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Abstract. Let C+ := {s ∈ C | Re(s) ≥ 0} and let A denote the Banach
algebra

A =

(
s(∈ C+) 7→ bfa(s) +

∞X
k=0

fke−stk

˛̨̨̨
fa ∈ L1(0,∞), (fk)k≥0 ∈ `1,
0 = t0 < t1 < t2 < . . .

)
equipped with pointwise operations and the norm:

‖f‖ = ‖fa‖L1 + ‖(fk)k≥0‖`1 , f(s) = bfa(s) +

∞X
k=0

fke−stk (s ∈ C+).

(Here bfa denotes the Laplace transform of fa.) It is shown that, endowed
with the Gelfand topology, the maximal ideal space of A is contractible.
In particular, the ring A is Hermite. The algebra A arises in control
theory, and the Hermite property has useful consequences in the problem
of stabilization of linear systems; see [3, Corollary 4.14]. The following
statements are equivalent for f ∈ An×k, k < n:
(1) There exists a g ∈ Ak×n such that gf = Ik on C+.
(2) There exist F, G ∈ An×n such that GF = In on C+ and Fij = fij ,

1 ≤ i ≤ n, 1 ≤ j ≤ k.
(3) There exists a δ > 0 such that f(s)∗f(s) ≥ δ2Ik, s ∈ C+.

1. Introduction

The aim of this paper is to show that the maximal ideal space M(A) of
the algebra A (defined below), is contractible. We also apply this result to
the problem of completing a left invertible matrix with entries in A to an
isomorphism, which has useful consequences in control theory.

Throughout the article, we will use the following notation:

C+ := {s ∈ C | Re(s) ≥ 0}.

Definition 1.1. Let A denote the Banach algebra

A =

f : C+ → C

∣∣∣∣∣∣∣
f(s) = f̂a(s) +

∞∑
k=0

fke
−stk (s ∈ C+),

fa ∈ L1(0,∞), (fk)k≥0 ∈ `1, 0 = t0 < t1 < t2 < . . .
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equipped with pointwise operations and the norm:

‖f‖ = ‖fa‖L1 + ‖(fk)k≥0‖`1 .

Here f̂a denotes the Laplace transform of fa.

The above algebra arises as a natural class of transfer functions of stable
distributed parameter systems in control theory; see [1], [3], [4].

Notation 1.2. Let M(A) denote the maximal ideal space of A, that is the
set of all nonzero homomorphisms ϕ : A → C. We equip M(A) with the
weak-∗ topology (that is, the Gelfand topology).

In Proposition 1.4 below, we recall the known characterization of M(A);
see for example [1, Lemma A.1, p. 658]. But first we give the following
definition.

Definition 1.3. χ : R → C is a character if

|χ(t)| = 1 and χ(t + τ) = χ(t)χ(τ) for all t, τ ∈ R.

Proposition 1.4. M(A) is the set of the following three types of nonzero
homomorphisms on A:

f 7−→ f(s), s ∈ C+

f = f̂a +
∞∑

k=0

fke
−· tk 7−→ f0

f = f̂a +
∞∑

k=0

fke
−· tk 7−→

∞∑
k=0

fke
−σtkχ(tk), σ ≥ 0 and χ is a character.

In the above, f ∈ A, fa ∈ L1(0,∞) and (fk)k≥0 ∈ `1.

Notation 1.5.

(1) The homomorphism f 7→ f(s) (f ∈ A), corresponding to point eval-
uation at s ∈ C+ will be denoted henceforth by s. The set of all such
homomorphisms will be denoted by C+.

(2) The homomorphism

A 3 f̂a +
∞∑

k=0

fke
−· tk 7−→ f0

will be denoted by ϕ∞.
(3) We define

U := M(A) \ C+.

We will show that M(A) is contractible. We recall the notion of con-
tractibility below:
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Definition 1.6. A topological space X is said to be contractible if there
exists a continuous map R : X × [0, 1] → X and a x0 ∈ X such that

for all x ∈ X, R(x, 0) = x, and
for all x ∈ X, R(x, 1) = x0.

Our main result is the following:

Theorem 1.7. M(A) is contractible.

In particular, by a result proved in V. Ya. Lin [2, Theorem 3, p. 127],
the above implies that the ring A is Hermite. Before stating this result, we
recall the definition of a Hermite ring:

Definition 1.8. Let R be a ring with an identity element. A matrix f ∈
Rn×k is called left invertible if there exists a g ∈ Rk×n such that gf = I.

The ring R is called a Hermite ring if for all k, n ∈ N with k < n and
all left invertible matrices f ∈ Rn×k, there exist F,G ∈ Rn×n such that
GF = In and Fij = fij for all 1 ≤ i ≤ n and 1 ≤ j ≤ k.

Corollary 1.9. A is a Hermite ring.

The motivation for proving that A is a Hermite ring arises from control
theory, where it plays an important role in the problem of stabilization of
linear systems. Indeed, A being Hermite implies that if a transfer function
G has a right (or left) coprime factorization, then G has a doubly coprime
factorization, and the standard Youla parameterization yields all stabilizing
controllers for G. For further details on the relevance of the Hermite prop-
erty in control theory, see [3, Corollary 4.14, p. 296] and [4, Theorem 66, p.
347].

The corona theorem for A gives an analytic test for left invertibility (see
[1]):

Proposition 1.10. Let f ∈ An×k. Then the following are equivalent:
(1) There exists a g ∈ Ak×n such that gf = Ik on C+.
(2) There exists a δ > 0 such that f(s)∗f(s) ≥ δ2Ik, s ∈ C+.

Combining this with the fact the A is a Hermite ring now yields the
following:

Corollary 1.11. Let k < n and f ∈ An×k. Then the following are equiva-
lent:

(1) There exists a g ∈ Ak×n such that gf = Ik on C+.
(2) There exist F,G ∈ An×n such that GF = In on C+ and Fij = fij,

1 ≤ i ≤ n, 1 ≤ j ≤ k.
(3) There exists a δ > 0 such that f(s)∗f(s) ≥ δ2Ik, s ∈ C+.

In Section 3, we will give the proof of Theorem 1.7, but before doing that,
in Section 2, we first prove a few technical results we will need in the sequel.

Acknowledgement: The author would like to thank Alexander Brudnyi
for a useful discussion.
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2. Preliminaries

In this section, we prove a few technical results we will need in order to
prove our main result.

First we prove that the subset U := M(A) \ C+ is closed in M(A).

Lemma 2.1. C+ is open in M(A).

Proof. We observe that if ·g denotes the Gelfand transform, then ϕ ∈ C+ iff
there exists a fa ∈ L1(0,∞) such that∣∣(f̂a

)g(ϕ)
∣∣ =

∣∣ϕ(
f̂a

)∣∣ > 0.

Thus C+ is a union of open sets:

C+ =
⋃

fa∈L1(0,∞)

{
ϕ ∈ M(A) |

∣∣(f̂a

)g(ϕ)
∣∣ > 0

}
,

and is consequently open. �

Next we show that there is a one-to-one correspondence between C+ and
C+, and moreover their topologies coincide.

Lemma 2.2. C+ is homeomorphic to C+.

Proof. The map
· : C+ → C+ given by s 7→ s

is clearly onto. It is also one-to-one, since if

s1 = s2,

then in particular, their action on the Laplace transform of e−t ∈ L1(0,∞)
must be identical:

s1

(
ê−t

)
= s1

(
1

s + 1

)
=

1
s1 + 1

=
1

s2 + 1
= s2

(
1

s + 1

)
= s2

(
ê−t

)
,

and so s1 = s2. Thus · is invertible.
Let (sα) be a net such that sα → s0. Since f ∈ A is continuous in C+, it

follows that f(sα) → f(s0), that is,

sα(f) → s0(f).

But the choice of f was arbitrary, and so

sα → s0 in C+.

Finally we prove the continuity of the inverse. Let (sα) be a net such that
sα → s0. In particular, since e−t ∈ L1(0,∞), we must have

sα

(
ê−t

)
= sα

(
1

s + 1

)
=

1
sα + 1

→ 1
s0 + 1

= s0

(
1

s + 1

)
= s0

(
ê−t

)
,

which yields sα → s0 in C+. �

We will also need the following.
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Lemma 2.3. If (sα) is a net in C+ such that it is convergent in M(A) to
ϕ ∈ U , then (sα) →∞.

Proof. In particular, for e−t ∈ L1(0,∞), we have

sα

(
ê−t

)
= sα

(
1

s + 1

)
=

1
sα + 1

→ 0 = ϕ

(
1

s + 1

)
= ϕ

(
ê−t

)
,

and so 1/(sα + 1) → 0. Thus sα →∞. �

The following lemma gives a useful criterion for convergence to an element
in U .

Lemma 2.4. Let ϕ ∈ U and let (ϕα) be a net in M(A) such that

(1) For all fa ∈ L1(0,∞), ϕα

(
f̂a

)
→ 0, and

(2) for all T > 0, ϕα

(
e−sT

)
→ ϕ

(
e−sT

)
.

Then ϕα → ϕ in U .

Proof. From the hypothesis, we see that for every fa ∈ L1(0,∞) and for
every exponential polynomial

p =
N∑

k=0

fke
−· tk , 0 = t0 ≤ t1 ≤ · · · ≤ tN ,

we have ϕα(f̂a + p) → ϕ(f̂a + p). Let

f = f̂a +
∞∑

k=0

fke
−· tk ∈ A

be given and let ε > 0. Choose an exponential polynomial p such that∥∥f − f̂a − p
∥∥ =

∥∥∥∥ ∞∑
k=0

fke
−stk − p

∥∥∥∥ ≤ ε

4
.

Since ϕα(f̂a + p) → ϕ(f̂a + p), there exists an α∗ such that for all α ≥ α∗,∣∣ϕα(f̂a + p)− ϕ(f̂a + p)
∣∣ <

ε

2
.

Then for all α ≥ α∗, we have

|ϕα(f)− ϕ(f)| =
∣∣ϕα(f̂a + p + f − f̂a − p)− ϕ(f̂a + p + f − f̂a − p)

∣∣
≤

∣∣ϕα(f̂a + p)− ϕ(f̂a + p)
∣∣ +

∣∣(ϕα − ϕ)(f − f̂a − p)
∣∣

<
ε

2
+

∥∥ϕα − ϕ
∥∥∥∥f − f̂a − p

∥∥
≤ ε

2
+ (‖ϕα‖+ ‖ϕ‖) ε

4
≤ ε

2
+ (1 + 1)

ε

4
= ε.

Hence for all f ∈ A, ϕα(f) → ϕ(f). Consequently, (ϕα) converges in the
weak-∗ topology on M(A). �
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3. Contractibility of M(A)

In this section we will prove our main result. Before giving the proof, we
explain the main idea behind it: The maximal ideal space can be partitioned
into the following three subsets:

C+, {ϕ∞}, U \ {ϕ∞}.

We will construct a continuous contraction R : M(A)×[0, 1] → M(A) which
takes the identity map to the constant map (identically equal to ϕ∞), via
translations along [0,∞]: On C+, R acts as follows:

s 7→ s− log(1− t).

So if f ∈ A, then the action of s− log(1− t) on f gives

f̂a(s− log(1− t)) + f0 +
∞∑

k=1

fke
−(s−log(1−t))tk ,

and when t becomes 1, formally this goes to

0 + f0 +
∞∑

k=0

fk · 0 = f0 = ϕ∞(f).

In this manner the part C+ of the maximal ideal space will be shown to
contractible to ϕ∞.

On the other hand, we will define the action of R on U \ {ϕ∞} as follows:
if

ϕ(f) =
∞∑

k=0

fke
−σtkχ(tk), f = f̂a +

∞∑
k=0

fke
−· tk ∈ A,

then

(R(ϕ, t))(f) =
∞∑

k=0

fke
−(σ−log(1−t))tkχ(tk),

and once again, when t becomes 1, this goes to

f0 +
∞∑

k=1

fk · 0 · χ(tk) = f0 = ϕ∞(f).

In this way, we will show that the part U \{ϕ∞} of the maximal ideal space
is also contractile to ϕ∞.

We now give the proof our main result.

Proof of Theorem 1.7. Let R : M(A)× [0, 1] → M(A) be defined as follows:
(1) If s ∈ C+, then

R(s, t) = s− log(1− t) for t ∈ [0, 1), and R(s, 1) = ϕ∞.

(2) For all t ∈ [0, 1], R(ϕ∞, t) = ϕ∞.
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(3) Let ϕ ∈ U \{ϕ∞}. Then there exists a σ ≥ 0 and a character χ such
that

ϕ(f) =
∞∑

k=0

fke
−σtkχ(tk), f = f̂a +

∞∑
k=0

fke
−· tk ∈ A.

With this notation, we define

(R(ϕ, t))(f) =
∞∑

k=0

fke
−(σ−log(1−t))tkχ(tk) for t ∈ [0, 1), and

R(ϕ, 1) = ϕ∞.

We prove below that R is continuous. First note that any net (ϕα, tα) in
M(A) can be partitioned into three subnets:

1◦ One with terms (ϕα, tα) ∈ {ϕ∞} × [0, 1],
2◦ another one with terms (ϕα, tα) ∈ (U \ {ϕ∞})× [0, 1],
3◦ and finally one with terms (sα, tα) ∈ C+ × [0, 1].

So it is enough to prove that for each of the nets of the above type, if (ϕα, tα)
is convergent to (ϕ, t) in M(A)× [0, 1], then (R(ϕα, tα)) converges to R(ϕ, t)
in M(A).

1◦ We have R(ϕα, tα) = R(ϕ∞, tα) = ϕ∞. Moreover, ϕ∞ = ϕα → ϕ, and so
ϕ = ϕ∞. Thus R(ϕ, t) = ϕ∞. Hence R(ϕα, tα) = ϕ∞ = R(ϕ, t).

2◦ By Lemma 2.1, U is closed, and so ϕ ∈ U . Thus

(R(ϕα, tα))
(
f̂a

)
= 0 = (R(ϕ, t))

(
f̂a

)
for all fa ∈ L1(0,∞).

We break this subnet into two further subnets: First consider the case when
tα is identically 1. Then tα → t gives t = 1. Thus we have

R(ϕα, tα) = R(ϕα, 1) = ϕ∞ = R(ϕ, 1) = R(ϕ, t).

Now consider the case that each tα ∈ [0, 1). Thus if

ϕα(f) =
∞∑

k=0

fke
−σαtkχα(tk), f = f̂a +

∞∑
k=0

fke
−· tk ∈ A,

then
(R(ϕα, tα))(e−sT ) = e−(σα−log(1−tα))T χα(T ), T > 0.

We now consider the following two cases:
(1) ϕ 6= ϕ∞. Let

ϕ(f) =
∞∑

k=0

fke
−σtkχ(tk), f = f̂a +

∞∑
k=0

fke
−· tk ∈ A.

Since ϕα → ϕ, it follows in particular for T > 0,

ϕα(e−sT ) = e−σαT χ(T ) −→ e−σT χ(T ) = ϕ(e−sT ).

If t < 1, then

e−(σα−log(1−tα))T χα(T ) −→ e−(σ−log(1−t))T χ(T ),
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that is, (R(ϕα, tα))(e−sT ) → (R(ϕ, t))(e−sT ).
On the other hand, if t = 1, then

e−(σα−log(1−tα))T χα(T ) −→ 0 · e−σT χ(T ) = ϕ0(e−sT ),

that is, (R(ϕα, tα))(e−sT ) → (R(ϕ, 1))(e−sT ).
(2) ϕ = ϕ∞. As ϕα → ϕ = ϕ∞, for T > 0, ϕα(e−sT ) → ϕ∞(e−sT ) = 0,

that is, e−σαT χα(T ) → 0. Thus

e−(σα−log(1−tα))T χα(T ) −→ 0 = ϕ∞(e−sT ),

that is, (R(ϕα, tα))(e−sT ) → (R(ϕ∞, t))(e−sT ).
The result now follows from Lemma 2.4.

3◦ We break this subnet into two further subnets: First consider the case
when tα is identically 1. Then tα → t gives t = 1. Thus we have

R(sα, tα) = R(sα, 1) = ϕ∞ = R(ϕ, 1) = R(ϕ, t).

Now consider the case that each tα ∈ [0, 1). Then

R(sα, tα) = sα − log(1− tα).

We now consider the following three cases:
(1) ϕ = s. If t ∈ [0, 1), then

R(s, t) = s− log(1− t).

Since sα → s, it follows from Lemma 2.2 that sα → s in C+. More-
over, the map − log(1 − ·) : [0, 1) → [0,∞) is continuous, and so
− log(1− tα) → − log(1− t). It follows that

sα − log(1− tα) −→ s− log(1− t) in C+.

Thus by Lemma 2.2 again,

R(sα, tα) = sα − log(1− tα) −→ s− log(1− t) = R(s, t).

If on the other hand, t = 1, then

R(s, t) = ϕ∞.

Since tα → 1, − log(1−tα) → +∞. Thus Re(sα−log(1−tα)) → +∞.
If

f = f̂a +
∞∑

k=0

fke
−· tk ∈ A,

then f̂a(sα − log(1− tα)) → 0 and∥∥∥∥ ∞∑
k=1

fke
−(sα−log(1−tα))tk

∥∥∥∥ ≤ ‖f‖et1 log(1−tα) −→ 0.

Hence for all f ∈ A,

(sα − log(1− tα))(f) = f(sα − log(1− tα)) −→ f0 = ϕ∞(f).
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But the choice of f was arbitrary. Consequently,

R(sα, tα) = sα − log(1− tα) −→ ϕ∞ = R(s, t).

(2) ϕ = ϕ∞. Then

R(ϕ, t) = R(ϕ∞, t) = ϕ∞.

Since
sα −→ ϕ = ϕ∞,

by Lemma 2.3 it follows that sα →∞. So sα−log(1−tα) →∞. (This
is obvious if tα → 1. But otherwise, − log(1 − tα) → − log(1 − t).)
Hence

f̂a(sα − log(1− tα)) −→ 0 = ϕ∞(f̂a) for all fa ∈ L1(0,∞).

Also, for T > 0, we have

sα(e−sT ) = e−sαT −→ 0 = ϕ∞(e−sT ).

Since tk log(1 − tα) ≤ 0, it follows that e−(sα−log(1−tα))T → 0, that
is,

(sα − log(1− tα))(e−sT ) −→ ϕ∞(e−sT ).
From Lemma 2.4, it follows that

R(sα, tα) = sα − log(1− tα) −→ ϕ∞ = R(ϕ, t).

(3) ϕ 6= ϕ∞. Since

sα −→ ϕ ∈ U \ {ϕ∞},
by Lemma 2.3 it follows that sα →∞. So sα−log(1−tα) →∞. (This
is obvious if tα → 1. But otherwise, − log(1 − tα) → − log(1 − t).)
Hence

f̂a(sα − log(1− tα)) −→ 0 = ϕ(f̂a) for all fa ∈ L1(0,∞).

Let

ϕ(f) =
∞∑

k=0

fke
−σtkχ(tk), f = f̂a +

∞∑
k=0

fke
−· tk ∈ A.

If t = 1, then

R(ϕ, t) = R(ϕ, 1) = ϕ∞.

As sα → ϕ, we have for T > 0,

sα(e−sT ) = e−sαT −→ e−σT χ(T ) = ϕ(e−sT ).

Since log(1− tα) → −∞, it follows that

e−(sα−log(1−tα))T −→ 0 · e−σT χ(T ),

that is,

(sα − log(1− tα))(e−sT ) −→ ϕ∞(e−sT ).
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From Lemma 2.4, we can now conclude that

R(sα, tα) = sα − log(1− tα) −→ ϕ∞ = R(ϕ, 1).

On the other hand, if t < 1, then for T > 0,

(R(ϕ, t))(e−sT ) = e−(σ−log(1−t))T χ(T ).

Since sα → ϕ,

sα(e−sT ) = e−sαT −→ e−σT χ(T ) = ϕ(e−sT ).

So
e−(sα−log(1−tα))T −→ e−(σ−log(1−t))T χ(T ),

that is,

(sα − log(1− tα))(e−sT ) −→ (R(ϕ, t))(e−sT ).

From Lemma 2.4, we can now conclude that

R(sα, tα) = sα − log(1− tα) −→ R(ϕ, 1).

This completes the proof. �
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