : D → L(X,Y ) is such that fx ∈ H2(Y )

for all x ∈ X . Such a function is called outer if the set {fp | p is an X-
valued polynomial} is dense in H2(Y ) [4, p. 14]. With the alternative as-
sumption that f ∈ H2

strong(L(X,Y )), Theorem 2.5 still holds except that
then fout ∈ H2

strong(L(W,Y )) (instead of H∞). In this case the proof requires
slight modifications; for example, we need to replace fH2(X) (respectively,
fH2

R
(X)) by the set of polynomials contained in H2(X) (respectively, in

H2
R
(X)).
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3. Note also that if we want to have the inner and outer factors real with respect
to some other fixed orthonormal basis of W instead of the one constructed in
the proof, we just have to replace finn and fout by finnU and U−1fout, where
U ∈ L(W ) is a unitary operator that maps the new basis to the original basis.
Analogously, for any set Q of cardinality dimW , we can replace W by �2(Q)
in Theorem 2.5 by applying a suitable unitary U ∈ L(�2(Q),W ) as above.

3. Tolokonnikov’s Lemma for H∞
R

(L(X, Y ))

We call f ∈ H∞(L(X,Y )) left invertible in H∞ if gf ≡ IX for some g ∈
H∞(L(Y,X)). We call f ∈ H∞

R
(L(X,Y )) left invertible in H∞

R
if gf ≡ IX for

some g ∈ H∞
R

(L(Y,X)).
We shall need a real version of Nikolski’s Lemma [8], which we show in item 2

below.

Lemma 3.1. Let f ∈ H∞
R

(L(X,Y )). Then
1. f is left invertible in H∞

R
iff f is left invertible in H∞.

2. If
∃δ > 0 such that ∀z ∈ D f(z)∗f(z) ≥ δ2IX , (3.1)

then f is left invertible in H∞ iff there exists a P ∈ H∞
R

(L(Y )) whose values
are projections (not necessarily orthogonal) onto f(z)X for all z ∈ D (and
a.e. on T).

Remark 3.2. Condition (3.1) is necessary for left invertibility in H∞. It is also
sufficient if dimX <∞, but not in general (see [8]).

Proof. 1. In order to prove the first claim, we note that if g is a left inverse of f ,
then we can make g real by symmetrization, that is, if g ∈ H∞(L(Y,X))
and gf ≡ I, then with g̃ ∈ H∞

R
(L(Y,X)) defined by g̃(z) := 1

2 (g(z) + g(z)),
z ∈ D, we have g̃f ≡ I.

2. It was shown in [8] (see Lemma 6.1, attributed to N. Nikolski) that if the
condition (3.1) holds, then f is left invertible in H∞ iff there exists a P ∈
H∞(L(Y )) whose values are projections onto f(z)X for all z ∈ D (and a.e.
on T). Moreover, in the proof of the ‘only if’ part, the projection valued
function P was constructed from a left inverse g of f as follows: P(z) =
f(z)g(z), z ∈ D. In our case, we can choose the g to be real, and so we can
ensure that P is real as well. �

We now prove the real version of Tolokonnikov’s Lemma.

Proof of Theorem 1.2: Let g be a left inverse of f in H∞
R

. Set

Q := I − P ,

where P is as in Lemma 3.1, and write Q = QinnQout as in Theorem 2.5, with
Xc := W . Then

F =
[
f Qinn

] ∈ H∞(L(X ⊕Xc, Y )
)
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has the inverse

G =
[

gP
Qout

]
∈ H∞(L(Y,X ⊕Xc)

)
,

as shown at the end of [8]. But F and G are real, so we are done. �

4. Tolokonnikov’s Lemma for AR(L(X, Y ))

As a corollary to Tolokonnikov’s Lemma for H∞
R

(L(X,Y )), we derive a real version
of it also for the analogue of the real disc algebra, defined below.

Definition 4.1. We denote by AR(L(X,Y )) the set comprising functions f ∈
H∞

R
(L(X,Y )) such that f has a continuous extension to clos(D).

Corollary 4.2. Let X,Y be complex Hilbert spaces, and let f ∈ AR(L(X,Y )). Then
following are equivalent:

1. There exists a δ > 0 such that for all z ∈ D, f(z)∗f(z) ≥ δ2IX .
2. There exists a g ∈ AR(L(Y,X)) such that gf ≡ IX .
3. There exists a complex Hilbert space Xc and there exists a function F ∈
AR(L(X ⊕ Xc, Y )) such that F−1 ∈ AR(L(Y,X ⊕ Xc)) and F (z)|X = f(z)
for all z ∈ clos(D).

Remark 4.3. If dim(X) < ∞, then condition (1) holds iff f(z) is one-to-one for
every z ∈ clos(D).

Proof. The equivalence of (1) with (2) is known (see [10]), and (3)⇒(2) is trivial.
So we simply prove (2)⇒(3).

If (2) above holds, then g ∈ H∞
R

(L(Y,X)), and by Tolokonnikov’s Lemma
for H∞

R
, there exists a F̃ =

[
f fc

] ∈ H∞
R

(L(X⊕Xc, Y )) such that G := F̃−1 ∈
H∞

R
(L(Y,X ⊕Xc)), and F̃ (z)|X = f(z) for all z ∈ D.
Given a function w on D and an r ∈ (0, 1), we define the dilation of w,

denoted by wr, as follows:

wr(z) = w(rz) , z ∈ Dr := r−1
D .

It is clear that if w is real, then so is wr.
On Dr, we have GrF̃r = Gr

[
fr fc,r

] ≡ IX⊕Xc . In particular, on clos(D),
there holds that

Gr

[
f fc,r

]
= IX⊕Xc +Gr

[
fr − f 0

]
=: h .

But ‖Gr‖∞ ≤ ‖G‖∞. Moreover, since f is uniformly continuous on clos(D), it
follows that limr↗1 ‖fr − f‖∞ = 0. Hence we can choose a r close enough to 1
such that h is invertible in AR(L(X ⊕Xc)). Defining

F =
[
f fc,r

] ∈ AR

(L(X ⊕Xc, Y )
)
,

we see that F has inverse h−1Gr ∈ AR(L(Y,X ⊕Xc)), and F (z)|X = f(z) for all
z ∈ clos(D). �
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