Ideals of denominators in the disk-algebra

Raymond Mortini and Amol Sasane

Abstract

We show that there do not exist finitely generated, non-principal ideals of denominators in the disk-algebra $A(\mathbb{D})$. Our proof involves a new factorization theorem for $A(\mathbb{D})$ that is based on Treil's determination of the Bass stable rank for H^{∞} .

1. Notation, background

Let H^{∞} be the uniform algebra of bounded analytic functions on the open unit disk \mathbb{D} and let $A(\mathbb{D})$ denote the disk-algebra; that is the subalgebra of all functions in H^{∞} that admit a continuous extension to the Euclidean closure $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}$ of \mathbb{D} .

Let $\gamma = n/d$ be a quotient of two functions n and d in $A = H^{\infty}$ or $A = A(\mathbb{D})$. It is well known that every ideal of denominators

$$\mathfrak{D}(\gamma) = \{ f \in A : f\gamma \in A \}$$

in $A = H^{\infty}$ is a principal ideal, since H^{∞} is a pseudo-Bézout ring; the latter means that each pair of functions in H^{∞} has a greatest common divisor (see [11]). The situation in $A(\mathbb{D})$ is completely different, due to the fact that $A(\mathbb{D})$ does not enjoy the property of being a pseudo-Bézout ring. For example 1 - z and $(1 - z) \exp(-\frac{1+z}{1-z})$ do not have a greatest common divisor. Answering several questions of Frank Forelli [3, 4], the first author could prove in his Habilitationsschrift [8] that any closed ideal in $A(\mathbb{D})$ is an ideal of denominators; that an ideal of denominators is closed if and only if $\gamma \in L^{\infty}(\mathbb{T})$; that the complement inside $\overline{\mathbb{D}}$ of the zero set

$$Z(\mathfrak{D}(\gamma)) = \bigcap_{f \in \mathfrak{D}(\gamma)} \{ z \in \overline{\mathbb{D}} : f(z) = 0 \}$$

of $\mathfrak{D}(\gamma)$ is the set of points a in $\overline{\mathbb{D}}$ for which there exists a neighborhood U in $\overline{\mathbb{D}}$ such that $|\gamma|$ admits a continuous extension to U; and that every ideal of denominators in $A(\mathbb{D})$ contains a function f whose zero set equals the zero set of the ideal (one then says that $\mathfrak{D}(\gamma)$ has the Forelli-property.) The proof of this last result was based on the approximation theorem of Carleman (see [5, p. 135]).

In the present note we shall be concerned with the question whether finitely generated, but non-principal ideals in $A(\mathbb{D})$ can be represented as ideals of denominators. It turns out that this is not the case. Our proof uses as main ingredient a deep result of Treil [14] that tells us that H^{∞} has the Bass stable rank one. This is a generalization going far beyond the corona theorem and tells us that whenever (f, g) is a corona pair in H^{∞} , that is whenever $|f| + |g| \ge \delta > 0$ in \mathbb{D} , then there exists $h \in H^{\infty}$ such that f + hg is invertible in H^{∞} . We actually need an extension of this found by the second author of this paper to algebras of the form

$$H_E^{\infty} = \{ f \in H^{\infty} : f \text{ extends continously to } \mathbb{T} \setminus E \},\$$

²⁰⁰⁰ Mathematics Subject Classification 46J15 (primary), 30D50 (secondary).

where E is a closed subset of the unit circle \mathbb{T} . That result on the Bass stable rank of H_E^{∞} will be used to prove a factorization property of functions in $A(\mathbb{D})$, which will be fundamental to achieve our main goal of characterizing the finitely generated ideals of denominators in $A(\mathbb{D})$.

From the applications point of view, there is also a control theoretic motivation for considering the question of finding out whether there are ideals of denominators which are finitely generated, but not principal. Indeed, [10, Theorem 1, p.30] implies that if a plant is internally stabilizable, then the corresponding ideal of denominators is generated by at most two elements, and moreover, if an ideal of denominators corresponding to a plant is principal, then the plant has a weak coprime factorization. In light of these two results, our result on the nonexistence of non-principal finitely generated ideal of denominators in the disk-algebra implies that every internally stabilizable plant over the disk-algebra has a weak coprime factorization. Finally, since the disk-algebra is pre-Bézout [12], it also follows that every plant having a weak coprime factorization, possesses a coprime factorization [10, Proposition, p. 54]. Consequently, every internally stabilizable plant over the disk-algebra has a coprime factorization.

2. Factorization in $A(\mathbb{D})$

Cohen's factorization theorem for commutative, non-unital Banach algebras X tells us that if X has a bounded approximate identity, then every $f \in X$ factors as f = gh, where both factors are in X (see e.g. [1, p.76]). For $A(\mathbb{D})$ this may be applied to every closed ideal of the form $X = \Im(E, A(\mathbb{D})) := \{f \in A(\mathbb{D}) : f|_E \equiv 0\}$, whenever E is a closed subset of T of Lebesgue measure zero (note that (e_n) with $e_n = 1 - p_E^n$ is such a bounded approximate identity, where p_E is a peak function in $A(\mathbb{D})$ associated with E; see [7, p. 80] for a proof of the existence of p_E). In the present paragraph we address the following question: Let $f \in A(\mathbb{D})$. Suppose that f vanishes on $E \subseteq \mathbb{T}$ and that E can be written as $E = E_1 \cup E_2$, where the E_j are closed, not necessarily disjoint.

(1) Do there exist factors f_j of f such that $f = f_1 f_2$ and such that f_j vanishes only on E_j ? A weaker version reads as follows:

(2) Do there exist factors f_j of f such that $f = f_1 f_2$ and such that f_1 vanishes only on E_1 and f_2 has the same zero set as f?

We will first answer question (2) above. The proof works along the model of [8, Proposition 2.3]. It uses the following lemma that is based on the approximation theorem of Carleman (see [5]):

LEMMA 2.1. [8, Lemma 1.1] Let I be an open interval. Then for every continuous function u and every positive, continuous error function $\varepsilon(x) > 0$ on I there exists a C¹-function v on I such that $|u - v| < \varepsilon$ on I.

We shall also give an answer to a variant of question (1) whenever the sets E_j are disjoint closed subsets in $\overline{\mathbb{D}}$. That result will be the main new ingredient to prove our result on the ideals of denominators.

In the sequel, let Z(f) denote the zero set of a function.

THEOREM 2.2. Let E be closed subset of \mathbb{T} and suppose that $f|_E \equiv 0$ for some $f \in A(\mathbb{D})$, $f \not\equiv 0$. Then there exists a factor g of f that vanishes exactly on E. Moreover, g can be taken so that the quotient f/g vanishes everywhere where f does.

Proof. We shall construct an outer function $g \in A(\mathbb{D})$ with Z(g) = E such that $|f| \leq |g|^2$ on \mathbb{T} . Then, by the extremal properties for outer functions (see [6]), $|f| \leq |g|^2$ on \mathbb{D} . Hence $|f/g| \leq |g|$ on $\mathbb{D} \setminus E$. Clearly this quotient has a continuous extension (with value 0) at every point in E. Thus f = gh for some $h \in A(\mathbb{D})$. To construct g, we write $\mathbb{T} \setminus E$ as a countable union of open arcs I_n . Note that f vanishes at the two (or in case E is a singleton, a single) boundary points of I_n . Let p_E be a peak function associated with E. Consider on \mathbb{T} the continuous function $q = |f| + |1 - p_E|$. Then |q| > 0 on I_n , Z(q) = E and q = 0 on the boundary points of I_n . If the outer function associated with q would be in $A(\mathbb{D})$, we were done. But we are not able to prove that. So we need to proceed as in [8, p. 22]. Let $I_n =]a_n, b_n[$. Using Lemma 2.1, there exists functions $u_n \in C^1(I_n)$ so that

$$|u_n - q| \leq \frac{1}{2}|q|$$
 on I_n ,

and $u_n(a_n) = u_n(b_n) = 0$. In particular,

$$\frac{1}{2}|q| \le |u_n| \le \frac{3}{2}|q| \text{ on } I_n.$$
(2.1)

Let $u: \mathbb{T} \to \mathbb{R}$ be defined by $u = u_n$ on I_n , n = 1, 2, ..., and u = 0 elsewhere on \mathbb{T} . Then $u \in C(\mathbb{T}), u \ge 0$, and by the left inequality in (2.1), $\log u \in L^1(\mathbb{T})$. Since $u \in C^1(\mathbb{T} \setminus Z(q))$ and $u|_{Z(q)} \equiv 0$, the outer function

$$g(z) = \sqrt{2} \exp \frac{1}{2} \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log |u(e^{it})| \, dt \right)$$

belongs by [12, p.52] to $A(\mathbb{D})$. It is clear that on \mathbb{T} we have $|g|^2 = 2u \ge |q| \ge |f|$ and that g vanishes only on E. Moreover, $|f|/|g| \le |g|$ shows that $f/g \in A(\mathbb{D})$ and that Z(f/g) = Z(f).

The following $(H^{\infty}, A(\mathbb{D}))$ -multiplier type result will yield our final factorization result (Theorem 2.4), that will be central to our study of ideals of denominators.

THEOREM 2.3. Let E be a closed subset of Lebesgue measure zero in \mathbb{T} and let $f \in H^{\infty}$ be a function that has a continuous extension to $\mathbb{T} \setminus E$; i.e $f \in H^{\infty}_E$. Suppose that 0 does not belong to the cluster set of f at each point in E. Then there exists a function $h \in H^{\infty}_E$, invertible in H^{∞} , so that $fh \in A(\mathbb{D})$.

Proof. Consider a peak function $p_E \in A(\mathbb{D})$ associated with E. By assumption, the ideal I generated by f and $1 - p_E$ in H_E^{∞} is proper. (Here we have used the corona theorem for H_E^{∞} [2].)

Since H_E^{∞} has the stable rank one ([13, Theorem 5.2]), there exist h invertible in H_E^{∞} and $g \in H_E^{\infty}$ such that $hf + g(1 - p_E) = 1$. Since the only points of discontinuity of g are located on E, we see that $g(1 - p_E) \in A(\mathbb{D})$. Thus $hf \in A(\mathbb{D})$.

THEOREM 2.4. Let $f \in A(\mathbb{D})$. Suppose that $Z(f) = E_1 \cup E_2$, where the E_j are two disjoint closed sets in $\overline{\mathbb{D}}$. Then there exist factors f_j of f in $A(\mathbb{D})$ such that $f = f_1 f_2$ and $Z(f_j) = E_j$.

Proof. By assumption, $2\varepsilon := \text{dist}(E_1, E_2) > 0$. Choose around each point $\alpha \in E_1 \cap \mathbb{T}$ a symmetric open arc $\mathcal{A} \subseteq \mathbb{T}$ with center α and length ε . Due to compactness, there are finitely many of these arcs whose union covers $E_1 \cap \mathbb{T}$. Let V be the union of these arcs. By combining two adjacent arcs, we may assume that V writes as $V = \bigcup_{n=1}^N [\alpha_j, \beta_j]$, the closures of the arcs $I_j :=]\alpha_j, \beta_j[$ being pairwise disjoint. We also have that $\overline{V} \cap E_2 = \emptyset$ as well as $E_1 \cap \partial V = \emptyset$.

Page 4 of 7

We first consider the outer factor F of f. Note that

$$F(z) = \exp \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log |F(e^{it})| \frac{dt}{2\pi}.$$

Consider the factorization $F = F_1 F_2$, where

$$F_1(z) = \exp \int_{t:e^{it} \in V} \frac{e^{it} + z}{e^{it} - z} \log |F(e^{it})| \frac{dt}{2\pi},$$

and

$$F_2(z) = \exp \int_{t:e^{it} \in \mathbb{T} \setminus V} \frac{e^{it} + z}{e^{it} - z} \log |F(e^{it})| \frac{dt}{2\pi}.$$

Then the F_j have continuous extensions to every point in $\mathbb{T} \setminus \partial V$. Also $Z(F_j) = E_j \cap \mathbb{T}$. Applying Theorem 2.3, there exists an invertible function $h \in H^{\infty}_{\partial V}$ so that $G_1 := F_1 h \in A(\mathbb{D})$. Since $f = (F_1 h)(\frac{1}{h}F_2)$, we obtain that outside the zeros of F_1 , that is outside E_1 , the function $\frac{1}{h}F_2$ is continuous. Note that h is continuous on E_1 as well as F_2 itself. Hence, $G_2 := \frac{1}{h}F_2 \in A(\mathbb{D})$. Thus $F = G_1G_2$ satisfies $Z(G_j) = E_j \cap \mathbb{T}$.

Now suppose that f has an inner factor $\Theta = BS_{\mu}$. Let

$$\sigma(\Theta) = \{ \sigma \in \overline{\mathbb{D}} : \liminf_{z \to \sigma} |\Theta(z)| = 0 \}$$

be the support of Θ . Note that $\sigma(\Theta) \subseteq Z(f) = E_1 \cup E_2$. Now we split the support of Θ into the corresponding parts $\Xi_1 := \sigma(\Theta) \cap E_1$ and $\Xi_2 := \sigma(\Theta) \cap E_2$ and write Θ as $\Theta_1 \Theta_2$. Then $f_j = \Theta_j G_j$ gives the desired factorization.

3. Ideals of denominators

Notation: Let A be a commutative unital algebra. For $f_j \in A$, let

$$\Im(f_1, f_2, \dots, f_N) = \left\{ \sum_{j=1}^N g_j f_j : g_j \in A \right\}$$

denote the ideal generated by the functions f_j (j = 1, ..., N). We also denote the principal ideal $\Im(f)$ by fA.

If $\gamma = n/d$ is a quotient of two elements n, d in $A \setminus \{0\}$, then

$$\mathfrak{D}(\gamma) = \{ f \in A : f\gamma \in A \}$$

is the ideal of denominators generated by γ . If $\gamma \in A$, then it is easy to see that $\mathfrak{D}(\gamma) = A$. Finally, if I is an ideal in $A(\mathbb{D})$, then $Z(I) = \bigcap_{f \in I} Z(f)$ denotes the zero set (or hull) of I.

The following two Lemmas are well known (see [9]) and work for quite general function algebras. For the reader's convenience we present simple proofs.

LEMMA 3.1. Let I be an ideal in $A(\mathbb{D})$ and let M be a maximal ideal containing I. Suppose that I = IM. Then I is not finitely generated.

Proof. Suppose that $I = (f_1 m_1, \ldots, f_N m_N)$ for some $f_j \in I$ and $m_j \in M$. Then

$$|f_k| \le C_k \sum_{j=1}^N |f_j m_j| \le C_k \left(\sum_{j=1}^N |f_j|^2\right)^{1/2} \left(\sum_{j=1}^N |m_j|^2\right)^{1/2}.$$

Thus, for $C = \sum_{k=1}^{N} C_k^2$,

$$\sum_{k=1}^{N} |f_k|^2 \le C\left(\sum_{j=1}^{N} |f_j|^2\right) \left(\sum_{j=1}^{N} |m_j|^2\right).$$

Hence $\sum_{j=1}^{N} |m_j|^2 \ge 1/C$ on $\overline{\mathbb{D}} \setminus Z(I)$. Since Z(I) is nowhere dense, we get this estimate to hold true on $\overline{\mathbb{D}}$. But this is a contradiction, since all the m_i vanish at some point. \Box

LEMMA 3.2. Let I be an ideal in $A(\mathbb{D})$. Suppose that $Z(I) \subseteq \mathbb{D}$. Then I is generated by a finite Blaschke product.

Proof. Due to compactness of Z(I), we know that Z(I) is finite (or empty). Let $Z(I) = \{a_1, \dots, a_N\}$ and let m_n be the highest multiplicity of the zero a_n at which all functions in I vanish. We claim that I is generated by the Blaschke product B associated with these (a_n, m_n) . In fact, the inclusion $I \subseteq \mathfrak{I}(B)$ is trivial, since B divides every function in I. By construction, $\bigcap_{f \in I} Z(f/B) = \emptyset$. Due to compactness, there are finitely many functions $f_j \in I$ so that $\bigcap_{j=1}^{n} Z(f_j/B) = \emptyset$. By the corona theorem for $A(\mathbb{D})$, we have that $1 \in \mathfrak{I}(f_1/B, \dots, f_n/B)$. Thus $B \in I$.

The following works for every commutative unital ring.

LEMMA 3.3. Let n, d be two functions in A such that $\Im(n, d) = A$. Then $\mathfrak{D}(n/d) = dA$.

Proof. Let $x, y \in A$ be such that 1 = xn + yd. Then f = x(fn) + (fy)d. Now let $f \in \mathfrak{D}(n/d)$. Hence fn = ad implies that $f = x(ad) + (fy)d \in dA$. The reverse inclusion is trivial, since $d \in \mathfrak{D}(n/d)$.

Lemma 3.3 applies in particular to $A = A(\mathbb{D})$ if we assume that $Z(n) \cap Z(d) = \emptyset$.

COROLLARY 3.4. Suppose that the greatest common divisor of two elements n and d in $A(\mathbb{D})$ is a unit. Then $\mathfrak{D}(n/d)$ is a principal ideal.

Proof. Since $A(\mathbb{D})$ is a Pre-Bézout ring (see [12]) we have that $\mathfrak{I}(n,d) = A(\mathbb{D})$. The rest follows from Lemma 3.3 above.

PROPOSITION 3.5. Let B be a finite Blaschke product and let $f \in A(\mathbb{D})$, $f \not\equiv 0$. Then $\mathfrak{D}(B/f)$ is a principal ideal generated by a specific factor of f.

Proof. Let b be the Blaschke product formed with the common zeros of B and f (multiplicities included). Consider the function F = f/b and $B^* = B/b$. We claim that $\mathfrak{D}(B/f) = \mathfrak{I}(F)$. In fact, we obviously have that $\mathfrak{D}(B/f) = \mathfrak{D}(B^*/F)$. But F does not vanish at the zeros of B^* ; so, by the corona theorem for $A(\mathbb{D})$, $\mathfrak{I}(B^*, F) = A(\mathbb{D})$. By Lemma 3.3, we get that $\mathfrak{D}(B/f) = \mathfrak{D}(B^*/F) = \mathfrak{I}(F)$.

OBSERVATION 3.6. Let I be an ideal in $A(\mathbb{D})$. Suppose that $f \in I$ and that f = gh, where $g, h \in A(\mathbb{D})$ and $Z(g) \cap Z(I) = \emptyset$. Then $h \in I$.

Page 6 of 7

This follows from the fact that the maximal ideal space is $\overline{\mathbb{D}}$: indeed, the assumption implies that the ideal generated by g and I is the whole algebra; hence 1 = ag + r where $a \in A(\mathbb{D})$ and $r \in I$. Thus $h = a(gh) + hr \in I$.

PROPOSITION 3.7. Let $I = \mathfrak{D}(n/d)$ and $J = \mathfrak{D}(d/n)$ be ideals of denominators in $A(\mathbb{D})$. Suppose that $Z(J) \subseteq \mathbb{D}$. Then J and I are principal ideals.

Proof. If $Z(J) \subseteq \mathbb{D}$, then, by Lemma 3.2, J is a principal ideal generated by a finite Blaschke product B. Hence, as we will show, I is a principal ideal, too. In fact, let $\gamma = n/d$. Suppose that $J = \mathfrak{D}(d/n) = BA(\mathbb{D})$. Since $n \in J$, we have that n = BN for some $N \in A(\mathbb{D})$. Since $B \in J$, Bd = kn = kBN; so d = kN. Thus $\gamma = (BN)/(kN) = B/k$. Note that k and B have no common zeros inside \mathbb{D} , otherwise $J = \mathfrak{D}(k/B)$ would contain a factor of B. Thus $\mathfrak{I}(B, k) = A(\mathbb{D})$.

Applying Theorem 2.4, we obtain the following:

PROPOSITION 3.8. Let $I = \mathfrak{D}(n/d)$ be an ideal of denominators in $A(\mathbb{D})$. Suppose that $Z(I) \cap Z(n) = \emptyset$. Then I is a principal ideal.

Proof. Let $I = \mathfrak{D}(n/d)$. Without loss of generality we may assume that n and d have no common zeros (otherwise we split the joint Blaschke product and use the fact that $A(\mathbb{D})$ has the F-property; that is that $uf \in A(\mathbb{D})$ implies that $f \in A(\mathbb{D})$ for any inner function u).

Note that by our assumption, $Z(I) \subseteq Z(d) \subseteq Z(n) \cup Z(I)$, and that this union is disjoint. By Theorem 2.4 we may factor d as $d = d_1d_2$, where $Z(d_1) = Z(I)$ and $Z(d_2) \cap Z(I) = \emptyset$. We claim that $I = I_1 := \mathfrak{D}(n/d_1)$. In fact, let $f \in I_1$. Then $fn = gd_1$ for some $g \in A(\mathbb{D})$. Then $(d_2f)n = g(d_1d_2) = gd$, and hence $d_2f \in \mathfrak{D}(n/d) = I$. But $Z(d_2) \cap Z(I) = \emptyset$. Thus by the Observation 3.6 above, we have that $f \in I$. So $\mathfrak{D}(n/d_1) \subseteq \mathfrak{D}(n/d)$.

To prove the reverse inclusion, let $f \in \mathfrak{D}(n/d)$. Then fn = hd for some $h \in A(\mathbb{D})$. Hence $fn = (hd_2)d_1$. So $f \in \mathfrak{D}(n/d_1)$. We conclude that $\mathfrak{D}(n/d_1) = \mathfrak{D}(n/d)$. Since $Z(d_1) \cap Z(n) = \emptyset$, we obtain from Lemma 3.3 that $I_1(=I)$ is a principal ideal.

Recall that for $\alpha \in \overline{\mathbb{D}}$, $M(\alpha) = \{f \in A(\mathbb{D}) : f(\alpha) = 0\}$ is the maximal ideal associated with α .

Using Theorem 2.4 and its companion Proposition 3.8, we are now ready to prove our main result on the structure of finitely generated ideals of denominators in $A(\mathbb{D})$. We note that the result would hold for the Wiener algebra W^+ of all absolutely convergent power series in \mathbb{D} as well, if Theorem 2.4 and Proposition 3.8 could be proven for W^+ .

THEOREM 3.9. Let $\gamma = n/d$ be a quotient in $A(\mathbb{D})$. Then the ideal of denominators, $\mathfrak{D}(\gamma) = \{f \in A(\mathbb{D}) : f\gamma \in A(\mathbb{D})\}$, is either a principal ideal or not finitely generated.

Proof. Associate with $I := \mathfrak{D}(\gamma)$ the set $J = \{\gamma f : f \in \mathfrak{D}(\gamma)\}$. Then it is straightforward to check that J is an ideal in $A(\mathbb{D})$, too. In fact, $J = \mathfrak{D}(1/\gamma)$.

Suppose that J is not proper; then $Z(J) := \bigcap_{f \in \mathfrak{I}(\gamma)} Z(\gamma f) = \emptyset$. By compactness, there exist finitely many $f_j \in \mathfrak{D}(\gamma)$ so that $\bigcap_{j=1}^n Z(\gamma f_j) = \emptyset$. Hence $1 = \sum_{j=1}^n g_j(\gamma f_j)$ for some $g_j \in A(\mathbb{D})$. Then $1/\gamma \in A(\mathbb{D})$; hence $\gamma = 1/a$ for some $a \in A(\mathbb{D})$. Then $\mathfrak{D}(\gamma) = aA(\mathbb{D})$, the principal ideal generated by a.

Now suppose that $Z(J) \neq \emptyset$.

Case 1. $Z(J) \cap Z(I) \neq \emptyset$. Let $\alpha \in Z(I) \cap Z(J)$. Consider any $f \in I$. Then fn = gd for some $q \in J$.

If $\alpha \in \mathbb{D}$, then $f = (z - \alpha)F$ and $g = (z - \alpha)G$. Hence Fn = Gd and so $F \in I$. Thus I = $I \cdot M(\alpha).$

If $\alpha \in \mathbb{T}$, then we use the fact that the maximal ideal $M(\alpha)$ contains an approximate unit and hence by the Cohen-Varopoulos factorization theorem [15], for any $f, g \in M(\alpha)$, there is a joint factor $h \in M(\alpha)$ of f and g, say f = hF and g = hG for $F, G \in A(\mathbb{D})$. Hence Fn = Gdand again $F \in I$. Thus, also in this case, $I = I \cdot M(\alpha)$.

By Lemma 3.1 above, I cannot be finitely generated.

Case 2. $Z(I) \cap Z(J) = \emptyset$. Then there exist $f, g \in I$ such that $1 = f + \frac{n}{d}g$. Hence d = df + ng and so d(1-f) = ng. Thus $\gamma = \frac{n}{d} = \frac{1-f}{g}$. Without loss of generality, we may assume that Iis proper. Let $\alpha \in Z(I)$. Since $g \in I$, we have that $Z(I) \subseteq Z(g)$. Hence $0 = g(\alpha)$ and (since $f \in I$, $f(\alpha) = 0$, too. So $Z(I) \cap Z(1 - f) = \emptyset$. By Proposition 3.8, I is a principal ideal.

References

- 1. A. BROWDER, Introduction to function algebras (Benjamin, New York, 1969).
- 2. J. DÉTRAZ, 'Étude du spectre d'algèbres de fonctions analytiques sur le disque unité', (French), C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A833-A835.
- 3. F. FORELLI, 'A note on ideals in the disk algebra', Proc. Amer. Math. Soc. 84 (1982), 389-392.
- 4. F. FORELLI, 'Divisibility problems in $A(\mathbb{D})$ and $H^{\infty}(\mathbb{D})$ ', Lect. Notes Math. 1043 (1984), 396–398.
- 5. D. GAIER, 'Vorlesungen über Approximation im Komplexen', (German) Lectures on approximation in the complex domain, Birkhäuser Verlag, Basel-Boston, Mass., 1980.
- 6. J.B. GARNETT, Bounded analytic functions (Academic Press, New York-London, 1981).
- 7. K. HOFFMAN, Banach spaces of analytic functions (Reprint of the 1962 original) (Dover, New York, 1988).
- 8. R. MORTINI, 'The Chang-Marshall algebras', Mitt. Math. Sem. Giessen 185 (1988), 1–76.
 9. R. MORTINI and M. VON RENTELN, 'Ideals in the Wiener algebra W⁺', J. Austral. Math. Soc. 46 (1989), 220 - 228.
- 10. A. QUADRAT, An Introduction to Control Theory (Course Notes given at Mathematics, Algorithms, Proofs, held at Castro Urdiales, Spain, 09-13 January, 2006).

Available at www-sop.inria.fr/cafe/Alban.Quadrat/Stage/MAP1.pdf .

- 11. M. VON RENTELN, 'Hauptideale und äussere Funktionen im Ring H^{∞} ', Archiv Math. 28 (1977), 519–524.
- 12. M. VON RENTELN, 'Divisibility structure and finitely generated ideals in the disc algebra', Monatsh. Math. 82 (1976) 51-56.
- 13. A. SASANE, 'Properties of a subalgebra of $H^{\infty}(\mathbb{D})$ and stabilization', IMA Journal on Mathematical Control and Information 25 (2008) 1-21.
- **14.** S. TREIL, 'The stable rank of the algebra H^{∞} equals 1', J. Functional Analysis 109 (1992) 130–154.
- 15. N. TH. VAROPOULOS, 'Sur les formes positives d'une algèbre de Banach', (French) Comptes Rendus Acad. Sci. Paris 258 (1964) 2465-2467, Groupe 1.

Raymond Mortini Département de Mathématiques et LMAM, Université Paul Verlaine, Ile du Saulcy, F-57045 Metz France

Amol Sasane Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE United Kingdom

mortini@math.univ-metz.fr

A.J.Sasane@lse.ac.uk