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Ideals of denominators in the disk-algebra

Raymond Mortini and Amol Sasane

ABSTRACT

We show that there do not exist finitely generated, non-principal ideals of denominators in the
disk-algebra A(DD). Our proof involves a new factorization theorem for A(D) that is based on
Treil’s determination of the Bass stable rank for H>.

1. Notation, background

Let H* be the uniform algebra of bounded analytic functions on the open unit disk D and
let A(D) denote the disk-algebra; that is the subalgebra of all functions in H> that admit a
continuous extension to the Euclidean closure D = {z € C : |z| < 1} of D.

Let v =n/d be a quotient of two functions n and d in A= H> or A= A(D). It is well
known that every ideal of denominators

D(y)={fed: fveA}

in A= H® is a principal ideal, since H> is a pseudo-Bézout ring; the latter means that
each pair of functions in H> has a greatest common divisor (see [11]). The situation in A(D)
is completely different, due to the fact that A(D) does not enjoy the property of being a
pseudo-Bézout ring. For example 1 — z and (1 — z) exp(—1£2) do not have a greatest common
divisor. Answering several questions of Frank Forelli [3, 4], the first author could prove in his
Habilitationsschrift [8] that any closed ideal in A(D) is an ideal of denominators; that an ideal
of denominators is closed if and only if v € L>(T); that the complement inside D of the zero

set

Z@M)= (] {zeD:f(z) =0}

fed(v)

of D(7) is the set of points a in D for which there exists a neighborhood U in D such that ||
admits a continuous extension to U; and that every ideal of denominators in A(D) contains
a function f whose zero set equals the zero set of the ideal (one then says that ©(y) has
the Forelli-property.) The proof of this last result was based on the approximation theorem of
Carleman (see [5, p. 135 ]).

In the present note we shall be concerned with the question whether finitely generated, but
non-principal ideals in A(ID) can be represented as ideals of denominators. It turns out that this
is not the case. Our proof uses as main ingredient a deep result of Treil [14] that tells us that
H*° has the Bass stable rank one. This is a generalization going far beyond the corona theorem
and tells us that whenever (f,g) is a corona pair in H®, that is whenever |f|+ |g| > >0
in D, then there exists h € H* such that f + hg is invertible in H*. We actually need an
extension of this found by the second author of this paper to algebras of the form

H ={f € H®: f extends continously to T \ E'},
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where E is a closed subset of the unit circle T. That result on the Bass stable rank of Hz> will
be used to prove a factorization property of functions in A(D), which will be fundamental to
achieve our main goal of characterizing the finitely generated ideals of denominators in A(D).

From the applications point of view, there is also a control theoretic motivation for
considering the question of finding out whether there are ideals of denominators which are
finitely generated, but not principal. Indeed, [10, Theorem 1, p.30] implies that if a plant
is internally stabilizable, then the corresponding ideal of denominators is generated by at
most two elements, and moreover, if an ideal of denominators corresponding to a plant is
principal, then the plant has a weak coprime factorization. In light of these two results, our
result on the nonexistence of non-principal finitely generated ideal of denominators in the
disk-algebra implies that every internally stabilizable plant over the disk-algebra has a weak
coprime factorization. Finally, since the disk-algebra is pre-Bézout [12], it also follows that every
plant having a weak coprime factorization, possesses a coprime factorization [10, Proposition,
p. 54]. Consequently, every internally stabilizable plant over the disk-algebra has a coprime
factorization.

2. Factorization in A(D)

Cohen’s factorization theorem for commutative, non-unital Banach algebras X tells us that
if X has a bounded approximate identity, then every f € X factors as f = gh, where both
factors are in X (see e.g. [1, p.76]). For A(D) this may be applied to every closed ideal of the
form X =J3(FE,A(D)) :={f € A(D) : f|g =0}, whenever F is a closed subset of T of Lebesgue
measure zero (note that (e,) with e, = 1 — p% is such a bounded approximate identity, where
pe is a peak function in A(D) associated with E; see [7, p. 80] for a proof of the existence of
pr). In the present paragraph we address the following question: Let f € A(ID). Suppose that
f vanishes on £ C T and that E can be written as £ = £ U E», where the E; are closed, not
necessarily disjoint.

(1) Do there exist factors f; of f such that f = fi fo and such that f; vanishes only on E;?
A weaker version reads as follows:

(2) Do there exist factors fj of f such that f = fifo and such that f; vanishes only on E;
and f2 has the same zero set as f?

We will first answer question (2) above. The proof works along the model of [8, Proposition

2.3]. Tt uses the following lemma that is based on the approximation theorem of Carleman (see

[5]):

LEMMA 2.1. [8, Lemma 1.1] Let I be an open interval. Then for every continuous function
u and every positive, continuous error function (z) > 0 on I there exists a C''-function v on
I such that |u —v| < e on I.

We shall also give an answer to a variant of question (1) whenever the sets E; are disjoint
closed subsets in D. That result will be the main new ingredient to prove our result on the
ideals of denominators.

In the sequel, let Z(f) denote the zero set of a function.

THEOREM 2.2. Let E be closed subset of T and suppose that f|g =0 for some f € A(D),
f #£ 0. Then there exists a factor g of f that vanishes exactly on E. Moreover, g can be taken
so that the quotient f/g vanishes everywhere where f does.
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Proof. 'We shall construct an outer function g € A(D) with Z(g) = E such that |f| < |g|?
on T. Then, by the extremal properties for outer functions (see [6]), |f| < |g|?> on D. Hence
|f/g] < lg| on D\ E. Clearly this quotient has a continuous extension (with value 0) at every
point in E. Thus f = gh for some h € A(D). To construct g, we write T \ E as a countable union
of open arcs I,,. Note that f vanishes at the two (or in case E is a singleton, a single) boundary
points of I,,. Let pp be a peak function associated with E. Consider on T the continuous
function ¢ = |f| + |1 — pg|- Then |¢| > 0 on I,,, Z(q) = E and ¢ = 0 on the boundary points
of I,. If the outer function associated with ¢ would be in A(ID), we were done. But we are not
able to prove that. So we need to proceed as in [8, p. 22]. Let I, =]ay, b,[. Using Lemma 2.1,
there exists functions u,, € C(I,,) so that

lun — q| < 5lq| on I,
and up(an) = un(by) = 0. In particular,
3lal < lun| < 3la| on I,. (2.1)

Let w: T — R be defined by u=wu, on I,, n=1,2,..., and u =0 elsewhere on T. Then
u € C(T), u > 0, and by the left inequality in (2.1), logu € L!(T). Since u € C*(T \ Z(g)) and
u|z(g) = 0, the outer function

L/1 [* et :
g(2) = V2 exp 3 (—J e_t te log |u(e™)] dt)
0 z

2 et —

belongs by [12, p.52] to A(D). It is clear that on T we have |g|> = 2u > |¢| > |f| and that ¢
vanishes only on E. Moreover, | f|/|g] < |g| shows that f/g € A(D) and that Z(f/g) = Z(f).O

The following (H W,A(D))-multiplier type result will yield our final factorization result
(Theorem 2.4), that will be central to our study of ideals of denominators.

THEOREM 2.3. Let E be a closed subset of Lebesgue measure zero in T and let f € H™
be a function that has a continuous extension to T\ E; i.e f € Hg. Suppose that 0 does not

belong to the cluster set of f at each point in E. Then there exists a function h € H, invertible
in H*, so that fh € A(D).

Proof. Consider a peak function pg € A(D) associated with E. By assumption, the ideal I
generated by f and 1 —pg in Hy is proper. (Here we have used the corona theorem for Hp®
2],

Since H§ has the stable rank one ([13, Theorem 5.2]), there exist h invertible in Hg® and
g € H¥ such that hf + g(1 — pg) = 1. Since the only points of discontinuity of g are located
on E, we see that ¢g(1 — pg) € A(D). Thus hf € A(D). O

THEOREM 2.4.  Let f € A(D). Suppose that Z(f) = E1 U Ez, where the E; are two disjoint
closed sets in . Then there exist factors f; of f in A(D) such that f = f1f2 and Z(f;) = E;.

Proof. By assumption, 2¢ := dist (Eq, F2) > 0. Choose around each point e € By NT a
symmetric open arc A4 C T with center a and length . Due to compactness, there are finitely
many of these arcs whose union covers E; NT. Let V' be the union of these arcs. By combining
two adjacent arcs, we may assume that V writes as V = Uﬁle]aj, B;], the closures of the arcs
I; :=]ay, ;] being pairwise disjoint. We also have that V N Ey = 0 as well as By N9V = ().
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We first consider the outer factor F' of f. Note that

2T it
e+ z L oodt
F(z) = log |F ()| —.
(@) =exn | S x|l
Consider the factorization F' = F F5, where
et 4z L oodt
F; = - Zlog|F(e)|—
()= | S o P/
and
et + 2 L odt
F: = . log |F(e)|—.
@ =ew| G sl F g

Then the F; have continuous extensions to every point in T\ dV. Also Z(F;) = E; NT.
Applying Theorem 2.3, there exists an invertible function h € Hgj, so that G; := Fih € A(D).
Since f = (Fih)(+F2), we obtain that outside the zeros of Fy, that is outside Ei, the
function %FQ is continuous. Note that h is continuous on F; as well as Fy itself. Hence,
Go := +F» € A(D). Thus F = G, G5 satisfies Z(G;) = E; NT.

Now suppose that f has an inner factor © = BS,,. Let
o0(0) = {0 €D :liminf|0(z)| = 0}
be the support of ©. Note that 0(©) C Z(f) = E1 U E5. Now we split the support of © into

the corresponding parts = := 0(©) N E; and Zp := 0(0) N Ey and write © as ©105. Then
fi = ©;G; gives the desired factorization. O

3. Ideals of denominators

Notation: Let A be a commutative unital algebra. For f; € A, let

N
I(f1, for-- s fN) = Zgjfj 1gj €A

j=1

denote the ideal generated by the functions f; (j =1,...,N). We also denote the principal
ideal J(f) by fA.
If v =n/d is a quotient of two elements n,d in A\ {0}, then

D(y)={feA: fye A}

is the ideal of denominators generated by . If v € A, then it is easy to see that D(y) = A.
Finally, if I is an ideal in A(D), then Z(I) = (\;¢; Z(f) denotes the zero set (or hull) of 1.

The following two Lemmas are well known (see [9]) and work for quite general function
algebras. For the reader’s convenience we present simple proofs.

LEMMA 3.1. Let I be an ideal in A(D) and let M be a maximal ideal containing I. Suppose
that I = IM. Then I is not finitely generated.

Proof.  Suppose that I = (fimi,..., fymy) for some f; € I and m; € M. Then
1/2 1/2

N N N
il < Ce Y 1Fmyl < Cr [ D151 > Imyl?
j=1

j=1 j=1
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Thus, for C = Zivzl C%,

N N N
S < DR ) [ D2 Imal?
k=1 j=1 j=1

Hence E;\Ll |m;j|? >1/C on D\ Z(I). Since Z(I) is nowhere dense, we get this estimate to
hold true on D. But this is a contradiction, since all the m; vanish at some point. O

LEMMA 3.2. Let I be an ideal in A(D). Suppose that Z(I) C D. Then I is generated by a
finite Blaschke product.

Proof. Due to compactness of Z(I), we know that Z(I) is finite (or empty). Let Z(I) =
{a1, -+ ,an} and let m,, be the highest multiplicity of the zero a,, at which all functions in I
vanish. We claim that I is generated by the Blaschke product B associated with these (an,, my).
In fact, the inclusion I C J(B) is trivial, since B divides every function in I. By construction,
méel Z(f/B)=0. Due to compactness, there are finitely many functions f; € I so that
Nj=1 Z(fj/B) = 0. By the corona theorem for A(D), we have that 1 € 3(f1/B,..., f./B).
Thus B € I. O

The following works for every commutative unital ring.
LEMMA 3.3. Let n,d be two functions in A such that J(n,d) = A. Then ©(n/d) = dA.

Proof. Let x,y € A be such that 1 =an+yd. Then f=a(fn)+ (fy)d. Now let f €
®(n/d). Hence fn = ad implies that f = z(ad) + (fy)d € dA. The reverse inclusion is trivial,
since d € ®(n/d). O

Lemma 3.3 applies in particular to A = A(D) if we assume that Z(n) N Z(d) = 0.

COROLLARY 3.4. Suppose that the greatest common divisor of two elements n and d in
A(D) is a unit. Then ©(n/d) is a principal ideal.

Proof.  Since A(D) is a Pre-Bézout ring (see [12]) we have that J(n,d) = A(D). The rest
follows from Lemma 3.3 above. O

PROPOSITION 3.5. Let B be a finite Blaschke product and let f € A(D), f # 0. Then
D(B/f) is a principal ideal generated by a specific factor of f.

Proof. Let b be the Blaschke product formed with the common zeros of B and f (multiplic-
ities included). Consider the function F' = f/b and B* = B/b. We claim that ©(B/f) = J(F).
In fact,we obviously have that ©(B/f) =©(B*/F). But F does not vanish at the zeros
of B*; so, by the corona theorem for A(D), J(B*, F) = A(D). By Lemma 3.3, we get that
D(B/f)=2D(B*/F)=13(F). O

OBSERVATION 3.6. Let I be an ideal in A(D). Suppose that f € I and that f = gh, where
g, h € AD) and Z(g)N Z(I) = 0. Then h € I.
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This follows from the fact that the maximal ideal space is D: indeed, the assumption implies
that the ideal generated by g and I is the whole algebra; hence 1 = ag + r where a € A(D) and
r € I. Thus h = a(gh) + hr € I.

PROPOSITION 3.7. Let I =9(n/d) and J =2(d/n) be ideals of denominators in A(D).
Suppose that Z(J) C D. Then J and I are principal ideals.

Proof. If Z(J) C D, then, by Lemma 3.2, J is a principal ideal generated by a finite Blaschke
product B. Hence, as we will show, I is a principal ideal, too. In fact, let v = n/d. Suppose
that J =®(d/n) = BA(D). Since n € J, we have that n = BN for some N € A(D). Since
Be J, Bd=kn=kBN;sod=FkN. Thus vy = (BN)/(kN) = B/k. Note that k and B have
no common zeros inside D, otherwise J = D (k/B) would contain a factor of B. Thus J(B, k) =
A(D). Hence, by Lemma 3.3, I = kA(D). O

Applying Theorem 2.4, we obtain the following:

PROPOSITION 3.8. Let I =®(n/d) be an ideal of denominators in A(D). Suppose that
Z(I)NZ(n) = 0. Then I is a principal ideal.

Proof. Let I =®(n/d). Without loss of generality we may assume that n and d have no
common zeros (otherwise we split the joint Blaschke product and use the fact that A(D) has
the F-property; that is that uf € A(D) implies that f € A(D) for any inner function u).

Note that by our assumption, Z(I) C Z(d) C Z(n) U Z(I), and that this union is disjoint. By
Theorem 2.4 we may factor d as d = dyda, where Z(dy) = Z(I) and Z(d2) N Z(I) = 0. We claim
that I = I :=®(n/dy). In fact, let f € I1. Then fn = gd; for some g € A(D). Then (daf)n =
g(didz) = gd, and hence dof € D(n/d) = I. But Z(d2) N Z(I) = . Thus by the Observation
3.6 above, we have that f € I. So ©(n/dy) C D(n/d).

To prove the reverse inclusion, let f € ®(n/d). Then fn = hd for some h € A(D). Hence
fn = (hda)dy. So f € D(n/dy). We conclude that D(n/dy) = D(n/d). Since Z(d1) N Z(n) =0,
we obtain from Lemma 3.3 that [;(= I) is a principal ideal. O

Recall that for a € D, M(a) = {f € A(D) : f(a) = 0} is the maximal ideal associated with
a.
Using Theorem 2.4 and its companion Proposition 3.8, we are now ready to prove our main
result on the structure of finitely generated ideals of denominators in A(ID). We note that the
result would hold for the Wiener algebra W of all absolutely convergent power series in ID as
well, if Theorem 2.4 and Proposition 3.8 could be proven for WT.

THEOREM 3.9. Let~y = n/d be a quotient in A(D). Then the ideal of denominators, D (y) =
{f € A(D) : fv € A(D)}, is either a principal ideal or not finitely generated.

Proof. Associate with I := D(v) the set J = {7f: f € D()}. Then it is straightforward to
check that J is an ideal in A(D), too. In fact, J = D(1/7).

Suppose that J is not proper; then Z(J) := mfej(v) Z(~f) = 0. By compactness, there exist
finitely many f; € D(v) so that ();_, Z(vf;) = 0. Hence 1 = >7_, g;(vf;) for some g; € A(D).
Then 1/~ € A(D); hence v = 1/a for some a € A(D). Then D(v) = aA(D), the principal ideal
generated by a.
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Now suppose that Z(J) # 0.

Case 1. Z(J)NZ(I) # 0. Let a € Z(I)N Z(J). Consider any f € I. Then fn = gd for some
geJ.

If « €D, then f=(z—«)F and g = (z — «)G. Hence F'n=Gd and so F € I. Thus I =
I-M(a).

If « € T, then we use the fact that the maximal ideal M (<) contains an approximate unit
and hence by the Cohen-Varopoulos factorization theorem [15], for any f,g € M (), there is
a joint factor h € M(«) of f and g, say f = hF and g = hG for F,G € A(D). Hence Fn = Gd
and again F' € I. Thus, also in this case, [ = I - M(«).

By Lemma 3.1 above, I cannot be finitely generated.

Case 2. Z(I)N Z(J) = 0. Then there exist f,g € I such that 1 = f + %g. Hence d = df + ng
and so d(1 — f) =ng. Thus v =5 = %. Without loss of generality, we may assume that I
is proper. Let o € Z(I). Since g € I, we have that Z(I) C Z(g). Hence 0 = g(«) and (since

fel), fla)=0,too. So Z(I)N Z(1 — f) = 0. By Proposition 3.8, I is a principal ideal.  [J
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