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Abstract. We consider a quasilinear PDE system which models nonlinear vibrations of a
thermoelastic plate defined on a bounded domain in R

n, n ≤ 3. Existence of finite energy so-
lutions describing the dynamics of a nonlinear thermoelastic plate is established. In addition
asymptotic long time behavior of weak solutions is discussed. It is shown that finite energy
solutions decay exponentially to zero with the rate depending only on the (finite energy)
size of initial conditions. The proofs are based on methods of weak compactness along with
nonlocal partial differential operator multipliers which supply the sought after “recovery”
inequalities. Regularity of solutions is also discussed by exploiting the underlying analyticity
of the linearized semigroup along with a related maximal parabolic regularity [14, 38, 2].
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1. Introduction

In this paper we study the existence and exponential stability of solutions to a quasilinear
system arising in the modeling of nonlinear thermoelastic plates. The mathematical analysis
of thermoelastic plates has attracted a lot of attention in recent years. An array of new results
in the area of both linear and nonlinear thermoelasticity has been contributed to the field.
This includes discoveries such as

(1) exponential decays (without any mechanical dissipation) of energy in linear models
[23, 5, 4, 9],

(2) boundary controllability and null controllability of linear plates [24, 19, 3, 6, 7, 33,
10, 16, 29],

(3) analyticity of semigroups generated by linear models [37, 34, 31],
(4) unique continuation from the boundary and backward uniqueness [32, 17, 22], and
(5) well-posedness and uniform decays of energy in semilinear thermoelastic models [21,

26, 8, 27, 28].

While there is at present a vast literature dealing with well-posedness and stability of linear
and semilinear thermoelastic equations (see above), the treatment of quasilinear and fully
nonlinear models defined on multidimensional domains is much more subtle and requires
different mathematical approaches.

A distinct feature of this paper is that it deals with a multi-dimensional quasilinear thermo-
elastic plate model. One of the fundamental difficulties is that perturbation type or fixed
point type of arguments, quite successful in semilinear analysis, are no longer applicable to the
strongly nonlinear cases. This needs a different approach that is capable of handling nonlinear

Date: 13 June, 2007.
2000 Mathematics Subject Classification. Primary 74F05; Secondary 35B30, 35B40, 74H40.
Key words and phrases. Quasilinear thermoelastic plates, existence of weak solutions, uniform decays of

finite energy solutions.

1



2 IRENA LASIECKA, SARA MAAD, AND AMOL SASANE

terms in the equation. It turns out that rather recent sharp estimates, developed in the context
of linear control theory, allows successful handling of quasilinear models. This is the case in
dealing with issues such as passing a weak limit on nonlinear terms, accomplished by taking
advantage of compensated compactness methods based on partial differential operator (PDO)
multipliers, or deriving inverse type of inequalities. The latter is the necessary ingredient for
stabilization, which depends on recently developed observability estimates for thermoelastic
plates [4, 13].

The equations we consider arise from a model that takes into account the coupling between
elastic, magnetic and thermal fields in a nonlinear elastic plate model (see [1], [11], [20],
[35], [18]). In non-dimensional form, the equations we consider are given below in (1.1)-
(1.3). Although we consider the case when n ≤ 3, similar equations were derived when
n ≤ 2 for a current carrying plate in a magnetic field, with the consideration of a physical
nonlinearity of the plate material (see [1], [20], [18]). The nonlinearity arises from the nature
of the magnetoelastic material, owing to a nonlinear dependence between the intensities of
the deformation and stress. We also assume that the material nonlinearity is cubic, as in the
original plate model [18].

Let Ω be a bounded domain of R
n, n ≤ 3, with a smooth boundary ∂Ω. Consider the

system
{
Wtt + ∆2W − ∆Θ + a∆((∆W )3) = 0

Θt − ∆Θ + ∆Wt = 0

}
in Ω × (0, T )(1.1)

W = ∆W = Θ = 0 on ∂Ω × (0, T ) (Boundary Conditions)(1.2)





W (x, 0) = f(x) (x ∈ Ω); f ∈W 2,4(Ω) ∩W 1,2
0 (Ω)

Wt(x, 0) = g(x) (x ∈ Ω); g ∈ L2(Ω)
Θ(x, 0) = h(x) (x ∈ Ω); h ∈ L2(Ω)



 (Initial Conditions).(1.3)

We assume that the material constant a is positive.
In this paper we study global existence and uniform decays in time of solutions (W,Wt,Θ) ∈

L∞([0, T ];W 2,4(Ω)×L2(Ω)×L2(Ω)) to the above initial/boundary value problem, where T > 0
is arbitrary.

In order to proceed with the exposition of our results, we introduce some notation and
definitions. Let

X := (W 2,4(Ω) ∩W 1,2
0 (Ω)) × L2(Ω) × L2(Ω)

Y := L2(Ω) × (W 2,4(Ω) ∩W 1,2
0 (Ω))′ × (W 2,2(Ω))′.

Definition 1.1 (Weak solution). Let 0 < T ≤ ∞. By a weak solution of the initial/boundary
value problem (1.1)-(1.3) we mean a triple

x := (W,U,Θ) ∈ L∞([0, T );X) ∩W 1,∞([0, T );Y ), with Θ ∈ L2([0, T );W 1,2
0 (Ω))

and the following equalities hold for almost all t ∈ [0, T ) and all test functions ϕ1 ∈ L2(Ω),

ϕ2 ∈W 2,4(Ω) ∩W 1,2
0 (Ω), ϕ3 ∈W 2,2(Ω) ∩W 1,2

0 (Ω):

〈Wt, ϕ1〉 = 〈U,ϕ1〉(1.4)

〈Ut, ϕ2〉 = −〈∆W,∆ϕ2〉 − 〈∇Θ,∇ϕ2〉 − a〈(∆W )3,∆ϕ2〉(1.5)

〈Θt, ϕ3〉 = −〈∇Θ,∇ϕ3〉 − 〈U,∆ϕ3〉,(1.6)
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where 〈·, ·〉 denotes the inner product in L2(Ω) as well as the pairing of L4(Ω) with its dual

space L4/3(Ω).
In addition, the initial conditions (1.3) are satisfied in the Cw([0, T );X) topology , where

Cw([0, T );X) denotes the space of weakly continuous functions with values in X.

Remark 1.2. Note that with (W,U,Θ) ∈ L∞([0, T ];X) and (Wt, Ut,Θt) ∈ L∞([0, T ];Y ) ,
we actually have

(W,U,Θ) ∈ C([0, T ];W 1,2(Ω) × (W 2,4(Ω))′ × (W 2,2(Ω))′),

see [15, p. 286-289]. In particular, x = (W,U,Θ) is weakly continuous with respect to the
above extended topologies. By Lemma 3.3 in [43], x is weakly continuous with the values in
X. Moreover, x ∈ C([0, T ];Y ) where X ⊂ Y with compact injection. In view of the above,
initial conditions can be interpreted either via weak continuity with values in X or via strong
continuity with values in X1 = W 2−ǫ,4(Ω) ×H−ǫ(Ω) ×H−ǫ(Ω), for every ǫ > 0.

It is not difficult to show that every classical solution (W,Θ) of the initial/boundary value
problem (1.1)-(1.3) gives a weak solution (W,Wt,Θ) to the system (1.4)-(1.6), and conversely
(see section 2.6) that every weak solution (W,U,Θ) of (1.4)-(1.6) which is sufficiently smooth
satisfies Wt = U and (W,Θ) is a classical solution to the system (1.1)-(1.3). By forcing W and

Θ to be in W 1,2
0 (Ω) for a.e. t ∈ [0, T ], we ensure that the boundary conditions W |∂Ω = 0 and

Θ|∂Ω = 0 are satisfied. The remaining boundary condition ∆W |∂Ω = 0 appears as a natural
boundary condition and will follow from the weak formulation of the system (see section 2.6).

For all (w, u, θ) ∈ X we define the energy of the system E : X → R given by

(1.7) E(w, u, θ) =
1

2
‖u‖2

L2 +
1

2
‖∆w‖2

L2 +
1

2
‖θ‖2

L2 +
a

4
‖∆w‖4

L4 .

If x = (W,U,Θ) ∈ L∞([0, T );X) is a weak solution, then we also define the energy (corre-
sponding to x) by

E(t) := E(W (t), U(t),Θ(t)) =
1

2
‖U(t)‖2

L2 +
1

2
‖∆W (t)‖2

L2 +
1

2
‖Θ(t)‖2

L2 +
a

4
‖∆W (t)‖4

L4 .

Thus

E(0) =
1

2
‖g‖2

L2 +
1

2
‖∆f‖2

L2 +
1

2
‖h‖2

L2 +
a

4
‖∆f‖4

L4.

The main result pertaining to global existence of finite energy solutions is the following:

Theorem 1.3 (Global existence of finite energy solutions). Let 0 < T ≤ ∞ and n ≤ 3. Then
there exists a weak solution (in the sense of Definition 1.1) of the initial/boundary value
problem (1.1)-(1.3). Moreover, the energy inequality

E(t) +

∫ t

s
‖∇Θ(s)‖2

L2ds ≤ E(s), s < t

holds for this weak solution.

Once global existence of finite energy solutions is established, a natural question to ask
is that of asymptotic stability. The dissipative mechanism in the model is exhibited by the
thermal component of the system. The nonlinear mechanical component has no dissipation
whatsoever and does not - by itself - cause any decrease of the energy. Thus any hope for
having uniform decays of the energy must be based on a possibility of propagating the decay
from the thermal component of the system (heat equation) onto the mechanical component
(plate equation). And in fact this is indeed the case in linear models, where exponential decay
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rates for the linear energy have been established [23, 4, 5] for linear thermoelastic plates and
more recently in [8, 13] for semilinear plates. The situation in the quasilinear case is much
more complex, due to the unboundedness of the nonlinear term with respect to the topology
induced by the energy. Nevertheless, we will be able to show that for the initial conditions
taken from any ball BX(0, R) in X, the corresponding weak solution decays exponentially to
zero with rate depending on R only (and not on the particular solution). The corresponding
result is the following:

Theorem 1.4 (Exponential decay of the energy). Let n ≤ 3, T = ∞, and R > 0. Then
there exists a constant C (independent of R) and a constant ωR (depending on R) such that
if (W (t), U(t),Θ(t)) is a solution of the initial/boundary value problem (1.1)-(1.3) obtained
in Theorem 1.3, with E(0) ≤ R, then

for all t ≥ 0, E(t) ≤ CE(0)e−ωRt.

Remark 1.5. The two theorems stated above pertain to existence and uniform decays of
weak, or alternatively, finite energy solutions. With further restrictions imposed on the initial
data, one can prove existence and uniqueness of regular (in fact, classical) solutions. The
corresponding result, which relies on methods of nonlinear analytic semigroups and maximal
regularity [38], will be given in the Appendix.

2. Existence of a solution

In this section, we prove Theorem 1.3.
We note that the system represented by (1.1)-(1.3) can be seen as a nonlinear perturbation

of an analytic semigroup (see the Appendix). However, the resulting perturbation is not
relatively bounded with respect to the generator, and so perturbation theory for analytic
semigroups [40] cannot be applied. This presents major difficulty in studying existence of
the finite energy solution claimed by Theorem 1.3. In order to handle the difficulty, we shall
resort to the compensated compactness method along with the use of partial monotonicity
generated by the nonlinear term (the problem itself is not monotone!). The latter property
is instrumental in identifying limits correctly in the weak formulation.

2.1. Lyapunov function for the PDE system. Suppose that the system (1.4)-(1.6) has
a solution

(W,U,Θ) ∈ C1([0, T ]; (W 2,4(Ω) ∩W 1,2
0 (Ω)) ×W 1,2(Ω) × (W 2,2(Ω) ∩W 1,2

0 (Ω))).

It follows that (Wt, Ut,Θt) ∈ C([0, T ]; (W 2,4(Ω)∩W 1,2
0 (Ω))×W 1,2(Ω)×(W 2,2(Ω)∩W 1,2

0 (Ω))).
Let

E(t) =
1

2
‖U(t)‖2

L2 +
1

2
‖∆W (t)‖2

L2 +
1

2
‖Θ(t)‖2

L2 +
a

4
‖∆W (t)‖4

L4 .

Then by (1.4) – (1.6),

d

dt
E(t) = 〈U,Ut〉 + 〈∆W,∆Wt〉 + 〈Θ,Θt〉 + a〈(∆W )3,∆Wt〉

= 〈Θ,∆Wt〉 + 〈Θ,Θt〉

= 〈Θ,∆Θ〉 = −‖∇Θ‖2
L2 ≤ 0.

The above argument is only formal, since it relies on additional regularity of the solutions. On
the other hand, it indicates that the sought after solutions should have a-priori bounds in the
topology of X and that the energy is non-increasing, suggesting some sort of dissipation. We
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shall make this argument rigorous by considering the appropriate finite dimensional approxi-
mations of the original system. Weak lower semicontinuity of the energy functional will allow
us to conclude the energy inequality valid for the original PDE system. We also note that the
dissipation is weak, since it affects only one component of the state vector. Nevertheless we
will be able to show that this effect propagates, giving exponential decay rates on the entire
system (see Theorem 1.4).

2.2. Faedo-Galerkin approximations. Let (ek)k∈N be normalized eigenfunctions of the
negative Laplacian with Dirichlet boundary conditions:

−∆ek = λkek in Ω,

ek|∂Ω = 0.

The {ek | k ∈ N} is an orthogonal basis of W 1,2
0 (Ω), and form an orthonormal basis of L2(Ω).

Let V N := span{em| m = 1, . . . , N} and XN := V N × V N × V N .
We seek

WN (x, t) =

N∑

k=1

wN
k ek(x); UN (x, t) =

N∑

k=1

uN
k ek(x); ΘN (x, t) =

N∑

k=1

θN
k ek(x)(2.1)

which satisfy




〈UN −WN
t , em〉 = 0〈

UN
t + ∆2WN − ∆ΘN + a∆

(
(∆WN )3

)
, em

〉
= 0〈

ΘN
t − ∆ΘN + ∆UN , em

〉
= 0



 m ∈ {1, . . . ,N}(2.2)





WN (x, 0) =
∑N

k=1〈f, ek〉ek(x)

UN (x, 0) =
∑N

k=1〈g, ek〉en(x)

ΘN (x, 0) =
∑N

k=1〈h, ek〉ek(x)



 on Ω (Initial Conditions).(2.3)

2.3. System of ODEs. We note that (WN , UN ,ΘN ) given by (2.1) satisfy (2.2)-(2.3) if and
only if the coefficient functions (wN

1 , . . . , w
N
N , u

N
1 , . . . , u

N
N , θ

N
1 , . . . , θ

N
N ) satisfy the following

system of ODEs:
(2.4)



ẇN
m(t) = uN

m(t)

u̇N
m(t) = −λ2

mw
N
m(t) + λmθ

N
m(t) + a

〈(∑N
k=1w

N
k (t)∆ek

)3
, λmem

〉

θ̇N
m(t) = −λmθ

N
m(t) − λmu

N
m(t)



 m ∈ {1, . . . ,N}

with the initial conditions

(2.5)





wN
m(0) = 〈f, em〉
uN

m(0) = 〈g, em〉
θN
m(0) = 〈h, en〉



 m ∈ {1, . . . ,N}.

As the right hand side of (2.4) is locally Lipschitz, it follows that the above system of ODEs
has a local solution in a maximal time interval [0, TN ) for some TN > 0. Multiplying (2.4) by
em and adding the results, we obtain (2.2)-(2.3).
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2.4. Lyapunov function for the ODE system. Let xN := (WN , UN ,ΘN ), and define
EN : R

3N → R by

EN (xN ) := E(xN )

=
1

2

(
||∆WN ||2L2 + ||UN ||2L2 + ||ΘN ||2L2

)
+

1

4
||∆WN ||4L4

=
1

2

∥∥∥∥∥

N∑

k=1

ukek

∥∥∥∥∥

2

L2

+
1

2

∥∥∥∥∥

N∑

k=1

λkwkek

∥∥∥∥∥

2

L2

+
1

2

∥∥∥∥∥

N∑

k=1

θkek

∥∥∥∥∥

2

L2

+
a

4

∥∥∥∥∥

N∑

k=1

λkwkek

∥∥∥∥∥

4

L4

.

It follows from the linear independence of ek’s and ∆ek’s that EN is positive definite.
If (WN , UN ,ΘN ) given by (2.1) satisfy (2.2)-(2.3), then we define

(2.6) EN (t) := EN (wN
1 (t), . . . , wN

N (t), uN
1 (t), . . . , uN

N (t), θN
1 (t), . . . , θN

N (t)).

It can be verified that

(2.7)
d

dt
EN (t) = −

∥∥∥∥∥

N∑

k=1

θN
k (t)∇ek

∥∥∥∥∥

2

L2

= −||∇ΘN ||L2 ≤ 0.

So we can conclude that the solution to (2.4) with initial conditions (2.5) is bounded. Conse-
quently from ODE theory, we obtain existence and uniqueness of the finite-dimensional solu-
tion xN ∈ C([0, TN ];XN ) satisfying the ODE system, which in addition, is a-priori bounded.
Thus TN = +∞.

2.5. Uniform bounds. Since

(2.8)
d

dt
EN (t) = −‖∇ΘN (t)‖2

L2 ≤ 0,

it follows that EN (t) ≤ EN (0). But

EN (0) =
1

2
‖UN (0)‖2

L2 +
1

2
‖∆WN (0)‖2

L2 +
1

2
‖ΘN (0)‖2

L2 +
a

4
‖∆WN‖4

L4 .

Consequently

(2.9) EN (0) ≤
1

2
‖g‖2

L2 +
1

2
‖∆f‖2

L2 +
1

2
‖h‖2

L2 +
a

4
‖∆f‖4

L4 = E(0).

In particular EN (0) is uniformly bounded in N .

2.6. Weak solution. In order to show that the definition of weak solution is meaningful and
describes the original PDE problem, we need to verify that every classical solution is a weak
solution, and that every weak solution which is sufficiently smooth is a classical solution.
The first part is straightforward and it follows by projecting the classical solution on the
L2 space. For the second part, consider a weak solution that is sufficiently smooth. In
the formulation of weak solutions, we first take test functions φi which are in C∞

0 (Ω). It is
easy to show by a straightforward application of Green’s formula and the density of C∞

0 (Ω) in
L2(Ω), that the equations (1.1) are satisfied. It suffices to reconstruct the boundary condition
∆W = 0 on ∂Ω. (The other two boundary conditions are encoded in the definition of the weak
solution.) By using (1.1) in the weak formulation, applied with an arbitrary test function
φ2 ∈W 2,4(Ω) ∩W 1.2

0 (Ω), and integrating by parts, we obtain the following trace relations:
∫

∂Ω

(
∆W − Θ + a(∆W )3

) ∂
∂ν
φ2ds = 0
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for all φ2 ∈ W 2,4(Ω) ∩W 1.2
0 (Ω). By the surjectivity in the trace theorem, it follows that for

any z ∈ W 3/4,4(∂Ω), there exists a φ2 ∈ W 2,4(Ω) ∩W 1.2
0 (Ω) such that ∂

∂νφ2 = z on ∂Ω [44].
Hence ∫

∂Ω

(
∆W − Θ + a(∆W )3

)
zds = 0

for all z ∈W 3/4,4(∂Ω). Since Θ = 0 on ∂Ω, it follows by density that

∆W + a(∆W )3 = 0 in W−3/4,4/3(∂Ω).

Consequently, ∆W = 0 on ∂Ω (since a > 0), as desired.

2.7. Weak convergence of the Faedo-Galerkin approximations. ¿From the uniform
Lyapunov estimate (2.9) for the Galerkin approximations, we obtain that for all t ∈ [0, T ],

‖∆WN (·, t)‖L2 , ‖∆WN (·, t)‖L4 , ‖UN (·, t)‖L2 , ‖ΘN (·, t)‖L2

are all bounded sequences. Also
∫ T
0 ||∇ΘN (t)||L2dt is bounded by the norms of the initial

data. Moreover, after accounting for WN = ΘN = 0 on the boundary, elliptic theory and
the Poincaré inequality give control of the W 2,4(Ω) norm of WN and the H1

0 (Ω) norm of ΘN .
Thus

WN is a bounded sequence in L∞([0, T ];W 2,4(Ω)),

UN is a bounded sequence in L∞([0, T ];L2(Ω)),

ΘN is a bounded sequence in L∞([0, T ];L2(Ω)) ∩ L2([0, T ];H1
0 (Ω)).

Step 1. Weak convergence. Therefore there exist subsequences which converge in the
weak star topology of the respective spaces. We denote the respective limits by W,U,Θ. For
simplicity of notation, we renumber the sequences and assume without loss of generality that
the sequences themselves converge in the weak star topology of the appropriate spaces.

Thus

(2.10)

WN ⇀∗ W in L∞([0, T ];W 2,4(Ω)),
UN ⇀∗ U in L∞([0, T ];L2(Ω)),
ΘN ⇀∗ Θ in L∞([0, T ];L2(Ω)),
ΘN ⇀ Θ in L2([0, T ];H1(Ω)),

where we have also used the reflexivity of L2([0, T ];H1(Ω)). We also obtain that

UN
t ⇀ Ut in L2([0, T ];W 2,4(Ω)′),

∆−1ΘN
t ⇀∗ ∆−1Θt in L∞([0, T ];L2(Ω)),

where ∆−1 denotes the inverse of the Laplacian with zero Dirichlet boundary conditions. In
particular, by the Aubin-Simon Lemma [42], this implies that:

(2.11)
WN →W strongly in C([0, T ];H2−ǫ(Ω)),
ΘN → Θ strongly in C([0, T ];H−ǫ(Ω)),
ΘN → Θ strongly in L2([0, T ];H1−ǫ(Ω)),

where ǫ > 0 can be taken arbitrarily small.
The above convergence allows us to pass the limit on all linear terms in the weak formulation

of the system. The passage of the limit on the nonlinear term is more involved and requires ad-
ditional arguments. Indeed, note that since ∆WN (t) is uniformly bounded in L4(Ω), it follows
that (∆WN )3 is bounded in L∞([0, T ];L4/3(Ω)). So there exists an η ∈ L∞([0, T ];L4/3(Ω))
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such that (∆WN )3 ⇀∗ η in L∞([0, T ];L4/3(Ω)) (again on a subsequence). But we do not know
if η coincides with (∆W )3, since we do not have any compactness to conclude this. As we
shall see later, this desired conclusion will be drawn by exhibiting some sort of compensated
compactness.

Let ϕ ∈ C∞
0 ([0, T ]; R) and m ∈ N be arbitrary. From (2.2) we have
∫ T

0

(
〈UN

t , em〉 + 〈∆WN − ΘN + a
(
(∆WN )3

)
,∆em〉

)
ϕ(t) dt = 0

∫ T

0

(
〈ΘN

t , em〉 − 〈ΘN + UN ,∆em〉
)
ϕ(t) dt = 0

for N ≥ m. Letting N → ∞ and using the weak star convergence of WN , UN , UN
t , ΘN , ΘN

t

and (∆WN )3, we conclude that
∫ T

0

(
〈Ut, em〉 + 〈∆W − Θ + aη,∆em〉

)
ϕ(t) dt = 0(2.12)

∫ T

0

(
〈Θt, em〉 − 〈Θ + U,∆em〉

)
ϕ(t) dt = 0.(2.13)

Since ϕ ∈ C∞
0 ([0, T ]; R) was arbitrary and any test function ψ ∈W 2,4(Ω) can be approximated

(with strong convergence) by finite linear combinations of em, it follows that

〈Ut, em〉 + 〈∆W − Θ + aη,∆ψ〉 = 0

〈Θt, ψ〉 − 〈Θ + U,∆ψ〉 = 0

for almost every t ∈ [0, T ]. Because W 1,2
0 (Ω) is a closed subspace of W 1,2(Ω), and hence

weakly closed, it follows that also W (t) ∈W 1,2
0 (Ω).

Next we show that the initial conditions are satisfied. Let

ϕ ∈ L1([0, T ];W 2,4(Ω) ∩W 1,2
0 (Ω)) ∩ C∞([0, T ];C∞(Ω))

be such that ϕ(T ) = 0. Then
∫ T

0
〈UN , ϕ〉 dt =

∫ T

0
〈WN

t , ϕ〉 dt = −〈fN , ϕ(0)〉 −

∫ T

0
〈WN , ϕt〉 dt

∫ T

0
〈U,ϕ〉 dt =

∫ T

0
〈Wt, ϕ〉 dt = −〈W (0), ϕ(0)〉 −

∫ T

0
〈W,ϕt〉 dt.

By the weak star convergence, we obtain fN ⇀ W (0). From the construction, we also have
fN ⇀ f , and so 〈W (0), ϕ(0)〉 = 〈f, ϕ(0)〉. Since ϕ was arbitrary, it follows that W (0) = f .
In the same way, one shows that U(0) = g and that Θ(0) = h.

Step 2. Strong convergence of the velocity. The main task that remains is to identify
η with (∆W )3. The proof of this fact will proceed through several lemmas. To achieve this,
we first improve the convergence of UN .

Lemma 2.1. Let n ≤ 3. Then UN → U strongly in L2([0, T ];L2(Ω)).

Proof. Let (WN , UN ,ΘN ) denote the Galerkin approximation at step N , and let (W,U,Θ)

be its weak limit asserted in (2.10). We shall use the notation W̃N := WN − W , and a
similar notation is used for the other two variables. Let PN be the orthogonal projection
(with respect to the inner product of L2(Ω)) of the space V := W 2,4(Ω) ∩H1

0 (Ω) onto V N .
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We obtain the following system satisfied for W̃N , Θ̃N and all test functions ψ, φ ∈ V :

(2.14)
〈ŨN

t + ∆2W̃N − ∆Θ̃N + a∆((∆WN )3 − η), ψ〉 = 〈βN , (I − PN )ψ〉

〈Θ̃N
t − ∆Θ̃N + ∆ŨN , φ〉 = 〈γN , (I − PN )φ〉,

where the error terms are

βN := UN
t + ∆2WN − ∆ΘN + a∆(∆WN )3 and γN := ΘN

t − ∆ΘN + ∆UN .

We will derive the error for ŨN by using suitable multipliers. An important fact which will be
used without further mentioning is that both ∆ and ∆−1 (with Dirichlet boundary conditions)
leave V N invariant, and that PN commutes with ∆. Because of this

(2.15)
(I − PN )γN = 0
(I − PN )βN = a(I − PN )∆(∆WN )3.

We apply (2.14) with ψ := ∆−1Θ̃N = ∆−1(ΘN − Θ), and integrate from 0 to T . Note that
∆−1(ΘN − Θ)(t) ∈ V for almost all t. This follows from the regularity of the limit elements
(2.10) and the embedding H1(Ω) ⊂ L4(Ω) for n ≤ 3.

Using (2.14), we obtain
∫ T

0

(
− 〈ŨN ,∆−1Θ̃N

t 〉 + 〈∆W̃N , Θ̃N 〉 − ‖Θ̃N‖2 + a〈(∆WN )3 − η, Θ̃N 〉

)
dt

= −〈ŨN ,∆−1Θ̃N 〉
∣∣∣
T

0
+

∫ T

0
〈βN , (I − PN )∆−1Θ̃N 〉 dt.(2.16)

On the other hand, using (2.15) we also have

(2.17) ∆−1Θ̃N
t = Θ̃N − ŨN .

Combining the last two equations, we obtain
∫ T

0
‖ŨN‖2

L2dt =

∫ T

0

(
〈ŨN , Θ̃N 〉 − 〈∆W̃N , Θ̃N 〉 + ‖Θ̃N‖2 − a〈(∆WN )3 − η, Θ̃N 〉

)
dt

−〈ŨN (t),∆−1Θ̃N(t)〉
∣∣∣
T

0
+

∫ T

0
〈βN , (I − PN )∆−1Θ̃N 〉 dt.(2.18)

It is easy to see that all the terms on the right side of this equality converge to zero as

N → ∞. Indeed, uniform boundedness of ŨN and ∆W̃N(t) in L2([0, T ];L2(Ω)) by (2.10),

along with the strong convergence Θ̃N → 0 in L2([0, T ];H1−ǫ(Ω)) ⊂ L2([0, T ];L2(Ω)) allows
us to conclude that the first three terms converge to 0. As for the fourth term, we use

uniform boundedness of ‖(∆W̃N )3(t) − η(t)‖L4/3 along with the strong convergence to zero

Θ̃N in L2([0, T ];H1−ǫ(Ω)) ⊂ L2([0, T ];L4(Ω)) when n ≤ 3. For the fifth term we invoke the

uniform bound for ‖ŨN‖ and strong convergence to zero of ‖∆−1Θ̃N (t)‖ for all t. For the
sixth term, we use the representation in (2.15) to obtain

〈(I − PN )∆(∆WN )3,∆−1Θ̃〉 = 〈(∆WN )3, (I − PN )Θ̃〉 = 〈(∆WN )3, (I − PN )Θ〉

where ‖(∆WN (t))3‖L4/3
is bounded and (I − PN )Θ converges strongly to zero in the space

L2([0, T ];H1(Ω)). Finally, we conclude that
∫ T
0 ‖ŨN (t)‖2dt → 0, which proves the lemma. �

Step 3. Identification of the nonlinear limit. The strong convergence asserted in Lemma
2.1 allows us to prove that η coincides with the correct quantity.
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Lemma 2.2. Let n ≤ 3. Then

(2.19) (∆WN )3 ⇀ (∆W )3 in L2([0, T ];L4/3(Ω))

Proof. The proof is based on a monotonicity argument and an application of [12, Lemma
II.1.3]. We first note that the operator G(W ) := ∆(∆W )3 is maximal monotone as considered
from W 2,4(Ω) into its dual. We know that

G(WN ) ⇀ ∆η in W 2,4(Ω)′

and

WN ⇀W in W 2,4(Ω).

In order to identify η with (∆W )3, we invoke Lemma 3.1 in [12] which requires that

(2.20) lim sup〈G(WN ) − ∆η,WN −W 〉 ≤ 0.

In order to establish the inequality required in (2.20), we go back to the first equation in

(2.14). As the test function we choose ψ := W̃N . Integration from 0 to T gives

∫ T

0

(
‖∆W̃N‖2

L2 + a〈(∆WN )3 − η,∆W̃N 〉

)
dt

=

∫ T

0

(
‖∆W̃N‖2

L2 + a〈G(WN ) − ∆η, W̃N 〉

)
dt

=

∫ T

0

(
‖ŨN‖2

L2 − 〈Θ̃N ,∆W̃N 〉 − 〈βN , (I − PN )W̃N 〉

)
dt− 〈ŨN , W̃N 〉

∣∣∣
T

0
.(2.21)

We claim that all the four terms on the right hand side of (2.21) converge to zero. In-
deed, the first term converges to zero by virtue of Lemma 2.1. For the second term, we

invoke the uniform boundedness of ‖∆W̃N (t)‖L2 along with strong convergence of ΘN in
L2([0, T ];H1(Ω)) ⊂ L2([0, T ];L2(Ω)). For the third term we use the representation in (2.15)

(βN , (I − PN )W̃ ) = (βN , (I − PN )W ) = ((∆WN )3, (I − PN )∆W ) → 0,

where we have used the uniform bound ‖(∆WN )3‖L4/3 along with the strong convergence of
(I − PN )∆W in L4(Ω).

Finally, for the fourth term we argue as before. The bound on ‖Ũ(t)‖ along with the strong

convergence of W̃N in C([0, T ];L2(Ω)) completes the argument. Thus, (2.20) follows from
(2.21) and the fact that the right hand side of (2.21) converges to 0. �

Lemma 2.2 allows us to pass the limit in the approximate equation. In addition, due to
lower semicontinuity of the energy, the energy inequality holds for all weak solutions. This
concludes the proof of Theorem 1.3.

Remark 2.3. Note that the result of Lemma 2.2 yields an even stronger conclusion. It says
that WN → W strongly in L2([0, T ];W 2,2(Ω)). Lemma 2.1 provides additional convergence
UN → U strongly in L2([0, T ];L2(Ω)). This conclusion may be useful in assessing convergence
of the finite-dimensional approximation to the original equation.
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3. Uniform stability of solutions

3.1. Exponential decay of the ODE solutions. ¿From the (2.8) we infer that the energy
of the ODE system is nondecreasing. Since ΘN = 0 implies that xN = 0, La Salle’s invariance
principle implies strong stability of the ODE system.

Our main task is to show that the obtained stability and decay rates are uniform in N .
This will be asserted in the theorem that follows.

Theorem 3.1. Let n ≤ 3. Then there exists a constant C such that for every R > 0 there
exists a constant ωR such that if (WN , UN ,ΘN ) is a solution of (2.2)-(2.3) with E(0) ≤ R,
then

∀t ≥ 0, EN (t) ≤ CEN(0)e−ωRt,

where EN is defined by (2.6) and the constants C, ωR are independent on N .

We apply the method of multipliers introduced by Avalos and Lasiecka [5] for linear ther-
moelastic problems. The method uses two multipliers

M1(W,U,Θ) := ∆−1Θ and M2(W,U,Θ) := W,

where as before ∆ denotes the Laplacian with zero Dirichlet boundary conditions.
If (WN , UN ,ΘN ) is a solution of (2.2)-(2.3), then it follows from (2.7) that for every t ≥ 0

(3.1) EN (t) +

∫ t

0
‖∇ΘN (s)‖2

L2 ds = EN (0).

We write

EN (t) := Ek
N (t) + Ep

N (t),

where

(3.2)
Ek

N (t) :=
1

2
‖UN (t)‖2

L2 (kinetic part)

Ep
N (t) :=

1

2
‖∆WN (t)‖2 +

1

2
‖ΘN (t)‖2 +

a

4
‖∆WN‖4 (potential part).

We split the proof of Theorem 3.1 into a series of lemmas. In the first two lemmas we
estimate the kinetic and potential parts of the energy separately. Let T > 0 be arbitrary.

Lemma 3.2 (Recovery of kinetic energy). Let n ≤ 3 and (WN , UN ,ΘN ) be a solution of
(2.2)-(2.3). Then for every ǫ > 0
∫ T

0
Ek

N (t) dt ≤ λ−1
1 (EN (0) + EN (T )) + 4ǫ

∫ T

0
EN (t) dt +

C2E1/2(0)a2

2ǫ

∫ T

0
‖∇ΘN‖2

L2 dt,

where C is the Sobolev constant of the embedding H1(Ω) ⊂ L4(Ω).

Proof. Note that M1(W
N (t), UN (t),ΘN (t)) ∈ V N . From the second equation of (2.2) it

follows (after integrating by parts in time) that

0 = − 〈∆−1ΘN (T ), UN (T )〉 + 〈∆−1ΘN (0), UN (0)〉 +

∫ T

0
〈∆−1ΘN

t (t), UN (t)〉 dt

−

∫ T

0

(
〈∆−1ΘN (t),∆2WN (t)〉 − 〈∆−1ΘN (t),∆ΘN (t)〉 + a〈∆−1ΘN (t),∆((∆WN (t))3)〉

)
dt
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By Green’s theorem, this implies

(3.3)

0 = − 〈∆−1ΘN (T ), UN (T )〉 + 〈∆−1ΘN (0), UN (0)〉 +

∫ T

0
〈∆−1ΘN

t (t), UN (t)〉 dt

−

∫ T

0

(
〈ΘN (t),∆WN (t)〉 − ‖ΘN (t)‖2

L2 + a〈ΘN (t), (∆WN (t))3〉
)
dt.

By the last equation in (2.2), and since V N is invariant under ∆−1, we have

(3.4) 0 = 〈∆−1ΘN
t (t) − ΘN (t) + UN (t), UN (t)〉.

Equations (3.3) and (3.4) together imply

0 = − 〈∆−1ΘN (T ), UN (T )〉 + 〈∆−1ΘN (0), UN (0)〉 +

∫ T

0

(
〈ΘN (t), UN (t)〉 − ‖UN (t)‖2

L2

)
dt

−

∫ T

0

(
〈ΘN (t),∆WN (t)〉 − ‖ΘN (t)‖2

L2 + a〈ΘN (t), (∆WN (t))3〉
)
dt.

Then for every ǫ > 0 we have

∫ T

0
‖UN (t)‖2

L2 dt −

(∫ T

0
‖ΘN (t)‖2

L2 dt

)1/2(∫ T

0
‖UN (t)‖2

L2 dt

)1/2

≤ λ−1
1 (EN (0) + EN (T )) + ǫ

∫ T

0
‖∆WN(t)‖2

L2 dt

+

(
1 +

1

4ǫ

)∫ T

0
‖ΘN (t)‖2

L2 dt− a

∫ T

0
〈ΘN (t), (∆WN (t))3〉 dt.

It now follows that
(3.5)∫ T

0
‖UN (t)‖2

L2 dt ≤ 2λ−1
1 (EN (0) + EN (T )) + 2ǫ

∫ T

0
‖∆WN (t)‖2

L2 dt

+ λ−1
1

(
3 +

1

2ǫ

)∫ T

0
‖∇ΘN (t)‖2

L2 dt− 2a

∫ T

0
〈ΘN (t), (∆WN (t))3〉 dt.

It remains to estimate the nonlinear term. We have by the Hölder inequality, the Sobolev
inequality H1(Ω) ⊂ L4(Ω), and the energy inequality,
(3.6)∫ T

0

∣∣〈ΘN (t), (∆WN (t))3〉
∣∣ dt ≤

∫ T

0
‖ΘN (t)‖L4‖∆WN (t)‖3

L4 dt

≤ C

∫ T

0
‖∆WN (t)‖3

L4‖∇ΘN (t)‖L2 dt

≤ C

(∫ T

0
‖∆WN (t)‖6

L4 dt

)1/2(∫ T

0
‖∇ΘN (t)‖2

L2 dt

)1/2

≤ CE1/4(0)

(∫ T

0
‖∆WN (t)‖4

L2

)1/2(∫ T

0
‖∇ΘN (t)‖2

L2 dt

)1/2

≤
ǫ

a

∫ T

0
EN (t) dt +

C2E1/2(0)a

4ǫ

∫ T

0
‖∇ΘN (t)‖2

L2 dt.
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The statement of the lemma now follows from (3.5) and (3.6). �

Lemma 3.3 (Recovery of potential energy). Let (WN , UN ,ΘN ) be a solution of (1.4)- (1.6).
Then

∫ T

0
Ep

N (t) dt ≤
1

λ1
(EN (0) + EN (T )) + 2

∫ T

0
Ek

N (t) dt +
1

2λ1

∫ T

0
‖∇ΘN‖2

L2 dt.

Proof. Clearly

(3.7)

∫ T

0
Ep

N (t) dt ≤
1

2

∫ T

0

(
‖∆WN (t)‖2

L2 + a‖∆WN‖4
L4 + ‖ΘN‖2

L2

)
dt.

We multiply the second equation of (2.2) by the coefficients of M2(W
N (t), UN (t),ΘN (t)),

sum from m = 1 to N , and integrate from 0 to T . After integrating by parts in t, and adding

the term
∫ T
0 ‖ΘN (t)‖2

L2 dt to both sides of the equation, we obtain
∫ T

0

(
‖∆WN (t)‖2

L2 + a‖∆WN (t)‖4
L4 + ‖ΘN (t)‖2

L2

)
dt

=−WN(T )UN (T ) +WN (0)UN (0) +

∫ T

0

(
‖UN (t)‖2

L2 + 〈ΘN (t),∆WN (t)〉 + ‖ΘN (t)‖2
L2

)
dt

≤ λ−1
1 (EN (0) + EN (T )) +

∫ T

0

(
‖UN (t)‖2

L2 + ǫ‖∆WN (t)‖2 +
1

4λ1ǫ
‖∇ΘN (t)‖2

)
dt,

where ǫ > 0 is arbitrary. Since ‖∆WN (t)‖2
L2 ≤ 2Ep

N (t), it follows that

(2 − 2ǫ)

∫ T

0
Ep

N (t) dt ≤ λ−1
1 (EN (0) + EN (T )) +

∫ T

0

(
‖UN (t)‖2

L2 +
1

4λ1ǫ
‖∇ΘN (t)‖2

)
dt,

and by choosing ǫ = 1/2, the result follows. �

Proof of Theorem 3.1. By combining the estimates of Lemma 3.2 and Lemma 3.3, we obtain
∫ T

0
EN (t)dt ≤

3

λ1
(EN (0)+EN (T ))+8ǫ

∫ T

0
EN (t)dt+

(
C2
√
E(0)a2

ǫ
+

1

2λ1

)∫ T

0
‖∇ΘN (t)‖2

L2dt,

and so by choosing ǫ = 1/16 we have
∫ T

0
EN (t) dt ≤

6

λ1
(EN (0) + EN (T )) +

(
32C2

√
E(0)a2 +

1

λ1

)∫ T

0
‖∇ΘN (t)‖2 dt.

From the energy identity (3.1), we estimate EN (0) in terms of EN (T ) and in terms of the
damping which, in turn, leads to:

(3.8)

∫ T

0
EN (t) dt ≤

12

λ1
EN (T )) +

(
32C2

√
E(0)a2 +

7

λ1

)∫ T

0
‖∇ΘN (t)‖2 dt.

Since EN (t) ≥ EN (T ) for t < T ,

(3.9) TEN (T ) ≤
12

λ1
EN (T )) +

(
32C2

√
E(0)a2 +

7

λ1

)∫ T

0
‖∇ΘN (t)‖2 dt.

Hence (
T −

12

λ1

)
EN (T ) ≤ (32C2

√
E(0)a2 + 7λ−1

1 )

∫ T

0
‖∇ΘN (t)‖2

L2 dt.
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Defining K(s) :=
32C2

√
sa2+7λ−1

1

T−6λ−1 , and by choosing T > 6/λ1, we have

EN (T ) ≤ K(E(0))

∫ T

0
‖∇ΘN (t)‖2

L2 dt.

So by (3.1),
(1 +K(E(0))EN (T ) ≤ K(E(0))EN (0).

Consequently,

(3.10) EN (T ) ≤
K(E(0))

1 +K(E(0)
EN (0) = γE(0)EN (0),

where γs := K(s)
1+K(s) < 1. Propagating the above estimate over the intervals [kT, (k + 1)T ],

k = 1, 2, . . ., we obtain

(3.11) EN ((k + 1)T ) ≤
K(E(T ))

1 +K(E(kT )
EN (kT ) = γE(kT )EN (kT )

Now we notice that γs is an increasing function of s. Indeed, this follows from the definition
of γs and the fact that K(s) is also an increasing function of s. Thus γs1

≤ γs2
, whenever

s1 ≤ s2. Since the energy E(kT ) is decreasing in k, we obtain that

γE(kT ) ≤ γE(0) for all k = 1, 2 . . . .

Thus

(3.12) EN ((k + 1)T ) ≤ γE(0)EN (kT ), k = 1, 2 . . . .

This yields

(3.13) EN ((k + 1)T ) ≤ γk
E(0)EN (0), k = 1, 2 . . .

Since γE(0) < 1, a standard semigroup argument gives the final conclusion in the statement
of the theorem. �

3.2. Exponential stability of the PDE solutions. We observe that the same proof as
that of Theorem 3.1 works for any smooth solution by using the multipliers −∆−1Θ and W
in place of ∆−1ΘN and WN , respectively. Since we have not proved the existence of smooth
solutions of the system (1.1)-(1.3), we use the Galerkin approximations and weak convergence
to prove exponential decay of the weak solution.

Proof of Theorem 1.4. We begin by observing that using the estimates in Theorem 3.1, we
can rework the argument in Subsection 2.7 so that we have the existence of a weak solution
for all t ≥ 0.

From the proof of Theorem 1.3 it follows that

WN ⇀W in L2([0, T ];W 2,2(Ω)),

UN ⇀ U in L2([0, T ];L2(Ω)),

ΘN ⇀ Θ in L2([0, T ];L2(Ω)),

∆WN ⇀ ∆W in L2([0, T ];L4(Ω)).

Take [t, t + h] ⊂ [0,∞). The norm in L2([t, t + h];L4(Ω)) is weakly lower semicontinuous.
Hence ∫ t+h

t
E(s) ds ≤ lim inf

N→∞

∫ t+h

t
EN (s) ds.
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So by Theorem 3.1,

(3.14)
1

h

∫ t+h

t
E(s) ds ≤

CE(0)

h

∫ t+h

t
e−ωRs ds,

where we have used EN (0) ≤ E(0). Then the limit as h → 0 of the left-hand side of (3.14)
exists for almost all t ≥ 0 [41, Theorem 7.11, p141]. Consequently, for almost all t ≥ 0,
E(t) ≤ CE(0)e−ωRt. �

4. Appendix

In this section we shall present results pertaining to existence of smooth solutions corre-
sponding to the nonlinear problem (1.1)-(1.3). This is based on an approach which is very
different from the one used before in this paper and leading to weak and global solutions.
This approach relies on an explicit use of the analyticity of the semigroup corresponding to
the linear part of the model. A critical role is played by the estimates reflecting “maximal
regularity” of solutions to non-autonomuos abstract parabolic equations [38, 2]. The resulting
theory will lead to local (in time) existence and uniqueness of smooth (classical) solutions,
where the smoothness is measured with respect to Hölder continuity. The result obtained is
as follows:

Theorem 4.1. With reference to the problem (1.1)-(1.3).
Let x(0) := (∆W (0),Wt(0),Θ(0)) ∈ C1+ǫ(Ω)×C1+ǫ(Ω)×C1+ǫ(Ω), where ǫ > 0 is arbitrary.

Then there exists a time T0 > 0 such that x(t) = (∆W (t), U(t),Θ(t)) is a unique classical
solution satisfying

(1) (∆W,U,Θ) ∈ [C([0, T0] × Ω)]3 ∩ [C1((0, T0] × Ω)]3

(2) (∆2W,∆U,∆Θ) ∈ [C((0, T0] × Ω)]3.

If in addition, (∆W (0), U(0),Θ(0)) ∈ [C2
0 (Ω)]3, the the solution is strict, and the regularity

described above extends to the closed intervals [0, T0].

Remark 4.2. Theorem 4.1 establishes existence and uniqueness of classical solutions defined
on some interval [0, T0]. Instead of having solutions local in time one could also obtain, by
following methods in [38] solutions that are global in time at the expense of restricting the
analysis to suitably small data. One way or another, this type of result pertains only to
local (in time or space) solutions. This is in contrast with Theorem 1.3, which asserts global
solutions, however of limited regularity. Combining both types of results, in order to obtain
a full scale of spaces with various degrees of regularity, appears to be an open and difficult
problem. The technicalities and methodology involved in the two approaches are very different
and incompatible.

Proof. Step 1. Abstract parabolic problem and maximal regularity.

We shall first represent the original PDE system (1.1)-(1.3) as an abstract parabolic system.
To accomplish this we define [37, 33] Z := ∆W and set x := (Z,U, θ). The differential operator
∆, equipped with zero Dirichlet boundary conditions, generates an analytic semigroup on
L2(Ω). With the above notation, the original system can be written in the following operator
form:

(4.1) xt = ∆




0 1 0
−1 0 1
0 −1 1


x− a∆




0
φ(Z)

0


 ,
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where φ(s) := s3. Denoting

(4.2) A := ∆




0 1 0
−1 0 1
0 −1 1


 ,

it is easily seen that A is the generator of an analytic semigroup onH := L2(Ω)×L2(Ω)×L2(Ω)
and (4.1) can be rewritten as

(4.3) xt = Ax+AF (x)

where
F (x) := −a

[
φ(Z) 0 0

]⊤
.

Equation (4.3) is a nonlinear abstract parabolic system defined on H. The nonlinearity
enters via the generator A, and so solvability of the system must depend on “maximal reg-
ularity” properties [14, 38]. Since maximal regularity does not hold within the context of
the L∞([0, T ];H)-topology [38], one should consider the problem within the framework of
interpolation spaces based on the C(Ω)-topology. To accomplish this, we shall adopt and
follow the framework of [38].

First of all we will be considering ∆ : Dom(∆) ⊂ C(Ω) → C(Ω) with

Dom(∆) = {φ ∈ C(Ω),∆φ ∈ C(Ω), φ = 0 on ∂Ω}.

Moreover Dom(∆) ⊃ {φ ∈ C2(Ω), φ = 0 on ∂Ω}. It is known [38] that ∆ generates an
extended analytic semigroup on C(Ω). However, the generator has peculiar properties that
include:

(1) it is not densely defined,
(2) it is not strongly continuous at the origin.

The operator A, whose action is defined in (4.2) is also an extended generator of an analytic
semigroup on

X := C(Ω) × C(Ω) × C(Ω)

with Dom(A) := Dom(∆)×Dom(∆)×Dom(∆). The nonlinear operator AF (x) takes X into
the extended space AX.

Step 2. Representation as a quasilinear abstract parabolic system. Rewriting

∆φ(u) = φ′(u)∆u+ φ′′(u)|∇u|2,

we obtain from (4.3) that

xt = Ax− a
[
φ′(Z)∆Z + φ′′(Z)|∇Z|2 0 0

]⊤
.

Denoting

A(t, x) = A(x) := A− a
[

0 φ′(Z)∆ 0
]⊤
,

leads us to the consideration of a quasilinear system :

(4.4) xt = A(x)x+ f(x),

where
f(x) ≡ −a

[
0 φ′′(Z)|∇Z|2 0

]⊤
.

Equation (4.4) is a quasilinear abstract parabolic system studied in [38]. In fact, Theorem
2.1 in [39] gives local existence and uniqueness of solutions under several hypotheses imposed
on A(x) and f(x).
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Step 3. Verification of the hypotheses for Theorem 2.1. We shall use the notation
from [39]. The standing hypotheses (i) and (ii) on page 397 require that for any open set
U ∈ DA(θ,∞) [14, 38], with some θ ∈ (0, 1), A(x) : U → L(D,X) and f(x) are locally
Lipschitz with respect to x ∈ B(x0, r) ⊂ DA(θ,∞). This is to say,

(4.5) ||A(x) −A(y)||L(D,X) + |f(x) − f(y)|X ≤ K|x− y|DA(θ,∞)

for x, y ∈ B(x0, r) ⊂ DA(θ,∞).
Another requirement is that Ax0

for x0 ∈ U is an extended generator of analytic semigroup
on X. The second condition is obviously satisfied (note φ′ ≥ 0), and for the first condition
we take θ > 1/2. This last assertion follows from the presence of ∇ in the definition of f and
from the characterization [39]

DA(∞, θ) ∼ {x ∈ [C2θ(Ω)]3 | x = 0 on ∂Ω} for θ 6= 1/2.

Thus [39, Theorem 2.] gives local existence and uniqueness of classical solutions for any initial

data x(0) ∈ [C1+ǫ
0 (Ω))]3. Similarly, stronger regularity of initial datum x(0) ∈ Dom(A) ×

Dom(A) × Dom(A) implies that the obtained solution is strict. This implies the second part
of Theorem 4.1. �

Acknowledgment. The first author is indebted to Alessandra Lunardi for very helpful
discussions and for pointing out reference [39].
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