THE HERMITE PROPERTY OF A CAUSAL WIENER
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ABSTRACT. Let C; := {s € C | Re(s) > 0} and let A denote the Banach
algebra

—sty,
A= {(€C+ ._)fa —|—ka6 O=to<ti1 <ta<...

ﬂeL%&mxuw@oeﬂ,}

equipped with pointwise operatlonb and the norm:
1A= fallar + kol F8) = Fals) + kae " (s €Cy).

(Here ﬁ denotes the Laplace transform of f,.) It is shown that, endowed
with the Gelfand topology, the maximal ideal space of A is contractible.
In particular, the ring A is Hermite. The algebra A arises in control
theory, and the Hermite property has useful consequences in the problem
of stabilization of linear systems; see [3, Corollary 4.14]. The following
statements are equivalent for f € A™** k < n:

(1) There exists a g € A**™ such that gf = I on C,.

(2) There exist F,G € A™*™ such that GF = I,, on C, and F}; = fij,

1<i<n,1<j5<k.
(3) There exists a § > 0 such that f(s)*f(s) > 6Ix, s € C.

1. INTRODUCTION

The aim of this paper is to show that the maximal ideal space M(A) of
the algebra A (defined below), is contractible. We also apply this result to
the problem of completing a left invertible matrix with entries in A to an
isomorphism, which has useful consequences in control theory.

Throughout the article, we will use the following notation:

C, :={s € C|Re(s) > 0}.
Definition 1.1. Let A denote the Banach algebra
£(s) +§:n68k (seC,),

fa € LI(O,OO) (fk)k;>0 el 0=ty<t; <ty <.

A=<¢f:C.—-C
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equipped with pointwise operations and the norm:

111 = [l fall e + 1)zl
Here fa denotes the Laplace transform of f,.

The above algebra arises as a natural class of transfer functions of stable
distributed parameter systems in control theory; see [1], [3], [4].

Notation 1.2. Let M (A) denote the maximal ideal space of A, that is the
set of all nonzero homomorphisms ¢ : 4 — C. We equip M (A) with the
weak-* topology (that is, the Gelfand topology).

In Proposition 1.4 below, we recall the known characterization of M (.A);
see for example [1, Lemma A.1, p. 658]. But first we give the following
definition.

Definition 1.3. x : R — C is a character if
Ix(t)] =1 and x(t+7)=x(t)x(7) for all t,7 € R.

Proposition 1.4. M(A) is the set of the following three types of nonzero
homomorphisms on A:

f'_>f(s)7 3€C+

F=Fatd fre” " fo
k=0

o0 (o)
f="fa+t kaef' R kaefgth(tk), o >0 and x is a character.
k=0 k=0

In the above, f € A, f, € L'(0,00) and (fx)k>0 € £*.

Notation 1.5.

(1) The homomorphism f — f(s) (f € A), corresponding to point eval-
uation at s € C, will be denoted henceforth by s. The set of all such
homomorphisms will be denoted by C,..

(2) The homomorphism

A> ﬁl—l-kae*'tk — fo
k=0

will be denoted by @
(3) We define

U:=M(A)\C,.

We will show that M(A) is contractible. We recall the notion of con-
tractibility below:
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Definition 1.6. A topological space X is said to be contractible if there
exists a continuous map R : X x [0,1] — X and a xyp € X such that

for all z € X, R(z,0) =z, and
for all z € X, R(x,1) = x.
Our main result is the following:

Theorem 1.7. M(A) is contractible.

In particular, by a result proved in V. Ya. Lin [2, Theorem 3, p. 127],
the above implies that the ring A is Hermite. Before stating this result, we
recall the definition of a Hermite ring:

Definition 1.8. Let R be a ring with an identity element. A matrix f €
R™¥F is called left invertible if there exists a g € R¥*™ such that gf = I.

The ring R is called a Hermite ring if for all k,n € N with k < n and
all left invertible matrices f € R™*F, there exist F,G € R™" such that
GF =1I,and Fjj = fi; forall 1 <i<mand 1 <j <k

Corollary 1.9. A is a Hermite ring.

The motivation for proving that A is a Hermite ring arises from control
theory, where it plays an important role in the problem of stabilization of
linear systems. Indeed, A being Hermite implies that if a transfer function
G has a right (or left) coprime factorization, then G has a doubly coprime
factorization, and the standard Youla parameterization yields all stabilizing
controllers for G. For further details on the relevance of the Hermite prop-
erty in control theory, see [3, Corollary 4.14, p. 296] and [4, Theorem 66, p.
347].

The corona theorem for A gives an analytic test for left invertibility (see
1):

Proposition 1.10. Let f € A"k, Then the following are equivalent:

(1) There exists a g € A**™ such that gf = I, on C,.
(2) There exists a 6 > 0 such that f(s)*f(s) > 6%I;, s € C,.

Combining this with the fact the A is a Hermite ring now yields the
following;:

Corollary 1.11. Let k < n and f € A™*. Then the following are equiva-
lent:
(1) There exists a g € A**™ such that gf = I, on C,.
(2) There exist F,G € A™" such that GF = I, on C; and Fj; = fij,
1<i<n,1<j<k.
(3) There exists a § > 0 such that f(s)*f(s) > %I, s € C,.

In Section 3, we will give the proof of Theorem 1.7, but before doing that,
in Section 2, we first prove a few technical results we will need in the sequel.

Acknowledgement: The author would like to thank Alexander Brudnyi
for a useful discussion.
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2. PRELIMINARIES

In this section, we prove a few technical results we will need in order to
prove our main result.
First we prove that the subset U := M(A) \ C, is closed in M(A).

Lemma 2.1. C, is open in M(A).

Proof. We observe that if -¢ denotes the Gelfand transform, then ¢ € C, iff
there exists a f, € L1(0,00) such that

|(fa)' ()] = | (fa)| > 0.

Thus C, is a union of open sets:

c.= U {eeM@I|f)@)]>0}.

faeLl(0,00)
and is consequently open. O

Next we show that there is a one-to-one correspondence between C, and
C., and moreover their topologies coincide.

Lemma 2.2. C, is homeomorphic to C,.

Proof. The map
- :C, —-C, givenby s s
is clearly onto. It is also one-to-one, since if

51 = 82,

then in particular, their action on the Laplace transform of e~f € L'(0, 00)
must be identical:

—t) — — — — — —t
ﬂ(e )_81<8+1>_Sl+1_82+1_82<5+1> 72(6 )7

and so s1 = s9. Thus - is invertible.
Let (sq) be a net such that s, — sg. Since f € A is continuous in C_, it
follows that f(so) — f(so), that is,

sa(f) — so(f).

But the choice of f was arbitrary, and so

Sa = 50 0 Cy.

Finally we prove the continuity of the inverse. Let (s,) be a net such that
Sa — S0. In particular, since e~* € L'(0,00), we must have

—t) — — — — —t
870‘(6 )_Sa<8+1>_Sa+1—>80+1_80<8+1>_80(e )?

which yields s, — s¢ in C,.. [l

We will also need the following.



HERMITE PROPERTY OF A WIENER ALGEBRA 5

Lemma 2.3. If (s4) is a net in C, such that it is convergent in M(A) to
p €U, then (sq) — o0.

Proof. In particular, for et € L'(0,00), we have

_ 1 1 1 -
AN _ _ _ =
7804(6 )—sa<8+1>—Sa+1—>0—<p(s+1>—g0(e )’

and so 1/(sq +1) — 0. Thus s, — 0. O

The following lemma gives a useful criterion for convergence to an element
in U.

Lemma 2.4. Let ¢ € U and let (¢,) be a net in M(A) such that

(1) For all f, € L'(0,00), pq (fa) — 0, and
(2) for allT >0, pq (e*ST) — @(e*ST).
Then o — @ in U.

Proof. From the hypothesis, we see that for every f, € L'(0,00) and for
every exponential polynomial

N
p=> e, O0=tg<ti<--- <ty
k=0

we have 0o (fa +p) — ©(fu +p). Let

o
f=Ta+) fre ™ eA
k=0
be given and let € > 0. Choose an exponential polynomial p such that

> €
> it g < 5.
k=0

Since @a(fa + p) — @(fa + p), there exists an a, such that for all o > a,

|alfa+p) = @(fa+p)| < %

Then for all @ > a,, we have

If = fa |l =

a(f) = o(f)l = |palfatp+f—Ffa=p)—@(fatp+f—fo—p)
< |palfatp) = o(fa+p)| +|(0a — ) (f = fo—D)]
< §+H<Pa—<ﬁHHf—fa—PH
< 5t lleall +llel) 5
< SH1+DT=e

Hence for all f € A, po(f) — ¢(f). Consequently, (¢,) converges in the
weak-* topology on M (A). O
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3. CONTRACTIBILITY OF M (.A)

In this section we will prove our main result. Before giving the proof, we
explain the main idea behind it: The maximal ideal space can be partitioned
into the following three subsets:

ga {octs UN{poo}-

We will construct a continuous contraction R : M (A) x [0,1] — M (.A) which
takes the identity map to the constant map (identically equal to ), via
translations along [0, 0c]: On C,, R acts as follows:

s— s —log(l—t).
So if f € A, then the action of s —log(1 —¢) on f gives

fa(s —log(L—)) + fo+ Y _ fre™ (s7loa=0)t
k=1

and when ¢ becomes 1, formally this goes to

0+ fot+ Y fi 0= fo=polf):

k=0

In this manner the part C, of the maximal ideal space will be shown to
contractible to @o.

On the other hand, we will define the action of R on U \ {¢s} as follows:
if

o(f) =D fre x(te), f=fat Y freT €A,
k=0 k=0
then

(R(p, )(f) = fre~ 071080k y (1),
k=0

and once again, when ¢ becomes 1, this goes to

fo+ > fe-0-x(tk) = fo = poolf)-

k=1

In this way, we will show that the part U\ {¢o} of the maximal ideal space
is also contractile to Yuo.
We now give the proof our main result.

Proof of Theorem 1.7. Let R : M(A) x [0,1] — M (A) be defined as follows:
(1) If s € C,, then

R(s,t) =s—log(l—t) forte[0,1), and R(s,1)= peo.
(2) For all t € [0,1], R(¢¥c0,t) = Poo-
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(3) Let ¢ € U\{¢o}. Then there exists a o > 0 and a character x such
that

o(f) =D fee™ ™ x(t), f=fat D fre” €A
k=0 k=0
With this notation, we define

(R(p, ))(f) = fre” 071800y (1y) for t €[0,1), and
k=0

R(p,1) = ¢oo-
We prove below that R is continuous. First note that any net (¢q,tq) in
M (A) can be partitioned into three subnets:

1° One with terms (¢q,ta) € {pso} % [0,1],
2° another one with terms (pq,ta) € (U \ {¢}) X [0,1],
3° and finally one with terms (s, %) € C4 x [0, 1].

So it is enough to prove that for each of the nets of the above type, if (¢q, ta)
is convergent to (p,t) in M (A) x [0,1], then (R(¢q,ts)) converges to R(p, t)
in M(A).
1° We have R(pq,ta) = R(Yoo,ta) = Yoo. Moreover, po = @0 — ¢, and so
© = Poo- Thus R(p,t) = ¢oo. Hence R(pq,ta) = Yoo = R(p,t).
2° By Lemma 2.1, U is closed, and so ¢ € U. Thus

(R($asta)) (fa) = 0= (R(p,1))(fa) for all fo € L'(0,00).

We break this subnet into two further subnets: First consider the case when
to is identically 1. Then t, — t gives t = 1. Thus we have

R(pasta) = R(pas 1) = poo = Rlp, 1) = R(p, ).
Now consider the case that each ¢, € [0,1). Thus if

Palf) =D fre ™ xalte), f=fat Y freT €A,
k=0 k=0

then
(R((pa,toé))(efsT) _ 67(0a710g(17ta))TXa(T)7 T>0.

We now consider the following two cases:
(1) © # Yoo Let

o(f) = fee ™ x(t), f=Tat D> fre" €A
k=0

k=0
Since ¢, — ¢, it follows in particular for 7" > 0,
Pa(e™™") = 77 IX(T) — e 7TX(T) = p(e™*").
If t < 1, then
6—(0a—10g(1—ta))TXa(T) N 6—(0—10g(1—t))TX(T)7
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that is, (R(a,ta))(e™*") — (R(p,1))(e~*T).
On the other hand, if t = 1, then

e~ (ramlos(—ta) Ty (T) — 0 e TX(T) = po(e*T),

that is, (R(@a,ta))(e*T) — (R(p,1))(e=*T).
(2) ¢ = Yoo AS Pa = @ = Poo, for T > 0, pa(e™*T) = poo(e™T) =0,
that is, e 7Ty (T) — 0. Thus

e*(o'aflog(lfta))T 75T)

Xoc(T) — 0= 9000(6
that iSa (R(goaata))(eisT) - (R(goooat))<eisT)'
The result now follows from Lemma 2.4.

)

3° We break this subnet into two further subnets: First consider the case
when t, is identically 1. Then ¢, — t gives t = 1. Thus we have

R(sa,ta) = R(sa; 1) = oo = R(p, 1) = R(p, ).
Now consider the case that each ¢, € [0,1). Then
R(sa,ta) = 5o —log(1 —t,).

We now consider the following three cases:
(1) ¢ =s. If t € ]0,1), then
R(s,t) = s —log(1—1t).

Since s, — s, it follows from Lemma 2.2 that s, — s in C,. More-
over, the map —log(l —-) : [0,1) — [0,00) is continuous, and so
—log(1 —to) — —log(1 —t). It follows that

Sq —log(1l —ts) — s —log(l—t) in C,.
Thus by Lemma 2.2 again,
R(sq;ta) = sq —log(l —to) — s —log(l —t) = R(s,1).
If on the other hand, ¢t = 1, then
R(s,t) = Poc-

Since t, — 1, —log(1—t4) — +00. Thus Re(sq—log(1—t4)) — +o0.
If

f=Fat+> fre €A,

k=0
then fu(sa — log(1 — ts)) — 0 and

Z fkef(saflog(lfta))tk

k=1
Hence for all f € A,

(sa —log(1 —ta))(f) = f(sa —log(1 = ta)) — fo = Poo(f)-

< || flle ot =) — 0.
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But the choice of f was arbitrary. Consequently,
R(sa,ta) = sq —log(l —to) — @oo = R(s,1).

© = Yoo. Then

R(p,t) = R(¢oo,t) = $oc-

Since
Sa 7™ ¥ = Poo

by Lemma 2.3 it follows that s, — 00. So sq—log(1—t,) — oco. (This
is obvious if t, — 1. But otherwise, —log(1 — t,) — —log(1 —t).)
Hence
Fa(sa —log(1 —ta)) — 0 = puo(fa) for all f, € L'(0, ).
Also, for T' > 0, we have

—sT) —saT

saleT) = e T — 0 = pu (™),

Since t;log(1 — to) < 0, it follows that e~ (Sa=log(—ta)T _, ( that
is,
(sa —log(1 = ta))(e™") — poo(e™*T).
From Lemma 2.4, it follows that
R(Siou tOé) = Sa — lOg(l _ ta) 7 Poo = R(Sp)t)

© F# Poo- Since

sq — ¢ €U\ {¢eo},

by Lemma 2.3 it follows that s, — co. So sq—log(1—t,) — oco. (This
is obvious if ¢, — 1. But otherwise, —log(1 — t,) — —log(1 — t).)
Hence

fa(sa —log(l —tq)) — 0= go(f;) for all f, € L'(0, 00).
Let
o(f) = kae_atk)((tk)a f=Furt kae_' e A
k=0

k=0
If t =1, then

R(p,t) = R(p,1) = poo-
As 5o — ¢, we have for T' > 0,
sa(e™") =T — e x(T) = p(e™T),
Since log(1 — t,) — —o0, it follows that
e~ (ralosI=t)T __, (. =Ty (T,

that is,
(So — log(1 — ta))(e_ST) — <poo(e_ST).
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From Lemma 2.4, we can now conclude that
R(sa,ta) = sa —1og(l —tn) — @Yoo = R(p, 1).
On the other hand, if ¢t < 1, then for 7" > 0,
(R, 1)) (e*T) = e~ o losll=NT(T).
Since s4 — ¢,

sa(e™T) = 7T — e TIX(T) = p(e*").

So
ef(sa —log(1—ta))T __, ef(a'flog(lft))TX(T)

that is, ’
(30 —log(1 —ta))(e™T) — (R(p, 1))(e™*T).
From Lemma 2.4, we can now conclude that
R(sa,ta) = sa —log(l —t,) — R(p,1).
This completes the proof. O

REFERENCES

[1] F.M. Callier and C.A. Desoer. An algebra of transfer functions for distributed linear
time-invariant systems. IEEE Transactions on Circuits and Systems, no. 9, CAS-
25:651-662, 1978.

[2] V. Ya. Lin. Holomorphic fiberings and multivalued functions of elements of a Banach
algebra. Functional Analysis and its Applications, no. 2, 7:122-128, 1973, English
translation.

[3] A. Quadrat. The fractional representation approach to synthesis problems: an al-
gebraic analysis viewpoint. Part I: (weakly) doubly coprime factorizations. SIAM
Journal on Control and Optimization, no. 1, 42:266-299, 2003.

[4] M. Vidyasagar. Control System Synthesis: A Factorization Approach. MIT Press
Series in Signal Processing, Optimization, and Control, 7, MIT Press, Cambridge,
MA, 1985.

FE-mail address: A.J.Sasane@lse.ac.uk

MATHEMATICS DEPARTMENT, LONDON SCHOOL OF EcoNOMICS, HOUGHTON STREET,
LonpoN WC2A 2AE, UNITED KINGDOM.



