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Abstract. Let D denote the open unit disk {z ∈ C | |z| < 1}, and C+

denote the right half-plane {s ∈ C | Re(s) ≥ 0}.
(1) Let W +(D) be the Wiener algebra of the disc, that is the set of all

absolutely convergent Taylor series in the open unit disk D, with
pointwise operations.

(2) Let W +(C+) be the set of all functions defined in the right half-
plane C+ that differ from the Laplace transform of a function
fa ∈ L1(0,∞) by a constant. Equipped with pointwise operations,
W +(C+) forms a ring.

We show that the rings W +(D) and W +(C+) are pre-Bézout rings.

1. Introduction

The aim of this paper is to show that the rings W+(D) and W+(C+)
(defined below) are pre-Bézout.

We first recall the notion of a pre-Bézout ring.

Definition 1.1. Let R be a commutative, unital ring.

(1) An element d ∈ R is called a greatest common divisor of a, b ∈ R if
it is a divisor of a and b and if k is another divisor, then k divides d.

(2) The ring R is said to be pre-Bézout if for every a, b ∈ R for which
there exists a greatest common divisor d, there exist x, y ∈ R such
that d = xa + yb.

Michael von Renteln [12, Theorem 2.4, p. 54] proved that the disc algebra
A(D) (the ring of continuous functions on the closed unit disc D, which are
analytic in the open unit disc D, with the usual pointwise operations) is
pre-Bézout. The first author of the present paper [7] showed the pre-Bézout

property for the Sarason algebra QA = (C(T)+ C̃(T))∩H∞(D) of bounded

analytic functions having quasicontinuous boundary values. (Here C̃(T)
denotes the set of harmonic conjugates of continuous functions on T.) Note
that the algebra H∞(D) (of all bounded and analytic functions in the open
unit disc, with pointwise operations) is not pre-Bézout [12, Remark, p. 54].
In this article, we will show that the rings W+(D) and W+(C+) (defined
below) are pre-Bézout.
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1



2 RAYMOND MORTINI AND AMOL SASANE

Throughout the article, we will use the following notation:

D := {z ∈ C | |z| < 1}

D := {z ∈ C | |z| ≤ 1}

C+ := {s ∈ C | Re(s) ≥ 0}.

Definition 1.2.

(1) The Wiener algebra of the disc, W+(D), is the set of all functions
f : D → C such that f is analytic in D and

∑∞
n=0 |an| < ∞ for

f(z) =
∑∞

n=0 anzn (z ∈ D). Equipped with pointwise operations
and the norm ‖f‖W+ :=

∑∞
n=0 |an|, W+(D) is a Banach algebra.

(2) Let W+(C+) denote the set of all functions F : C+ → C such that

F (s) = f̂a(s) + f0 (s ∈ C+), where fa ∈ L1(0,∞), f0 ∈ C, and f̂a

denotes the Laplace transform of fa given by

f̂a(s) =

∫ ∞

0
e−stfa(t)dt, s ∈ C+.

Equipped with pointwise operations and the norm

‖F‖W+ = ‖fa‖L
1 + |f0|,

W+(C+) is a Banach algebra.

We note that W+(C+) is contained in the set of all holomorphic functions
on the right half-plane that admit continuous extensions to the imaginary
axis and have a limit at infinity. We will call W+(C+) the Wiener-Laplace
algebra.

Remark 1.3.

(1) From the application point of view, the above algebras also arise as a
natural classes of transfer functions of stable distributed parameter
systems in control theory; see [10].

(2) We use the notation W+(C+) in order to highlight the similarity
with W+(D). Indeed, W+(D) is isomorphic to the algebra of sum-
mable sequences ℓ1(N) with convolution, pointwise addition, and
the ℓ1(N) norm. Now instead of this “discrete” convolution algebra,
we consider “distributed” summable functions L1(0,∞), again with
convolution, pointwise addition, and the L1(0,∞)-norm, and attach
the identity element δ (=Dirac distribution) to it, we obtain the con-
volution algebra L1(0,∞)+ Cδ. Then W+(C+) is isomorphic to the
algebra L1(0,∞) + Cδ via Laplace transformation.

Our main results are the following:

Theorem 1.4. The ring W+(D) is pre-Bézout.

Theorem 1.5. The ring W+(C+) is pre-Bézout.
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Remark 1.6.

(1) The relevance of the pre-Bézout property in control theory is the
following:

Suppose R is a pre-Bézout ring and we have a plant whose transfer
function p belongs to the field of fractions of R. Then p has a
weakly coprime factorization iff p has a coprime factorization; see
[9, Proposition, p. 54].

(2) We recall that a commutative ring R is called Bézout if every finitely
generated ideal in R is principal.

Neither of our algebras W+(D) nor W+(C+) are Bézout. That
W+(D) is not Bézout can be shown by considering the ideal (f, g),
where

f = (1 − z)3 and g = (1 − z)3e−
1+z

1−z ;

see [8, Remark after Theorem 1, p. 224]. On the other hand the fact
that W+(C+) is not Bézout follows from a general result which says
that if R is any subring of the ring H∞ (of bounded analytic func-
tions in the open right half-plane Re(s)> 0, with pointwise addition
and multiplication), such that R contains the Laplace transforms of
functions from L1(0,∞), then R has a finitely generated ideal which
is not principal; see [6, Theorem].

In Sections 3 and 4 we will give the proofs of Theorems 1.4 and 1.5, respec-
tively, but before doing that, in Section 2, we first give a few preliminaries.

2. Preliminaries

It is well known that the maximal ideals (or kernels of multiplicative linear
functionals) of W+(D) have the form

ma = {f ∈ W+(D) | f(a) = 0}

for some a ∈ D. Similarly, the set of maximal ideals in W+(C+) coincides
with the set of ideals of the form Ms0

and M∞, where

Ms0
= {F ∈ W+(C+) | F (s0) = 0}, s0 ∈ C+,

and M∞ is given by the kernel of the homomorphism ϕ : W+(C+) → C

defined by

F = f̂a + f0
ϕ
7→ f0 (fa ∈ L1(0,∞), f0 ∈ C).

That is,

M∞ = {F ∈ W+(C+) | ∃fa ∈ L1(0,∞) such that F = f̂a} = ̂L1(0,∞).

Since every maximal ideal is closed, all the sets mα, |α| = 1, are com-
mutative Banach subalgebras of W+(D). Similarly, Miβ, β ∈ R, and M∞

are commutative Banach subalgebras of W+(C+). Obviously these algebras
have no identity element. But there is a substitute, namely the notion of
the bounded approximate identity, which will be useful in the sequel.
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Definition 2.1. Let R be a commutative Banach algebra (without identity
element). We say that R has a bounded approximate identity if there exists
a bounded sequence (en)n of elements en in R such that for any f ∈ R,

lim
n

‖enf − f‖ = 0.

We will also need the following technical result:

Proposition 2.2 (Varopoulos, [14]). Let R be a Banach algebra with a
bounded left approximate identity. Then for every sequence (an)n≥1 in R
converging to 0, there exists a sequence (bn)n≥1 in R converging to 0, as
well as an element c ∈ R such that for all n ≥ 1, an = cbn.

Lemma 2.3. Let R be a commutative integral domain with identity 1. If d
(6= 0) is a greatest common divisor of f1, . . . , fn, then 1 is a greatest common

divisor of f1

d , . . . , fn

d .

Proof. Clearly 1 divides f1

d , . . . , fn

d . If h is a divisor of f1

d , . . . , fn

d , then
fk

d = hgk, for some gk ∈ R, k = 1, . . . , n. So dh is common divisor of
f1, . . . , fn, and as d is the greatest common divisor of f1, . . . , fn, dh divides
d, that is, dhk = d for some k ∈ R. Since R is an integral domain and d 6= 0,
we obtain hk = 1, that is, h divides 1, proving the claim. �

3. W+(D) is pre-Bézout

Let z0 ∈ T := {z ∈ D | |z| = 1}. Consider the maximal ideal

mz0
:= {f ∈ W+(D) | f(z0) = 0}.

We will use the following result on the existence of a bounded approximate
identity for mz0

. Without loss of generality, we take z0 = 1.

Proposition 3.1 (Faivyševskij, [2]). Let n ∈ N, (rn)n∈N be any sequence
such that rn ց 1, and

en(z) :=
z − 1

z − rn
.

Then (en)n∈N is a bounded approximate identity for m1.

A rather lengthy proof of the above result in the case when rn = 1 + 1
n

can be found in [5, Lemma 1]. For the reader’s convenience we present a
short proof here.

Proof. A simple calculation gives that || z−1
z−1−ǫ ||W+ ≤ 2. Since the partial

sums Sn − Sn(1) for f approximate f ∈ m1, it suffices to consider q(z) =
(z − 1)p(z), where p ∈ C[z]. But∥∥∥∥

z − 1

z − 1 − ǫ
q − q

∥∥∥∥
W+

=

∥∥∥∥ǫ
q

z − 1 − ǫ

∥∥∥∥
W+

= ǫ

∥∥∥∥
z − 1

z − 1 − ǫ
p

∥∥∥∥
W+

≤ 2ǫ ||p||W+ .

�

We will also use the following fact proved on page 301 of the Proof of the
Theorem in [13].
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Proposition 3.2 (M. von Renteln). Let f ∈ W+(D) and z0 ∈ D be such

that f(z0) = 0. Then f
z−z0

∈ W+(D).

We will also need the corona theorem for W+(D); see for example [13,
Theorem]:

Proposition 3.3. If f1, . . . , fn ∈ W+(D) are such that

for all z ∈ D, |f1(z)| + · · · + |fn(z)| > 0,

then there exist g1, . . . , gn ∈ W+(D) such that

for all z ∈ D, g1(z)f1(z) + · · · + gn(z)fn(z) = 1.

Lemma 3.4. Suppose that f1, . . . , fn ∈ W+(D) and d is a greatest common
divisor of f1, . . . , fn. If z0 ∈ D is a common zero of f1, . . . , fn, then d(z0) = 0
as well.

Proof. If z0 ∈ D, then let m be the least integer among the multiplicities of
z0 as a zero respectively of f1, . . . , fn. By Proposition 3.2, (z − z0)

m is a
divisor of f1, . . . , fn. But since d is the greatest common divisor of f1, . . . , fn,
it follows that (z − z0)

m divides d.
If on the other hand z0 ∈ T, then f1, . . . , fn ∈ mz0

, where

mz0
:= {f ∈ W+(D) | f(z0) = 0}.

By Proposition 3.1, mz0
has a bounded approximate identity. Applying

Proposition 2.2, with (an)n≥1 := (f1, . . . , fn, 0, 0, 0, . . . ), we get the existence
of an element c ∈ mz0

, and g1, . . . , gn ∈ mz0
such that fk = cgk, k = 1, . . . , n.

So we have a common divisor c of f1, . . . , fn. Since c(z0) = 0, and d is a
greatest common divisor, we have that c divides d and hence d(z0) = 0,
too. �

Proof of Theorem 1.4. Let f1, . . . , fn ∈ W+(D) have a greatest common di-
visor d (6= 0). By the algebraic result in Lemma 2.3, it follows that 1 is a

greatest common divisor of f1

d , . . . , fn

d . Lemma 3.4 gives
∣∣∣∣
f1

d

∣∣∣∣ + · · · +

∣∣∣∣
fn

d

∣∣∣∣ > 0 in D.

By Proposition 3.3, it follows that there exist g1, . . . , gn ∈ W+(D) such that

g1
f1

d
+ · · · + gn

fn

d
= 1,

and so g1f1 + · · · + gnfn = d, completing the proof of the theorem. �

4. W+(C+) is pre-Bézout

We will first prove that the maximal ideals Miβ , β ∈ R, and M∞ in
W+(C+) have a bounded approximate identity. To this end, we need the
following lemma.
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Lemma 4.1. Suppose F ∈ M0. Then for each ǫ > 0, there exists P ∈ M0

such that P = p̂a + p0, where pa ∈ L1(0,∞) has compact support, p0 ∈ C,
and ‖F − P‖W+ < ǫ.

Proof. Let ǫ > 0 be given. Let F = f̂a+f0, where fa ∈ L1(0,∞) and f0 ∈ C.
Choose a compactly supported pa ∈ L1(0,∞) such that

‖pa − fa‖L1 <
ǫ

2
.

Set

P := p̂a +

(
−

∫ ∞

0
pa(t)dt

)

︸ ︷︷ ︸
=:p0

.

Then P ∈ W+(C+) and

P (0) = p̂a(0) + p0 =

∫ ∞

0
pa(t)dt −

∫ ∞

0
pa(t)dt = 0.

So P ∈ M0. We have
∣∣∣∣f0 +

∫ ∞

0
pa(t)dt

∣∣∣∣ =

∣∣∣∣f0 +

∫ ∞

0
fa(t)dt +

∫ ∞

0

(
pa(t) − fa(t)

)
dt

∣∣∣∣

=

∣∣∣∣f0 + f̂a(0) +

∫ ∞

0

(
pa(t) − fa(t)

)
dt

∣∣∣∣

≤ |F (0)| + ‖pa − fa‖L1 < 0 +
ǫ

2
=

ǫ

2
.

Thus

‖F − P‖W+ = ‖fa − pa‖L1 +

∣∣∣∣f0 +

∫ ∞

0
pa(t)dt

∣∣∣∣ <
ǫ

2
+

ǫ

2
= ǫ.

This completes the proof. �

Theorem 4.2.

(a) Let M0 := {F ∈ W+(C+) | F (0) = 0} and

En :=
s

s + 1
n

, n ∈ N.

Then (En)n∈N is a bounded approximate identity for M0.

(b) Let M∞ = ̂L1(0,∞) and

Un = n̂1[0, 1

n
], n ∈ N,

where 1[0, 1

n
](t) is 1 if t ∈ [0, 1

n ], and 0 otherwise. Then (Un)n≥1 is a

bounded approximate identity for M∞.

Proof. (b) The existence of a bounded approximate identity for M∞ follows
[1, Theorem 6.5, p. 105]. The above example is easy to check.
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(a) We note that

‖En‖W+ =

∥∥∥∥1 +
̂(

−
1

n
e−

t

n

)∥∥∥∥
W+

= |1| +

∥∥∥∥ −
1

n
e−

t

n

∥∥∥∥
L1

= 1 + 1 = 2,

and so the sequence is bounded.
Given F ∈ W+(C+), and ǫ > 0 arbitrarily small, in view of Lemma 4.1,

we can find a P ∈ M0 such that P = p̂a + p0, where pa ∈ L1(0,∞) has
compact support, p0 ∈ C, and ‖F − P‖W+ < ǫ. Then

‖EnF − F‖W+ ≤ ‖EnP − P‖W+ + ‖En‖W+‖F − P‖W+ + ‖F − P‖W+ .

So it is enough to prove that

lim
n→∞

‖EnP − P‖W+ = 0

for all P ∈ M0 such that P = p̂a + p0, where pa ∈ L1(0,∞) has compact
support, and p0 ∈ C. We do this below.

We have

EnP −P =
s + 1

n − 1
n

s + 1
n

P −P = −
1

n

1

s + 1
n

P = −
1

n

(
̂(e−t/n ∗ pa) + p0ê−t/n

)
.

Let c be given by

c(t) :=

∫ t

0
e−

t−τ

n pa(τ)dτ + p0e
− t

n .

Then c ∈ L1(0,∞). Let T > 0 be such that supp(pa) ⊂ [0, T ]. We have

‖EnP −P‖W+ =
1

n
‖c‖L1 =

1

n

∫ ∞

0
|c(t)|dt =

1

n

∫ T

0
|c(t)|dt

︸ ︷︷ ︸
(I)

+
1

n

∫ ∞

T
|c(t)|dt

︸ ︷︷ ︸
(II)

.

We estimate (I) as follows:

(I) =
1

n

∫ T

0
|c(t)|dt =

1

n

∫ T

0

∣∣∣∣
∫ t

0
e−

t−τ

n pa(τ)dτ + p0e
− t

n

∣∣∣∣dt

≤
1

n

∫ T

0

[∫ t

0
e−

t−τ

n |pa(τ)|dτ + |p0|e
−

t

n

]
dt

≤
1

n

∫ T

0

[∫ t

0
1 · |pa(τ)|dτ + |p0| · 1

]
dt

︸ ︷︷ ︸
(III)

.

Since the integral (III) does not depend on n, we obtain that

lim
n→∞

1

n

∫ T

0
|c(t)|dt = 0.
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Furthermore,

(II) =
1

n

∫ ∞

T
|c(t)|dt =

1

n

∫ ∞

T
e−

t

n

∣∣∣∣
∫ t

0
e

τ

n pa(τ)dτ + p0

∣∣∣∣dt

=
1

n

∫ ∞

T
e−

t

n

∣∣∣∣
∫ ∞

0
e

τ

n pa(τ)dτ + p0

∣∣∣∣dt (since supp(pa) ⊂ [0, T ])

=
1

n

∫ ∞

T
e−

t

n

∣∣∣∣p̂a

(
−

1

n

)
+ p0

∣∣∣∣dt

Since pa has compact support in [0, T ], p̂a is an entire function by the Payley-
Wiener theorem; see for instance [11, Theorem 7.2.3, p. 122]. Consequently,

(II) =
1

n

∫ ∞

T
e−

t

n

∣∣∣∣p̂a

(
−

1

n

)
+ p0

∣∣∣∣dt

=
1

n

∫ ∞

T
e−

t

n dt ·

∣∣∣∣p̂a

(
−

1

n

)
+ p0

∣∣∣∣

= e−
T

n

∣∣∣∣p̂a

(
−

1

n

)
+ p0

∣∣∣∣
n→∞
−→ 1 · |p̂a(0) + p0| = |P (0)| = 0.

This completes the proof of the case (a). �

The case of Miβ works in a similar manner.

Theorem 4.3. Let F ∈ W+(C+), and let s0 ∈ C be such that Re(s0) > 0
and F (s0) = 0. Then F

s−s0
∈ W+(C+).

Proof. Let F = f̂a + f0, where fa ∈ L1(0,∞) and f0 ∈ C. Since F (s0) = 0,
we have

(1) F (s0) =

∫ ∞

0
e−s0τfa(τ)dτ + f0 = 0.

Let c be defined by

(2) c(t) =





f0e
s0t +

∫ t

0
es0(t−τ)fa(τ)dτ for t > 0,

0 for t < 0.
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We have∫ ∞

0
|c(t)|dt =

∫ ∞

0
eRe(s0)t

∣∣∣∣f0 +

∫ t

0
e−s0τfa(τ)dτ

∣∣∣∣dt

=

∫ ∞

0
eRe(s0)t

∣∣∣∣ −
∫ ∞

t
e−s0τfa(τ)dτ

∣∣∣∣dt (using (1))

≤

∫ ∞

0
eRe(s0)t

∫ ∞

t
e−Re(s0)τ |fa(τ)|dτdt

=

∫ ∞

0

∫ ∞

t
eRe(s0)te−Re(s0)τ |fa(τ)|dτdt

=

∫ ∞

0

∫ τ

0
eRe(s0)te−Re(s0)τ |fa(τ)|dtdτ

=

∫ ∞

0
e−Re(s0)τ |fa(τ)|

∫ τ

0
eRe(s0)tdtdτ

=

∫ ∞

0
e−Re(s0)τ |fa(τ)|

eRe(s0)τ − 1

Re(s0)
dτ

≤
1

Re(s0)

∫ ∞

0
|fa(τ)|dτ < ∞.

So c ∈ L1(0,∞).
Let β ∈ C be such that Re(β)>Re(s0). Then we have from (2) that

(3) e−βtc(t) =





f0e
(s0−β)t +

([
e(s0−β)xu

]
∗

[
e−βxfa

])
(t) for t > 0

0 for t < 0

where u denotes the step function, given by u(t) = 1 for t > 0 and u(t) = 0
otherwise.

Recall the fact that if ga ∈ L1(0,∞), then for a complex number α such

that Re(α)> 0, (ê−αtga)(s) = ĝa(s + α) (for s ∈ C+). Using this, we obtain
(
ê−βtc

)
(s) = ĉ(s + β) and

(
ê−βtfa

)
(s) = f̂a(s + β) (s ∈ C+).

Since the Laplace transform of a convolution is the product of the Laplace
transforms (see for instance [4, Proposition 14.1]), we have

̂([
e(s0−β)xu

]
∗

[
e−βxfa

])
(s) =

1

s + β − s0
· f̂a(s + β) (s ∈ C+).

Using these facts, we see by taking Laplace transform on both sides of (3)
that

ĉ(s + β) =
f0

s + β − s0
+

1

s + β − s0
· f̂a(s + β) =

F (s + β)

s + β − s0
(s ∈ C+).

So for all s such that Re(s)>Re(s0), we have

ĉ(s) =
F (s)

s − s0
.
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By the identity principle, the above holds in C+. So F
s−s0

= ĉ ∈ W+(C+).
�

In our proof of Theorem 1.5 will need the corona theorem for W+(C+):

Proposition 4.4. If F1, . . . , Fn ∈ W+(C+) are such that there exists a
δ > 0 such that

(4) for all s ∈ C+, |F1(s)| + · · · + |Fn(s)| > δ > 0,

then there exist G1, . . . , Gn ∈ W+(C+) such that

(5) for all s ∈ C+, G1(s)F1(s) + · · · + Gn(s)Fn(s) = 1.

Proof. That (5) implies (4) is easy to see. The reverse implication fol-
lows from the classical result (see [3, p.112]) that the maximal ideals of
W+(C+) are given by M∞ and Ms0

, where s0 ∈ C+. Indeed, suppose that
F1, . . . , Fn ∈ W+(C+) satisfy (4), but that the ideal (F1, . . . , Fn) 6= (1).
Then there exists a maximal ideal M that contains (F1, . . . , Fn). We now
consider the two possible cases:

(i) If M = Ms0
for some s0 ∈ C+, then (F1, . . . , Fn) ⊂ Ms0

yields that
F1(s0) = · · · = Fn(s0) = 0, which contradicts (4).

(ii) Now suppose that M = Ms0
. Let Fk = f̂k,a + fk,0, where fk,a ∈

L1(0,∞) and fk,0 ∈ C, k = 1, . . . , n. Since (F1, . . . , Fn) ⊂ M∞, we

have f1,0 = · · · = fn,0 = 0. Hence Fk = f̂k,a, k = 1, . . . , n. Passing
to the limit s → ∞ in (4), we obtain the contradiction that 0 ≥ δ.

Consequently (F1, . . . , Fn) = (1), and so (5) holds for some G1, . . . , Gn ∈
W+(C+). �

Lemma 4.5. Suppose that F1, . . . , Fn ∈ W+(C+) and that D is a greatest
common divisor of F1, . . . , Fn. If s0 ∈ C+ is a common zero of F1, . . . , Fn,
then D(s0) = 0 as well.

Proof. If Re(s0) > 0, then let m be the least integer among the multiplicities
of s0 as a zero respectively of F1, . . . , Fn. By Theorem 4.3, (s − s0)

m is
a divisor of F1, . . . , Fn. But since D is the greatest common divisor of
F1, . . . , Fn, it follows that (s − s0)

m divides D.
If on the other hand Re(s0) = 0, then F1, . . . , Fn ∈ Ms0

, where

Ms0
:= {F ∈ W+(C+) | F (s0) = 0}.

By Theorem 4.2, Ms0
has a bounded approximate identity. Applying Propo-

sition 2.2, with (an)n≥1 := (F1, . . . , Fn, 0, 0, 0, . . . ), we get the existence of an
element C ∈ Ms0

, and G1, . . . , Gn ∈ Ms0
such that Fk = CGk, k = 1, . . . , n.

So we have a common divisor C of F1, . . . , Fn. Since D is a greatest common
divisor, C divides D and so D(s0) = 0, too. �

Lemma 4.6. Suppose that F1, . . . , Fn ∈ M∞ and that D ∈ W+(C+) is a
greatest common divisor of F1, . . . , Fn. Then D ∈ M∞ as well.
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Proof. Applying Theorem 4.2 and Proposition 2.2 to the sequence (an) =
(F1, F2, . . . , Fn, 0, 0, 0 . . . ) we get a common divisor C ∈ M∞ of the Fj ’s,
j = 1, . . . , n. Hence C divides D; that is D = QC for some Q ∈ W+(C+).
Therefore D ∈ M∞. �

Proof of Theorem 1.5. Let F1, . . . , Fn ∈ W+(C+) have a greatest common
divisor D. By the algebraic result in Lemma 2.3, it follows that 1 is a
greatest common divisor of F1

D , . . . , Fn

D .
Lemma 4.5 gives

(6)

∣∣∣∣
F1

D

∣∣∣∣ + · · · +

∣∣∣∣
Fn

D

∣∣∣∣ > 0 in C+.

Since Fk/D ∈ W+(C+) for each k, Fk/D = ĥk + αk, where hk ∈ L1(0,∞)
and αk ∈ C. Since hk ∈ L1(0,∞), we have

(7) lim
s→∞

s∈C+

ĥk(s) = 0.

We consider the two possible cases:

(i) All the αk’s are zero. Then by Lemma 4.6, it follows that 1 is the
Laplace transform of an element in L1(0,∞), which is a contradic-
tion.

(ii) At least one of the αk’s is not zero. Then |α1| + · · · + |αn| > 0. So
for s ∈ C+ such that |s| > R with a large enough R, (7) gives the
existence of a δ > 0 such that∣∣∣∣

F1

D

∣∣∣∣ + · · · +

∣∣∣∣
Fn

D

∣∣∣∣ > δ > 0,

while on the compact set K consisting of s ∈ C+ with |s| ≤ R,
|F1

D | + · · · + |Fn

D | is at least as large as its minimum value on K,
which is positive by (6). So by Proposition 4.4, it follows that there
exist G1, . . . , Gn ∈ W+(C+) such that

G1
F1

D
+ · · · + Gn

Fn

D
= 1,

and so G1F1 + · · · + GnFn = D.

This completes the proof of the theorem. �
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