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Introduction

0.1 What a differential equation is

In any subject, it is natural and logical to begin with an explanation of what the subject matter
is. Often it’s rather difficult, too. Our subject matter is differential equations, and the first order
of business is to define a differential equation. The easiest way out, and maybe the clearest, is to
list a few examples, and hope that although we do not know how to define one, we certainly know
one when we see it. But that is shirking the job. Here is one definition: an ordinary differential
equation1 is an equation involving known and unknown functions of a single variable and their
derivatives. (Ordinarily only one of the functions is unknown.) Some examples:

1. d2x
dt2 − 7tdx

dt + 8x sin t = (cos t)4.

2.
(

dx
dt

)3
+ d2x

dt2 = 1.

3. dx
dt

d2x
dt2 + sinx = t.

4. dx
dt + 2x = 3.

Incidentally, the word “ordinary” is meant to indicate not that the equations are run-of-the-mill,
but simply to distinguish them from partial differential equations (which involve functions of
several variables and partial derivatives). We shall also deal with systems of ordinary differential
equations, in which several unknown functions and their derivatives are linked by a system of
equations. An example:

dx1

dt
= 2x1x2 + x2

dx2

dt
= x1 − t2x2.

A solution to a differential equation is, naturally enough, a function which satisfies the equation.
It’s possible that a differential equation has no solutions. For instance,

(
dx

dt

)2

+ x2 + t2 = −1

has none. But in general, differential equations have lots of solutions. For example, the equation

dx

dt
+ 2x = 3

1commonly abbreviated as ‘ODE’
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is satisfied by

x =
3

2
, x =

3

2
+ e−2t, x =

3

2
+ 17e−2t,

and more generally by,

x(t) =
3

2
+ ce−2t,

where c is any real number. However, in applications where these differential equations model
certain phenomena, the equations often come equipped with initial conditions. Thus one may
demand a solution of the above equation satisfying x = 4 when t = 0. This condition lets one
solve for the constant c.

Why study differential equations? The answer is that they arise naturally in applications.

Let us start by giving an example from physics since historically that’s where differential
equations started. Consider a weight on a spring bouncing up and down. A physicist wants to
know where the weight is at different times. To find that out, one needs to know where the weight
is at some time and what its velocity is thereafter. Call the position x; then the velocity is dx

dt .

Now the change in velocity d2x
dt2 is proportional to the force on the weight, which is proportional

to the amount the spring is stretched. Thus d2x
dt2 is proportional to x. And so we get a differential

equation.

Things are pretty much the same in other fields where differential equations are used, such
as biology, economics, chemistry, and so on. Consider economics for instance. Economic models
can be divided into two main classes: static ones and dynamic ones. In static models, everything
is presumed to stay the same; in dynamic ones, various important quantities change with time.
And the rate of change can sometimes be expressed as a function of the other quantities involved.
Which means that the dynamic models are described by differential equations.

How to get the equations is the subject matter of economics (or physics or biology or whatever).
What to do with them is the subject matter of these notes.

0.2 What these notes are about

Given a differential equation (or a system of differential equations), the obvious thing to do with it
is to solve it. Nonetheless, most of these notes will be taken up with other matters. The purpose
of this section is to try to convince the student that all those other matters are really worth
discussing.

To begin with, let’s consider a question which probably seems silly: what does it mean to solve
a differential equation? The answer seems obvious: it means that one find all functions satisfying
the equation. But it’s worth looking more closely at this answer. A function is, roughly speaking,
a rule which associates to each t a value x(t), and the solution will presumable specify this rule.
That is, solving a differential equation like

x + t2x = et, x(0) = 1

should mean that if I choose a value of t, say 11
π , I end up with a procedure for determining x

there.

There are two problems with this notion. The first is that it doesn’t really conform to what
one wants as a solution to a differential equation. Most of the times a function means (intuitively,
at least) a formula into which you plug t to get x. Well, for the average differential equation, this
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formula doesn’t exist–at least, we have no way of finding it. And even when it does exist, it is
often unsatisfactory. For example, an equation like

x′′ + tx′ + t2x = 0, x(0) = 1, x(1) = 0

has a solution which can be written as a power series:

x(t) = 1 − 1

12
t4 +

1

90
t6 +

1

3360
t8 + . . . .

And this, at least at first, doesn’t seem too helpful. Why not? That leads to the second problem:
the notion of a function given above doesn’t really tell us what we want to know. Consider
for instance, a typical use of a differential equation in physics, like determining the motion of
a vibrating spring. One makes various plausible assumptions, uses them to derive a differential
equation, and (with luck) solves it. Suppose that the procedure works brilliantly and that the
solutions to the equation describe the motion of the spring. Then we can use the solutions to
answer questions like

“If the mass of the weight at the end of the spring is 7 grams, if the spring constant is 3 (in
appropriate units), and if I start the spring off at some given position with some given velocity
where will the mass be 3 seconds later?”

But there are also more qualitative question we can ask. For instance,

“Is it true that the spring will oscillate forever? Will the oscillations get bigger and bigger,
will they die out, or will they stay roughly constant in size?”

If we only know the solution as a power series, it may not be easy to answer these questions.
(Try telling, for instance, whether or not the function above gets large as t → ∞.) But questions
like this are obviously interesting and important if one wants to know what the physical system
will do as time goes on.

For applications, another matter arises. Perhaps the most spectacular way of putting it is
that every differential equation used in applications is wrong! First of all, the problem being
considered is usually a simplification of real life, and that introduces errors. Next, there are errors
in measuring the parameters used in the problem. Result: the equation is all wrong. Of course,
these errors are slight (one hopes, anyway), and presumably the solutions to the equation bear
some resemblance to what happens in the world. So the qualitative behaviour of solutions is very
useful.

Another question is whether solutions exist and how many do. Since there is in general no
formula for solving a differential equation, we have no guarantee that there are solutions, and it
would be frustrating to spend a long time searching for a solution that doesn’t exist. It is also
very important, in many cases, to know that exactly one solution exists.

What all of this means is that these notes will be discussing these sorts of matters about
differential equations. First how to solve the simplest ones. Second, how to get qualitative
information about the solutions. And third, theorems about existence and uniqueness of solutions
and the like. In all three, there will be theoretical material, but we will also see examples.
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Chapter 1

Linear equations

1.1 Objects of study

Many problems in economics, biology, physics and engineering involve rate of change dependent
on the interaction of the basic elements–assets, population, charges, forces, etc.–on each other.
This interaction is frequently expressed as a system of ordinary differential equations, a system of
the form

x′
1(t) = f1(t, x1(t), x2(t), . . . , xn(t)), (1.1)

x′
2(t) = f2(t, x1(t), x2(t), . . . , xn(t)), (1.2)

...

x′
n(t) = fn(t, x1(t), x2(t), . . . , xn(t)). (1.3)

Here the (known) functions (τ, ξ1, . . . , ξn) 7→ fi(τ, ξ1, . . . , ξn) take values in R (the real numbers)
and are defined on a set in Rn+1 (R × R × · · · × R, n + 1 times).

We seek a set of n unknown functions x1, . . . , xn defined on a real interval I such that when
the values of these functions are inserted into the equations above, the equality holds for every
t ∈ I.

Definition. A function x : [t0, t1] → Rn is said to be a solution of (1.1)- (1.3) if x is differentiable
on [t0, t1] and it satisfies (1.1)- (1.3) for each t ∈ [t0, t1].

In addition, an initial condition may also need to be satisfied: x(0) = x0 ∈ R
n, and a corre-

sponding solution is said to satisfy the initial value problem

x′(t) = f(t, x(t)), x(t0) = x0.

Introducing the vector notation

x :=




x1

...
xn


 , x′ :=




x′
1
...

x′
n


 , and f =




f1

...
fn


 ,

the system of differential equations can be abbreviated simply as

x′(t) = f(t, x(t)).

1



2 Chapter 1. Linear equations

In this course we will mainly consider the case when the functions f1, . . . , fn do not depend on t
(that is, they take the same value for all t).

In most of this course, we will consider autonomous systems, which are defined as follows.

Definition. If f does not depend on t, that is, it is simply a function defined on some subset of
Rn, taking values in Rn, the differential

x′(t) = f(x(t)),

is called autonomous.

But we begin our study with an even simpler case, namely when these functions are linear,
that is,

f(ξ) = Aξ,

where

A =




a11 · · · a1n

...
. . .

...
an1 · · · ann


 ∈ R

n×n.

Then we obtain the ‘vector’ differential equations

x′(t) = Ax(t),

which is really the system of scalar differential equations given by

x′
1 = a11x1 + · · · + a1nxn, (1.4)

...

x′
n = an1x1 + · · · + annxn. (1.5)

In many applications, the equations occur naturally in this form, or it may be an approximation
to a nonlinear system.

Exercises.

1. Classify the following differential equations as autonomous/nonautonomous. In each au-
tonomous case, also identify if the system is linear or nonlinear.

(a) x′(t) = et.

(b) x′(t) = ex(t).

(c) x′(t) = ety(t), y′(t) = x(t) + y(t).

(d) x′(t) = y(t), y′(t) = x(t)y(t).

(e) x′(t) = y(t), y′(t) = x(t) + y(t).

2. Verify that the differential equation has the given function or functions as solutions.

(a) x′(t) = esin x(t) + cos(x(t)); x(t) ≡ π.

(b) x′(t) = ax(t), x(0) = x0; x(t) = etax0.

(c) x′
1(t) = 2x2(t), x′

2(t) = −2x1(t); x1(t) = sin(2t), x2(t) = cos(2t).

(d) x′(t) = 2t(x(t))2; x1(t) = 1
1−t2 for t ∈ (−1, 1), x2(t) ≡ 0.

3. Find value(s) of m such that x(t) = tm is a solution to 2tx′(t) = x(t) for t ≥ 1.

4. Show that every solution of x′(t) = (x(t))2 + 1 is an increasing function.
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1.2 Using Maple to investigate differential equations

1.2.1 Getting started

To start Maple, follow the sequence:

Start −→ Programs −→ Mathematics−→ Maple10.

Background material about Maple can be found at:

1. A pamphlet “Getting started with Maple” can be viewed online at

ittraining.lse.ac.uk/documentation/Files/Maple-95-Get-Started.pdf .

2. Maple’s own “New User’s Tour”, which can be found under Help in Maple.

3. MA100 Maple tutorials, which can be found at

www.maths.lse.ac.uk/Courses/MA100/maths tutorial.mws and

www.maths.lse.ac.uk/Courses/Tut2prog.mws .

1.2.2 Differential equations in Maple

Here we describe some main Maple commands related to differential equations.

1. Defining differential equations. For instance, to define the differential equation x′ = x + t,
we give the following command.

> ode1 := diff(x(t), t) = t + x(t);

Here, ode1 is the label or name given to the equation, diff(x(t), t) means that the function
t 7→ x(t) is differentiated with respect to t, and the last semicolon indicates that we want
Maple to display the answer upon execution of the command. Indeed, on hitting the enter-
key, we obtain the following output.

ode1 :=
d

dt
x(t) = t + x(t)

The differentiation of x can also be expressed in another equivalent manner as shown below.

> ode1 := D(x)(t) = t + x(t);

A second order differential equation, for instance x′′ = x′ + x + sin t can be specified by

> ode2 := diff(x(t), t, t) = diff(x(t), t) + x(t) + sin(t);

or equivalently by the following command.

> ode2 := D(D(x))(t) = D(x)(t) + x(t) + sin(t);

A system of ODEs can be specified in a similar manner. For example, if we have the system

x′
1 = x2

x′
2 = −x1,

then we can specify this as follows:

> ode3a := diff(x1(t), t) = x2(t); ode3b := diff(x2(t), t) = −x1(t);
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2. Solving differential equations. To solve say the equation ode1 from above, we give the
command

> dsolve(ode1);

which gives the following output:

x(t) = −t − 1 + et C1

The strange “ C1” is Maple’s indication that the constant is generated by Maple (and has
not been introduced by the user).

To solve the equation with a given initial value, say with x(0) = 1, we use the command:

> dsolve({ode1, x(0) = 1});

If our initial condition is itself a parameter α, then we can write

> dsolve({ode1, x(0) = alpha});

which gives:
x(t) = −t − 1 + et(1 + α)

We can also give a name to the equation specifying the initial condition as follows

> ic1 := x(0) = 2;

and then solve the initial value problem by writing:

> dsolve({ode1, ic1});

Systems of differential equations can be handled similarly. For example, the ODE system
ode3a, ode3b can be solved by

> dsolve({ode3a, ode3b});

and if we have the initial conditions x1(0) = 1, x2(0) = 1, then we give the following
command:

> dsolve({ode3a, ode3b, x1(0) = 1, x2(0) = 1});

3. Plotting solutions of differential equations. The tool one has to use is called DEplot, and so
one has to activate this at the outset using the command:

> with(DEtools) :

Once this is done, one can use for instance the command DEplot, which can be used to plot
solutions. This command is quite complicated with many options, but one can get help from
Maple by using:

>?DEplot;

For the equation ode1 above, the command

> DEplot(ode1, x(t), t = −2..2, [[x(0) = 0]]);

will give a nice picture of a solution to the associated initial value problem, but it contains
some other information as well. The various elements in the above command are: ode1 is
the label specifying which differential equation we are solving, x(t) indicated the dependent
variable, t=-2..2 indicates the independent variable and its range, and [[x(0)=0]] gives
the initial value.
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One can also give more than one initial value, for instance:

> DEplot(ode1, x(t), t = −2..2, [[x(0) = −1], [x(0) = 0], [x(0) = 1]]);

The colour of the plot can also be changed:

> DEplot(ode1, x(t), t = −2..2, [[x(0) = −1], [x(0) = 0], [x(0) = 1]], linecolour = blue);

The arrows one sees in the picture show the direction field, a concept we will discuss in
Chapter 2. One can hide these arrows:

> DEplot(ode1, x(t), t = −2..2, [[x(0) = −1], [x(0) = 0], [x(0) = 1]], arrows = NONE);

To make plots for higher order ODEs, one must give the right number of initial values. We
consider an example for ode2 below:

> DEplot(ode2, x(t), t = −2..2, [[x(0) = 0, D(x)(0) = 0], [x(0) = 0, D(x)(0) = 2]]);

One can also handle systems of ODEs using DEplot, and we give an example below.

> DEplot({ode3a, ode3b}, {x1(t), x2(t)}, t= 0..10, [[x1(0) = 1, x2(0) = 0]],
scene = [t, x1(t)]);

This picture has sharp corners, since Maple only computes approximate solutions in making
plots. One can specify the accuracy level using stepsize, which specifies the discretization
level used by Maple to construct the solution to the ODE system. The finer one chooses
stepsize, the better the accuracy, but this is at the expense of the time taken to make
calculations. Compare the above plot with the one obtained with:

> DEplot({ode3a, ode3b}, {x1(t), x2(t)}, t= 0..10, [[x1(0) = 1, x2(0) = 0]],
scene = [t, x1(t)], stepsize = 0.1);

If one wants x1 and x2 to be displayed in the same plot, then we can use the command
display as demonstrated in the following example.

> with(plots) :
> plot1 := DEplot({ode3a, ode3b}, {x1(t), x2(t)}, t= 0..10, [[x1(0) = 1, x2(0) = 0]],

scene = [t, x1(t)], stepsize = 0.1) :
> plot2 := DEplot({ode3a, ode3b}, {x1(t), x2(t)}, t= 0..10, [[x1(0) = 1, x2(0) = 0]],

scene = [t, x2(t)], stepsize = 0.1, linecolour = red) :
> display(plot1, plot2);

In Chapter 2, we will learn about ‘phase portraits’ which are plots in which we plot one
solution against the other (with time giving this parametric representation) when one has a
2D system. We will revisit this subsection in order to learn how we can make phase portraits
using Maple.

Exercises.

1. In each of the following initial-value problems, find a solution using Maple. Verify that the
solution exists for some t ∈ I, where I is an interval containing 0.

(a) x′ = x + x3 with x(0) = 1.

(b) x′′ + x = 1
2 cos t with x(0) = 1 and x′(0) = 1.

(c)
x′

1 = −x1 + x2

x′
2 = x1 + x2 + t

}
with x1(0) = 0 and x2(0) = 0.
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2. In forestry, there is interest in the evolution of the population x of a pest called ‘spruce
budworm’, which is modelled by the following equation:

x′ = x

(
2 − 1

5
x − 5x

2 + x2

)
. (1.6)

The solutions of this differential equation show radically different behaviour depending on
what initial condition x(0) = x0 one has in the range 0 ≤ x0 ≤ 10.

(a) Use Maple to plot solutions for several initial values in the range [0, 10].

0

2

4

6

8

10

x(t)

2 4 6 8 10

t

Figure 1.1: Population evolution of the budworm for various initial conditions.

(b) Use the plots to describe the different types of behaviour, and also give an interval
for the initial value in which the behaviour occurs. (For instance: For x0 ∈ [0, 8), the
solutions x(t) go to 0 as t increases. For x0 ∈ [8, 10] the solutions x(t) go to infinity as
t increases.)

(c) Use Maple to plot the function

f(x) = x

(
2 − 1

5
x − 5x

2 + x2

)
,

in the range x ∈ [0, 10]. Can the differential equation plots be explained theoretically?

–5

–4

–3

–2

–1

0
2 4 6 8 10

x

Figure 1.2: Graph of the function f .

Hint: See Figure 1.2.
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1.3 High order ODE to a first order ODE. State vector.

Note that the system of equations (1.1)-(1.3) are first order, in that the derivatives occurring are
of order at most 1. However, in applications, one may end with a model described by a set of
high order equations. So why restrict our study only to first order systems? In this section we
learn that such high order equations can be expressed as a system of first order equations, by
introducing a ‘state vector’. So throughout the sequel we will consider only a system of first order
equations.

Let us consider the second order differential equation

y′′(t) + a(t)y(t) + b(t)y(t) = u(t). (1.7)

If we introduce the new functions x1, x2 defined by

x1 = y and x2 = y′,

then we observe that

x′
1(t) = y′(t) = x2(t),

x′
2(t) = y′′(t) = −a(t)y′(t) − b(t)y(t) + u(t) = −a(t)x2(t) − b(t)x1(t) + u(t),

and so we obtain the system of first order equations

x′
1(t) = x2(t), (1.8)

x′
2(t) = −a(t)x2(t) − b(t)x1(t) + u(t), (1.9)

which is of the form (1.1)-(1.3).

Solving (1.7) is equivalent to solving the system (1.8)-(1.9). To see the equivalence, suppose
that (x1, x2) satisfies the system (1.8)-(1.9). Then x1 is a solution to (1.7), since

(x′
1(t))

′ = x′
2(t) = −b(t)x1(t) − a(t)x′

1(t) + u(t),

which is (1.7). On the other hand, if y is a solution to (1.7), then define x1 = y and x2 = y′, and
proceeding as in the preceding paragraph, this yields a solution of (1.8)-(1.9).

More generally, if we have an nth order scalar equation

y(n) + an−1(t)y
(n−1) + · · · + a1(t)y

′(t) + a0(t)y(t) = u(t),

then by introducing the vector of functions




x1

x2

...
xn


 :=




y
y′

...
y(n−1)


 , (1.10)

we arrive at the equivalent first order system of equations

x′
1(t) = x2(t),

x′
2(t) = x3(t),

...

x′
n−1(t) = xn(t),

x′
n(t) = −a1(t)x1(t) − · · · − an−1(t)xn−1(t) + u(t).
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The auxiliary vector in (1.10) comprising successive derivatives of the unknown function in the
high order differential equation, is called a state, and the resulting system of first order differential
equations is called a state equation.

Exercises. By introducing appropriate state variables, write a state equation for the following
(systems of) differential equations:

1. x′′ + ω2x = 0.

2. x′′ + x = 0, y′′ + y′ + y = 0.

3. x′′ + t sinx = 0.

1.4 The simplest example

The differential equation
x′(t) = ax(t) (1.11)

is the simplest differential equation. It is also one of the most important. First, what does it
mean? Here x : R → R is an unknown real-valued function (of a real variable t), and x′(t) is its
derivative at t. The equation (1.11) holds for every value of t, and a denotes a constant.

The solutions to (1.11) are obtained from calculus: if C is any constant, then the function f
given by f(t) = Ceta is a solution, since

f ′(t) = Caeta = a(Ceta) = af(t).

Moreover, there are no other solutions. To see this, let u be any solution and compute the
derivative of v given by v(t) = e−tau(t):

v′(t) = ae−tau(t) + e−tau′(t)

= ae−tau(t) + e−taau(t) (since u′(t) = au(t))

= 0.

Therefore by the fundamental theorem of calculus,

v(t) − v(0) =

∫ t

0

v′(t)dt =

∫ t

0

0dt = 0,

and so v(t) = v(0) for all t, that is, e−tau(t) = u(0). Consequently u(t) = etau(0) for all t.

So we see that the initial value problem

x′(t) = ax(t), x(0) = x0

has the unique solution
x(t) = etax0, t ∈ R.

As the constant a changes, the nature of the solutions changes. Can we describe qualitatively the
way the solutions change? We have the following cases:

1◦ a < 0. In this case,
lim

t→∞
x(t) = lim

t→∞
etax(0) = 0x(0) = 0.
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ttt

a < 0
a = 0

a > 0

Figure 1.3: Exponential solutions etax0.

Thus the solutions all converge to zero, and moreover they converge to zero exponentially,
that is, they there exist constants M > 0 and ǫ > 0 such that the solutions satisfy an
inequality of the type |x(t)| ≤ Me−ǫt for all t ≥ 0. (Note that not every decaying solution
of an ODE has to converge exponentially fast–see the example on page 50). See Figure 1.3.

2◦ a = 0. In this case,

x(t) = et0x(0) = 1x(0) = x(0) for all t ≥ 0.

Thus the solutions are constants, the constant value being the initial value it starts from.
See Figure 1.3.

3◦ a > 0. In this case, if the initial condition is zero, the solution is the constant function
taking value 0 everywhere. If the initial condition is nonzero, then the solutions ‘blow up’.
See Figure 1.3.

We would like to have a similar idea about the qualitative behaviour of solutions, but when
we have a system of linear differential equations. It turns out that for the system

x′(t) = Ax(t),

the behaviour of the solutions depends on the eigenvalues of the matrix A. In order to find out
why this is so, we first give an expression for the solution of such a linear ODE in the next two
sections. We find that the solution is notationally the same as the scalar case discussed in this
section: x(t) = etAx(0), with the little ‘a’ now replaced by the matrix ‘A’ ! But what do we mean
by the exponential of a matrix, etA? We first introduce this concept in the next section, and
subsequently, we will show how it enables us to solve the system x′ = Ax.

1.5 The matrix exponential

In this section we introduce the exponential of a square matrix A, which is useful for obtaining
explicit solutions to the linear system x′(t) = Ax(t). We begin with a few preliminaries concerning
vector-valued functions.

A vector-valued function t 7→ x(t) is a vector whose entries are functions of t. Similarly, a
matrix-valued function t 7→ A(t) is a matrix whose entries are functions:




x1(t)
...

xn(t)


 , A(t) =




a11(t) . . . a1n(t)
...

...
am1(t) . . . amn(t)


 .

The calculus operations of taking limits, differentiating, and so on are extended to vector-valued
and matrix-valued functions by performing the operations on each entry separately. Thus by
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definition,

lim
t→t0

x(t) =




lim
t→t0

x1(t)

...
lim
t→t0

xn(t)


 .

So this limit exists iff lim
t→t0

xi(t) exists for all i ∈ {1, . . . , n}. Similarly, the derivative of a vector-

valued or matrix-valued function is the function obtained by differentiating each entry separately:

dx

dt
(t) =




x′
1(t)
...

x′
n(t)


 ,

dA

dt
(t) =




a′
11(t) . . . a′

1n(t)
...

...
a′

m1(t) . . . a′
mn(t)


 ,

where x′
i(t) is the derivative of xi(t), and so on. So dx

dt is defined iff each of the functions xi(t) is
differentiable. The derivative can also be described in vector notation, as

dx

dt
(t) = lim

h→0

x(t + h) − x(t)

h
. (1.12)

Here x(t+h)−x(t) is computed by vector addition and the h in the denominator stands for scalar
multiplication by h−1. The limit is obtained by evaluating the limit of each entry separately,
as above. So the entries of (1.12) are the derivatives xi(t). The same is true for matrix-valued
functions.

Suppose that analogous to

ea = 1 + a +
a2

2!
+

a3

3!
+ . . . , a ∈ R,

we define

eA = I + A +
1

2!
A2 +

1

3!
A3 + . . . , A ∈ R

n×n. (1.13)

In this section, we will study this matrix exponential, and show that the matrix-valued function

etA = I + tA +
t2

2!
A2 +

t3

3!
A2 + . . .

(where t is a variable scalar) can be used to solve the system x′(t) = Ax(t), x(0) = x0: indeed,
the solution is given by x(t) = etAx0.

We begin by stating the following result, which shows that the series in (1.13) converges for
any given square matrix A.

Theorem 1.5.1 The series (1.13) converges for any given square matrix A.

We have collected the proofs together at the end of this section in order to not break up the
discussion.

Since matrix multiplication is relatively complicated, it isn’t easy to write down the matrix
entries of eA directly. In particular, the entries of eA are usually not obtained by exponentiating
the entries of A. However, one case in which the exponential is easily computed, is when A is
a diagonal matrix, say with diagonal entries λi. Inspection of the series shows that eA is also
diagonal in this case and that its diagonal entries are eλi .
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The exponential of a matrix A can also be determined when A is diagonalizable , that is,
whenever we know a matrix P such that P−1AP is a diagonal matrix D. Then A = PDP−1, and
using (PDP−1)k = PDkP−1, we obtain

eA = I + A +
1

2!
A2 +

1

3!
A3 + . . .

= I + PDP−1 +
1

2!
PD2P−1 +

1

3!
PD3P−1 + . . .

= PIP− + PDP−1 +
1

2!
PD2P−1 +

1

3!
PD3P−1 + . . .

= P

(
I + D +

1

2!
D2 +

1

3!
D3 + . . .

)
P−1

= PeDP−1

= P




eλ1

0
. . .

eλn


P−1,

where λ1, . . . , λn denote the eigenvalues of A.

Exercise. (∗∗) The set of diagonalizable n × n complex matrices is dense in the set of all n × n
complex matrices, that is, given any A ∈ C

n×n, there exists a B ∈ C
n×n arbitrarily close to A

(meaning that |bij − aij | can be made arbitrarily small for all i, j ∈ {1, . . . , n}) such that B has n
distinct eigenvalues.

Hint: Use the fact that every complex n × n matrix A can be ‘upper-triangularized’: that is,
there exists an invertible complex matrix P such that PAP−1 is upper triangular. Clearly the
diagonal entries of this new upper triangular matrix are the eigenvalues of A.

In order to use the matrix exponential to solve systems of differential equations, we need to
extend some of the properties of the ordinary exponential to it. The most fundamental property
is ea+b = eaeb. This property can be expressed as a formal identity between the two infinite series
which are obtained by expanding

ea+b = 1 + (a+b)
1! + (a+b)2

2! + . . . and

eaeb =
(
1 + a

1! + a2

2! + . . .
)(

1 + b
1! + b2

2! + . . .
)

.
(1.14)

We cannot substitute matrices into this identity because the commutative law is needed to obtain
equality of the two series. For instance, the quadratic terms of (1.14), computed without the
commutative law, are 1

2 (a2 + ab + ba + b2) and 1
2a2 + ab+ 1

2b2. They are not equal unless ab = ba.
So there is no reason to expect eA+B to equal eAeB in general. However, if two matrices A and
B happen to commute, the formal identity can be applied.

Theorem 1.5.2 If A, B ∈ Rn×n commute (that is AB = BA), then eA+B = eAeB.

The proof is at the end of this section. Note that the above implies that eA is always invertible
and in fact its inverse is e−A: Indeed I = eA−A = eAe−A.

Exercises.

1. Give an example of 2 × 2 matrices A and B such that eA+B 6= eAeB.
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2. Compute eA, where A is given by

A =

[
2 3
0 2

]
.

Hint: A = 2I +

[
0 3
0 0

]
.

We now come to the main result relating the matrix exponential to differential equations.
Given an n × n matrix, we consider the exponential etA, t being a variable scalar, as a matrix-
valued function:

etA = I + tA +
t2

2!
A2 +

t3

3!
A3 + . . . .

Theorem 1.5.3 etA is a differentiable matrix-valued function of t, and its derivative is AetA.

The proof is at the end of the section.

Theorem 1.5.4 (Product rule.) Let A(t) and B(t) be differentiable matrix-valued functions of t,
of suitable sizes so that their product is defined. Then the matrix product A(t)B(t) is differentiable,
and its derivative is

d

dt
(A(t)B(t)) =

dA(t)

dt
B(t) + A(t)

dB(t)

dt
.

The proof is left as an exercise.

Theorem 1.5.5 The first-order linear differential equation

dx

dt
(t) = Ax(t), t ∈ R, x(0) = x0 (1.15)

has the unique solution x(t) = etAx0.

Proof We have
d

dt
(etAx0) = AetAx0,

and so t 7→ etAx0 solves dx
dt (t) = Ax(t). Furthermore, x(0) = e0Ax0 = Ix0 = x0.

Finally we show that the solution is unique. Let x be a solution to (1.15). Using the product
rule, we differentiate the matrix product e−tAx(t):

d

dt
(e−tAx(t)) = −Ae−tAx(t) + e−tAAx(t).

From the definition of the exponential, it can be seen that A and etA commute, and so the derivative
of etAx(t) is zero. Therefore, etAx(t) is a constant column vector, say C, and x(t) = etAC. As
x(0) = x0, we obtain that x0 = e0AC, that is, C = x0. Consequently, x(t) = etAx0.

Thus the matrix exponential enables us to solve the differential equation (1.15). Since direct
computation of the exponential can be quite difficult, the above theorem may not be easy to apply
in a concrete situation. But if A is a diagonalizable matrix, then the exponential can be computed:
eA = PeDP−1. To compute the exponential explicitly in all cases requires putting the matrix into
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Jordan form. But in the next section, we will learn yet another way of computing etA by using
Laplace transforms.

We now go back to prove Theorems 1.5.1, 1.5.2, and 1.5.3.

For want of a more compact notation, we will denote the i, j-entry of a matrix A by Aij here.
So (AB)ij will stand for the entry of the matrix product matrix AB, and (Ak)ij for the entry of
Ak. With this notation, the i, j-entry of eA is the sum of the series

(eA)ij = Iij + Aij +
1

2!
(A2)ij +

1

3!
(A3)ij + . . . .

In order to prove that the series for the exponential converges, we need to show that the entries of
the powers Ak of a given matrix do not grow too fast, so that the absolute values of the i, j-entries
form a bounded (and hence convergent) series. Consider the following function ‖ · ‖ on Rn×n:

‖A‖ := max{|Aij | | 1 ≤ i, j ≤ n}. (1.16)

Thus |Aij | ≤ ‖A‖ for all i, j. This is one of several possible “norms” on Rn×n, and it has the
following property.

Lemma 1.5.6 If A, B ∈ Rn×n, then ‖AB‖ ≤ n‖A‖‖B‖, and for all k ∈ N, ‖Ak‖ ≤ nk−1‖A‖k.

Proof We estimate the size of the i, j-entry of AB:

|(AB)ij | =

∣∣∣∣∣

n∑

k=1

AikBkj

∣∣∣∣∣ ≤
n∑

k=1

|Aik||Bkj | ≤ n‖A‖‖B‖.

Thus ‖AB‖ ≤ n‖A‖‖B‖. The second inequality follows from the first inequality by induction.

Proof (of Theorem 1.5.1:) To prove that the matrix exponential converges, we show that the
series

Iij + Aij +
1

2!
(A2)ij +

1

3!
(A3)ij + . . .

is absolutely convergent, and hence convergent. Let a = n‖A‖. Then

|Iij | + |Aij | +
1

2!
|(A2)ij | +

1

3!
|(A3)ij | + . . . ≤ 1 + ‖A‖ +

1

2!
n‖A‖2 +

1

3!
n2‖A‖3 + . . .

= 1 +
1

n

(
a +

1

2!
a2 +

1

3!
a3 + . . .

)
= 1 +

ea − 1

n
.

Proof (of Theorem 1.5.2:) The terms of degree k in the expansions of (1.14) are

1

k!
(A + B)k =

1

k!

∑

r+s=k

(
k

r

)
ArBs and

∑

r+s=k

1

r!
Ar 1

s!
Bs.

These terms are equal since for all k, and all r, s such that r + s = k,

1

k!

(
k

r

)
=

1

r!s!
.

Define

Sn(A) = I +
1

1!
A +

1

2!
A2 + · · · + 1

n!
An.
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Then

Sn(A)Sn(B) =

(
I +

1

1!
A +

1

2!
A2 + · · · + 1

n!
An

)(
I +

1

1!
B +

1

2!
B2 + · · · + 1

n!
Bn

)

=

n∑

r,s=0

1

r!
Ar 1

s!
Bs,

while

Sn(A + B) = I +
1

1!
(A + B) +

1

2!
(A + B)2 + · · · + 1

n!
(A + B)n

=

n∑

k=0

∑

r+s=k

1

k!

(
k

r

)
ArBs =

n∑

k=0

∑

r+s=k

1

r!
Ar 1

s!
Bs.

Comparing terms, we find that the expansion of the partial sum Sn(A + B) consists of the terms
in Sn(A)Sn(B) such that r + s ≤ n. We must show that the sum of the remaining terms tends to
zero as k tends to ∞.

Lemma 1.5.7 The series
∑

k

∑

r+s=k

∣∣∣∣∣

(
1

r!
Ar 1

s!
Bs

)

ij

∣∣∣∣∣

converges for all i, j.

Proof Let a = n‖A‖ and b = n‖B‖. We estimate the terms in the sum using Lemma 1.5.6:

|(ArBs)ij | ≤ ‖ArBs‖ ≤ n‖Ar‖‖Bs‖ ≤ n(nr−1‖A‖r)(ns−1‖B‖s) ≤ arbs.

Therefore
∑

k

∑

r+s=k

∣∣∣∣∣

(
1

r!
Ar 1

s!
Bs

)

ij

∣∣∣∣∣ ≤
∑

k

∑

r+s=k

ar

r!

bs

s!
= ea+b.

The theorem follows from this lemma because, on the one hand, the i, j-entry of (Sk(A)Sk(B) −
Sk(A + B))ij is bounded by

∑

r+s>k

∣∣∣∣∣

(
1

r!
Ar 1

s!
Bs

)

ij

∣∣∣∣∣ .

According to the lemma, this sum tends to 0 as k tends to ∞. And on the other hand, Sk(A)Sk(B)−
Sk(A + B) tends to eAeB − eA+B.

This completes the proof of Theorem 1.5.2.

Proof (of Theorem 1.5.3:) By definition,

d

dt
etA = lim

h→0

1

h
(e(t+h)A − etA).

Since the matrices tA and hA commute, we have

1

h
(e(t+h)A − etA) =

(
1

h
(ehA − I)

)
etA.

So our theorem follows from this lemma:
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Lemma 1.5.8 lim
h→0

1

h
(ehA − I) = A.

Proof The series expansion for the exponential shows that

1

h
(ehA − I) − A =

h

2!
A2 +

h2

3!
A3 + . . . . (1.17)

We estimate this series. Let a = |h|n‖A‖. Then
∣∣∣∣∣

(
h

2!
A2 +

h2

3!
A3 + . . .

)

ij

∣∣∣∣∣ ≤
∣∣∣∣
h

2!
(A2)ij

∣∣∣∣+
∣∣∣∣
h2

3!
(A3)ij

∣∣∣∣+ . . .

≤ 1

2!
|h|n‖A‖2 +

1

3!
|h|2n2‖A‖3 + . . .

= ‖A‖
(

1

2!
a +

1

3!
a2 + . . .

)
=

‖A‖
a

(ea − 1 − a) = ‖A‖
(

ea − 1

a
− 1

)
.

Note that a → 0 as h → 0. Since the derivative of ex is ex, lim
a→0

ea − 1

a
=

d

dx
ex

∣∣∣∣
x=0

= e0 = 1.

So (1.17) tends to 0 with h.

This completes the proof of Theorem 1.5.3.

Exercises.

1. (∗) If A ∈ Rn×n, then show that ‖eA‖ ≤ en‖A‖. (In particular, for all t ≥ 0, ‖etA‖ ≤ etn‖A‖.)

2. (a) Let n ∈ N. Show that there exists a constant C (depending only on n) such that if
A ∈ Rn×n, then for all v ∈ Rn, ‖Av‖ ≤ C‖A‖‖v‖.

(b) Show that if λ is an eigenvalue of A, then |λ| ≤ n‖A‖.
3. (a) (∗) Show that if λ is an eigenvalue of A and v is a corresponding eigenvector, then v is

also an eigenvector of eA corresponding to the eigenvalue eλ of eA.

(b) Solve x′(t) =

[
4 3
3 4

]
x(t), x(0) = x0, when

(i) x0 =

[
1
1

]
, (ii) x0 =

[
1
−1

]
, and (iii) x0 =

[
2
0

]
.

Hint: In parts (i) and (ii), observe that the initial condition is an eigenvector of the
square matrix in question, and in part (iii), express the initial condition as a combination
of the initial conditions from the previous two parts.

4. (∗) Prove that etA⊤

= (etA)⊤. (Here M⊤ denotes the transpose of the matrix M .)

5. (∗) Let A ∈ Rn×n, and let S = {x : R → Rn | ∀t ∈ R, x′(t) = Ax(t)}. In this exercise we
will show that S is a finite dimensional vector space with dimension n.

(a) Let C(R; Rn) denote the vector space of all functions f : R → Rn with pointwise
addition and scalar multiplication. Show that S is a subspace of C(R; Rn).

(b) Let e1, . . . , en denote the standard basis vectors in Rn. By Theorem 1.5.5, we know
that for each k ∈ {1, . . . , n}, there exists a unique solution to the initial value problem
x′(t) = Ax(t), t ∈ R, x(0) = ek. Denote this unique solution by fk. Thus we obtain
the set of functions f1, . . . , fn ∈ S . Prove that {f1, . . . , fn} is linearly independent.

Hint: Set t = 0 in α1f1 + · · · + αnfn = 0.

(c) Show that S = span{f1, . . . , fn}, and conclude that S is a finite dimensional vector
space of dimension n.
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1.6 Computation of e
tA

In the previous section, we saw that the computation of etA is easy if the matrix A is diagonalizable.
However, not all matrices are diagonalizable. For example, consider the matrix

A =

[
0 1
0 0

]
.

The eigenvalues of this matrix are both 0, and so if it were diagonalizable, then the diagonal form
will be the zero matrix, but then if there did exist an invertible P such that P−1AP is this zero
matrix, then clearly A should be zero, which it is not!

In general, however, every matrix has what is called a Jordan canonical form, that is, there
exists an invertible P such that P−1AP = D + N , where D is diagonal, N is nilpotent (that is,
there exists a n ≥ 0 such that Nn = 0), and D and N commute. Then one can compute the
exponential of A:

etA = PetDetD

(
I + N +

1

2!
N2 + · · · + 1

n!
Nn

)
P−1.

However, the algorithm for computing the P taking A to the Jordan form requires some sophis-
ticated linear algebra. So we give a different procedure for calculating etA below, using Laplace
transforms. First we will prove the following theorem.

Theorem 1.6.1 For large enough s,

∫ ∞

0

e−stetAdt = (sI − A)−1.

Proof First choose a s0 large enough so that s0 > n‖A‖. Then for all s > s0, we have

∫ ∞

0

e−tsetAdt =

∫ ∞

0

e−t(sI−A)dt

=

∫ ∞

0

(sI − A)−1(sI − A)e−t(sI−A)dt

= (sI − A)−1

∫ ∞

0

(sI − A)e−t(sI−A)dt

= (sI − A)−1

∫ ∞

0

− d

dt
e−t(sI−A)dt

= (sI − A)−1
(
−e−tsetA

∣∣t=∞

t=0

)

= (sI − A)−1(0 + I)

= (sI − A)−1.

(In the above, we used the Exercise 1 on page 15, which gives ‖etA‖ ≤ etn‖A‖ ≤ ets0 = etset(s0−s),
and so ‖e−tsetA‖ ≤ et(s0−s). Also, we have used Exercise 2b, which gives invertibility of sI − A.)

If s is not an eigenvalue of A, then sI − A is invertible, and Cramer’s rule1 says that,

(sI − A)−1 =
1

det(sI − A)
adj(sI − A).

Here adj(sI −A) denotes the adjoint of the matrix sI −A, which is defined as follows: its (i, j)th
entry is obtained by multiplying (−1)i+j and the determinant of the matrix obtained by deleting

1For a proof, see for instance Artin [3].
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the jth row and ith column of sI −A. Thus we see that each entry of adj(sI −A) is a polynomial
in s whose degree is at most n − 1. (Here n denotes the size of A–that is, A is a n × n matrix.)

Consequently, each entry mij of (sI − A)−1 is a rational function, in other words, it is ratio
of two polynomials (in s) pij and q := det(sI − A):

mij =
pij(s)

q(s)

Also from the above, we see that deg(pij) ≤ deg(q)−1. From the fundamental theorem of algebra,
we know that the monic polynomial q can be factored as

q(s) = (s − λ1)
m1 . . . (s − λk)mk ,

where λ1, . . . , λk are the distinct eigenvalues of q(s) = det(sI−A), with the algebraic multiplicities
m1, . . . , mk.

By the “partial fraction expansion” one learns in calculus, it follows that one can find suitable
coefficients for a decomposition of each rational entry of (sI − A)−1 as follows:

mij =
k∑

l=1

mk∑

r=1

Cl,r

(s − λ)r
.

Thus if fij(t) denotes the (i, j)th entry of etA, then its Laplace transform will be an expression of
the type mij given above. Now it turns out that this determines the fij , and this is the content
of the following result.

Theorem 1.6.2 Let a ∈ C and n ∈ N. If f is a continuous function defined on [0,∞), and if
there exists a s0 such that for all s > s0,

F (s) :=

∫ ∞

0

e−stf(t)dt =
1

(s − a)n
,

then

f(t) =
1

(n − 1)!
tn−1eta for all t ≥ 0.

Proof The proof is beyond the scope of this course, but we refer the interested reader to Exercise
11.38 on page 342 of Apostol [1].

So we have a procedure for computing etA: form the matrix sI − A, compute its inverse (as
a rational matrix), perform a partial fraction expansion of each of its entry, and take the inverse
Laplace transform of each elementary fraction. Sometimes, the partial fraction expansion may be
avoided, by making use of the following corollary (which can be obtained from Theorem 1.6.2, by
a partial fraction expansion!).

Corollary 1.6.3 Let f be a continuous function defined on [0,∞), and let there exist a s0 such
that for all s > s0, F defined by

F (s) :=

∫ ∞

0

e−stf(t)dt,

is one of the functions given in the first column below. Then f is given by the corresponding entry
in the second column.
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F f

b

(s − a)2 + b2
eta sin(bt)

s − a

(s − a)2 + b2
eta cos(bt)

b

(s − a)2 − b2
eta sinh(bt)

s − a

(s − a)2 − b2
eta cosh(bt)

Example. If A =

[
0 1
0 0

]
, then sI − A =

[
s −1
0 s

]
, and so

(sI − A)−1 =
1

s2

[
s 1
0 s

]
=

[
1
s

1
s2

0 1
s

]
.

By using Theorem 1.6.2 (‘taking the inverse Laplace transform’), we obtain etA =

[
1 t
0 1

]
. ♦

Exercises.

1. Compute etA, when A =

[
3 −1
1 1

]
.

2. Compute etA, for the ‘Jordan block’ A =




λ 1 0
0 λ 1
0 0 λ


.

Remark: In general, if

if A =




λ 1
. . .

. . .

1
λ


 , then etA = eλt




1 t t2

2! . . . tn−1

(n−1)!

. . .
. . .

...

...
. . . t2

2!
. . . t

1




.

3. (a) Compute etA, when A =

[
a b
−b a

]
.

(b) Find the solution to
x′′ + kx = 0, x(0) = 1, x′(0) = 0.

(Here k is a fixed positive constant.)

Hint: Introduce the state variables x1 =
√

kx and x2 = x′.

Suppose that k = 1, and find (x(t))2 + (x′(t))2. What do you observe? If one identifies
(x(t), x′(t)) with a point in the plane at time t, then how does this point move with
time?

4. Suppose that A is a 2 × 2 matrix such that

etA =

[
cosh t sinh t
sinh t cosh t

]
, t ∈ R.

Find A.



1.7. Stability considerations 19

1.7 Stability considerations

Just as in the scalar example x′ = ax, where we saw that the sign of (the real part of) a allows us
to conclude the behaviour of the solution as x → ∞, it turns out that by looking at the real parts
of the eigenvalues of the matrix A one can say similar things in the case of the system x′ = Ax.
We will study this in this section.

We begin by proving the following result.

Lemma 1.7.1 Suppose that λ ∈ C and k is a nonnegative integer. For every ω > Re(λ), there
exists a Mω > 0 such that for all t ≥ 0, |tkeλt| ≤ Mωeωt.

Proof We have

e(ω−Re(λ))t =

∞∑

n=0

(ω − Re(λ))ntn

n!
≥ (ω − Re(λ))ktk

k!
,

and so tke(Re(λ)−ω)t ≤ Mω, where

Mω :=
k!

(ω − Re(λ))k
> 0.

Consequently, for t ≥ 0, |tkeλt| = tkeRe(λ)t = tke(Re(λ)−ω)teωt ≤ Mωeωt.

In the sequel, we denote the set of eigenvalues of A by σ(A), sometimes referred to as the
spectrum of A.

Theorem 1.7.2 Let A ∈ Rn×n.

1. Every solution of x′ = Ax tends to zero as t → ∞ iff for all λ ∈ σ(A), Re(λ) < 0. Moreover,
in this case, the solutions converge uniformly exponentially to 0, that is, there exist ǫ > 0
and M > 0 such that for all t ≥ 0, ‖x(t)‖ ≤ Me−ǫt‖x(0)‖.

2. If there exists a λ ∈ σ(A) such that Re(λ) > 0, then for every δ > 0, there exists a x0 ∈ Rn

with ‖x0‖ < δ, such that the unique solution to x′ = Ax with initial condition x(0) = x0

satisfies ‖x(t)‖ → ∞ as t → ∞.

Proof 1. We use Theorem 1.6.1. From Cramer’s rule, it follows that each entry in (sI − A)−1

is a rational function with the denominator equal to the characteristic polynomial of A, and then
by using a partial fraction expansion and Theorem 1.6.2, it follows that each entry in etA is a
linear combination of terms of the form tkeλt, where k is a nonnegative integer and λ ∈ σ(A). By
Lemma 1.7.1, we conclude that if each eigenvalue of A has real part < 0, then there exist positive
constants M and ǫ such that for all t ≥ 0, ‖etA‖ < Me−ǫt.

On the other hand, if each solution tends to 0 as t → ∞, then in particular, if v ∈ Rn

is an eigenvector2 corresponding to eigenvalue λ, then with initial condition x(0) = v, we have

x(t) = etAv = eλtv, and so ‖x(t)‖ = eRe(λ)t‖v‖ t→∞−→ 0, and so it must be the case that Re(λ) < 0.

2. Let λ ∈ σ(A) be such that Re(λ) > 0, and let v ∈ Rn be a corresponding eigenvector3. Given
δ > 0, define x0 = δ

2‖v‖v ∈ Rn. Then ‖x0‖ = δ
2 < δ, and the unique solution x to x′ = Ax with

initial condition x(0) = x0 satisfies ‖x(t)‖ = δ
2eRe(λ)t → ∞ as t → ∞.

2With a complex eigenvalue, this vector is not in Rn! But the proof can be modified so as to still yield the
desired conclusion.

3See the previous footnote!
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In the case when we have eigenvalues with real parts equal to zero, then a more careful analysis
is required and the boundedness of solutions depends on the algebraic/geometric multiplicity of the
eigenvalues with zero real parts. We will not give a detailed analysis, but consider two examples
which demonstrate that the solutions may or may not remain bounded.

Examples. Consider the system x′ = Ax, where

A =

[
0 0
0 0

]
.

Then the system trajectories are constants x(t) ≡ x(0), and so they are bounded.

On the other hand if

A =

[
0 1
0 0

]
,

then

etA =

[
1 t
0 1

]
,

and so with the initial condition x(0) = δ

[
0
1

]
, we have ‖x(t)‖ = δ

√
1 + t2 → ∞ as t → ∞ for

all δ > 0. So even if one starts arbitrarily close to the origin, the solution can become unbounded.
♦

Exercises.

1. Determine if all solutions of x′ = Ax are bounded, and if so if all solutions tend to 0 as
t → ∞.

(a)

[
1 2
3 4

]

(b)

[
1 0
0 −1

]

(c)




1 1 0
0 −2 −1
0 0 −1





(d)




1 1 1
1 0 1
0 0 −2




(e)




−1 0 0
0 −2 0
1 0 −1




(f)




−1 0 −1
0 −2 0
1 0 0



 .

2. For what values of α ∈ R can we conclude that all solutions of the system x′ = Ax will be

bounded for t ≥ 0, if A =

[
α 1 + α

−(1 + α) α

]
?



Chapter 2

Phase plane analysis

2.1 Introduction

In the preceding chapter, we learnt how one can solve a system of linear differential equations.
However, the equations that arise in most practical situations are inherently nonlinear, and typi-
cally it is impossible to solve these explicitly. Nevertheless, sometimes it is possible to obtain an
idea of what its solutions look like (the “qualitative behaviour”), and we learn one such method
in this chapter, called phase plane analysis.

Phase plane analysis is a graphical method for studying 2D autonomous systems. This method
was introduced by mathematicians (among others, Henri Poincaré) in the 1890s.

The basic idea of the method is to generate in the state space motion trajectories corresponding
to various initial conditions, and then to examine the qualitative features of the trajectories. As a
graphical method, it allows us to visualize what goes on in a nonlinear system starting from various
initial conditions, without having to solve the nonlinear equations analytically. Thus, information
concerning stability and other motion patterns of the system can be obtained. In this chapter, we
learn the basic tools of the phase plane analysis.

2.2 Concepts of phase plane analysis

2.2.1 Phase portraits

The phase plane method is concerned with the graphical study of 2 dimensional autonomous
systems:

x′
1(t) = f1(x1(t), x2(t)),

x′
2(t) = f2(x1(t), x2(t)),

(2.1)

where x1 and x2 are the states of the system, and f1 and f2 are nonlinear functions from R
2 to

R. Geometrically, the state space is a plane, and we call this plane the phase plane.

Given a set of initial conditions x(0) = x0, we denote by x the solution to the equation (2.1).
(We assume throughout this chapter that given an initial condition there exists a unique solution
for all t ≥ 0: this is guaranteed under mild assumptions on f1, f2, and we will learn more about
this in Chapter 4.) With time t varied from 0 to ∞, the solution t 7→ x(t) can be represented

21
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geometrically as a curve in the phase plane. Such a curve is called a (phase plane) trajectory.
A family of phase plane trajectories corresponding to various initial conditions is called a phase
portrait of the system. From the assumption about the existence of solution, we know that from
each point in the phase plane there passes a curve, and from the uniqueness, we know that there
can be only one such curve. Thus no two trajectories in the phase plane can intersect, for if they
did intersect at a point, then with that point as the initial condition, we would have two solutions1,
which is a contradiction!

To illustrate the concept of a phase portrait, let us consider the following simple system.

Example. Consider the system

x′
1 = x2,

x′
2 = −x1.

Thus the system is a linear ODE x′ = Ax with A =

[
0 1
−1 0

]
. Then etA =

[
cos t sin t
− sin t cos t

]
,

and so if the initial condition expressed in polar coordinates is
[

x10

x20

]
=

[
r0 cos θ0

r0 sin θ0

]
,

then it can be seen that the solution is
[

x1(t)
x2(t)

]
=

[
r0 cos(θ0 − t)
r0 sin(θ0 − t)

]
, t ≥ 0. (2.2)

We note that
(x1(t))

2 + (x2(t))
2 = r2

0 ,

which represents a circle in the phase plane. Corresponding to different initial conditions, circles
of different radii can be obtained, and from (2.2), it is easy to see that the motion is clockwise.
Plotting these circles on the phase plane, we obtain a phase portrait as shown in the Figure 2.1.

–1.5

–1

–0.5

0

0.5

1

1.5

x2

–1.5 –1 –0.5 0.5 1 1.5

x1

Figure 2.1: Phase portrait.

We see that the trajectories neither converge to the origin nor diverge to infinity. They simply
circle around the origin. ♦

1Here we are really running the differential equation backwards in time, but then we can make the change of
variables τ = −t.
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2.2.2 Singular points

An important concept in phase plane analysis is that of a singular point.

Definition. A singular point of the system

{
x′

1 = f1(x1, x2)
x′

2 = f2(x1, x2),
is a point (x1∗, x2∗) in the

phase plane such that f1(x1∗, x2∗) = 0 and f2(x1∗, x2∗) = 0.

Such a point is also sometimes called an equilibrium point (see Chapter 3), that is, a point
where the system states can stay forever: if we start with this initial condition, then the unique
solution is x1(t) = x1∗ and x2(t) = x2∗. So through that point in the phase plane, only the ‘trivial
curve’ comprising just that point passes.

For a linear system x′ = Ax, if A is invertible, then the only singular point is (0, 0), and if
A is not invertible, then all the points from the kernel of A are singular points. So in the case
of linear systems, either there is only one equilibrium point, or infinitely many singular points,
none of which is then isolated. But in the case of nonlinear systems, there can be more than one
isolated singular point, as demonstrated in the following example.

Example. Consider the system

x′
1 = x2,

x′
2 = −1

2
x2 − 2x1 − x2

1,

whose phase portrait is shown in Figure 2.2. The system has two singular points, one at (0, 0),

–3

–2

–1

1

2

3

4

x2

–2 –1 1 2

x1

Figure 2.2: Phase portrait.

and the other at (−2, 0). The motion patterns of the system trajectories starting in the vicinity
of the two singular points have different natures. The trajectories move towards the point (0, 0),
while they move away from (−2, 0). ♦
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One may wonder why an equilibrium point of a 2D system is called a singular point. To answer
this, let us examine the slope of the phase trajectories. The slope of the phase trajectory at time
t is given by

dx2

dx1
=

dx2

dt
dx1

dt

=
f2(x1, x2)

f1(x1, x2)
.

When both f1 and f2 are zero at a point, this slope is undetermined, and this accounts for the
adjective ‘singular’.

Singular points are important features in the phase plane, since they reveal some information
about the system. For nonlinear systems, besides singular points, there may be more complex
features, such as limit cycles. These will be discussed later in this chapter.

Note that although the phase plane method is developed primarily for 2D systems, it can be
also applied to the analysis of nD systems in general, but the graphical study of higher order
systems is computationally and geometrically complex. On the other hand with 1D systems, the
phase “plane” is reduced to the real line. We consider an example of a 1D system below.

Example. Consider the system x′ = −x + x3.

−1 0 1

Figure 2.3: Phase portrait of the system x′ = −x + x3.

The singular points are determined by the equation

−x + x3 = 0,

which has three real solutions, namely −1, 0 and 1. The phase portrait is shown in Figure 2.3.
Indeed, for example if we consider the solution to

x′(t) = −x(t) − (x(t))3, t ≥ t0, x(t0) = x0,

with 0 < x0 < 1, then we observe that

x′(t0) = −x0 − x3
0 = − x0︸︷︷︸

>0

(1 − x2
0)︸ ︷︷ ︸

>0

< 0,

and this means that t 7→ x(t) is decreasing, and so the “motion” starting from x0 is towards the
left. This explains the direction of the arrow for the region 0 < x < 1 in Figure 2.3. ♦

Exercises.

1. Locate the singular points of the following systems.

(a)

{
x′

1 = x2,
x′

2 = sin x1.

(b)

{
x′

1 = x1 − x2,
x′

2 = x2
2 − x1.

(c)

{
x′

1 = x2
1(x2 − 1),

x′
2 = x1x2.

(d)

{
x′

1 = x2
1(x2 − 1),

x′
2 = x2

1 − 2x1x2 − x2
2.
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(e)

{
x′

1 = x1 − x2
2,

x′
2 = x2

1 − x2
2.

(f)

{
x′

1 = sin x2,
x′

2 = cosx1.

2. Sketch the following parameterized curves in the phase plane.

(a) (x1, x2) = (a cos t, b sin t), where a > 0, b > 0.

(b) (x1, x2) = (aet, be−2t), where a > 0, b > 0.

3. Draw phase portraits of the following 1D systems.

(a) x′ = x2.

(b) x′ = ex.

(c) x′ = coshx.

(d) x′ = sinx.

(e) x′ = cosx − 1.

(f) x′ = sin(2x).

4. Consider a 2D autonomous system for which there exists a unique solution for every initial
condition in R2 for all t ∈ R.

(a) Show that if (x1, x2) is a solution, then for any T ∈ R, the shifted functions (y1, y2)
given by

y1(t) = x1(t + T ),

y2(t) = x2(t + T ),

(t ∈ R) is also a solution.

(b) (∗) Can x(t) =

(
2 cos t

1 + (sin t)2
,

sin(2t)

1 + (sin t)2

)
0, t ∈ R, be the solution of such a 2D

autonomous system?

Hint: By the first part, we know that t 7→ y1(t) := x(t + π/2) and t 7→ y2(t) :=
x(t + 3π/2) are also solutions. Check that y1(0) = y2(0). Is y1 ≡ y2? What does this
say about uniqueness of solutions starting from a given initial condition?

(c) Using Maple, sketch the curve

t 7→
(

2 cos t

1 + (sin t)2
,

sin(2t)

1 + (sin t)2

)
.

(This curve is called the lemniscate.)

5. Consider the ODE (1.6) from Exercise 2 on page 6.

(a) Using Maple, find the singular points (approximately).

(b) Draw a phase portrait in the region x ≥ 0.

6. A simple model for a national economy is given by

I ′ = I − αC

C′ = β(I − C − G),

where

I denotes the national income,

C denotes the rate of consumer spending, and

G denotes the rate of government expenditure.

The model is restricted to I, C, G ≥ 0, and the constants α, β satisfy α > 1, β ≥ 1.



26 Chapter 2. Phase plane analysis

(a) Suppose that the government expenditure is related to the national income according
to G = G0 + kI, where G0 and k are positive constants. Find the range of positive k’s
for which there exists an equilibrium point such that I, C, G are nonnegative.

(b) Let k = 0, and let (I0, C0) denote the equilibrium point. Introduce the new variables
I1 = I − I0 and C1 = C − C0. Show that (I1, C1) satisfy a linear system of equations:

[
I ′1
C′

1

]
=

[
1 −α
β −β

] [
I1

C1

]
.

If β = 1 and α = 2, then conclude that in fact the economy oscillates.

2.3 Constructing phase portraits

Phase portraits can be routinely generated using computers, and this has spurred many advances
in the study of complex nonlinear dynamic behaviour. Nevertheless, in this section, we learn a few
techniques in order to be able to roughly sketch the phase portraits. This is useful for instance
in order to verify the plausibility of computer generated outputs. We describe two methods: one
involves the analytic solution of differential equations. If an analytic solution is not available, the
other tool, called the method of isoclines, is useful.

2.3.1 Analytic method

There are two techniques for generating phase portraits analytically. One is to first solve for x1

and x2 explicitly as functions of t, and then to eliminate t, as we had done in the example on page
22.

The other analytic method does not involve an explicit computation of the solutions as func-
tions of time, but instead, one solves the differential equation

dx2

dx1
=

f1(x1, x2)

f2(x1, x2)
.

Thus given a trajectory t 7→ (x1(t), x2(t)), we eliminate the t by setting up a differential equation
for the derivative of the second function ‘with respect to the first one’, not involving the t, and by
solving this differential equation. We illustrate this in the same example.

Example. Consider the system

x′
1 = x2,

x′
2 = −x1.

We have
dx2

dx1
=

−x1

x2
, and so x2

dx2

dx1
= −x1. Thus

d

dx1

(
1

2
x2

2

)
= x2

dx2

dx1
= −x1.

Integrating with respect to x1, and using the fundamental theorem of calculus, we obtain
x2

2 + x2
1 = C. This equation describes a circle in the (x1, x2)-plane. Thus the trajectories satisfy

(x1(t))
2 + (x2(t))

2 = C = (x1(0)2 + (x2(0))2, t ≥ 0,

and they are circles. We note that when x1(0) belongs to the right half plane, then x′
2(0) =

−x1(0) < 0, and so t 7→ x2(t) should be decreasing. Thus we see that the motion is clockwise, as
shown in Figure 2.1. ♦
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Exercises.

1. Sketch the phase portrait of

{
x′

1 = x2,
x′

2 = x1.

2. Sketch the phase portrait of

{
x′

1 = −2x2,
x′

2 = x1.

3. (a) Sketch the curve curve y(x) = x(A + B log |x|) where A, B are constants and B > 0.

(b) (∗) Sketch the phase portrait of

{
x′

1 = x1 + x2,
x′

2 = x2.

Hint: Solve the system, and try eliminating t.

2.3.2 The method of isoclines

At a point (x1, x2) in the phase plane, the slope of the tangent to the trajectory is dx2

dx1
= f2(x1,x2)

f1(x1,x2)
.

An isocline is a curve in R2 defined by f2(x1,x2)
f1(x1,x2)

= α, where α is a real number. This means that

if we look at all the trajectories that pass through various points on the same isocline, then all
of these trajectories have the same slope (equal to α) on the points of this isocline. To obtain
trajectories from the isoclines, we assume that the tangent slopes are locally constant. The method
of constructing the phase portrait using isoclines is thus the following:

Step 1. For various values of α, construct the corresponding isoclines. Along an isocline, draw
small line segments with slope α. In this manner a field of directions is obtained.

Step 2. Since the tangent slopes are locally constant, we can construct a phase plane trajectory
by connecting a sequence line segments.

We illustrate the method by means of two examples.

Example. Consider the system

{
x′

1 = x2,
x′

2 = −x1.
The slope is given by dx2

dx1
= −x1

x2
, and so the

isocline corresponding to slope α is x1 +αx2 = 0, and these points lie on a straight line. By taking

x1

x2

α = 0α = −1

α = ∞

α = 1

Figure 2.4: Method of isoclines.

different values for α, a set of isoclines can be drawn, and in this manner a field of directions
of tangents to the trajectories are generated, as shown in Figure 2.4, and the trajectories in the
phase portrait are circles. If x1 > 0, then x′

2(0) = −x1(0) < 0, and so the motion is clockwise. ♦
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Let us now use the method of isoclines to study a nonlinear equation.

Example. (van der Pol equation) Consider the differential equation

y′′ + µ(y2 − 1)y′ + y = 0. (2.3)

By introducing the variables x1 = y and x2 = y′, we obtain the following 2D system:

x′
1 = x2,

x′
2 = −µ(x2

1 − 1)x2 − x1.

An isocline of slope α is defined by
−µ(x2

1 − 1)x2 − x1

x2
= α, that is, the points on the curve

x2 =
x1

(µ − µx2
1) − α

all correspond to the same slope α of tangents to trajectories.

We take the value of µ = 1
2 . By taking different values for α, different isoclines can be obtained,

and short line segments can be drawn on the isoclines to generate a field of directions, as shown
in Figure 2.5. The phase portrait can then be obtained, as shown.

Figure 2.5: Method of isoclines.

It is interesting to note that from the phase portrait, one is able to guess that there exists a
closed curve in the phase portrait, and the trajectories starting from both outside and inside seem
to converge to this curve2. ♦

Exercise. Using the method of isoclines, sketch a phase portrait of the system

{
x′

1 = x2,
x′

2 = x1.

2This is also expected based on physical considerations: the van der Pol equation arises from electric circuits
containing vacuum tubes, where for small ocsillations, energy is fed into the system, while for large oscillations,
energy is taken out of the system–in other words, large oscillations will be damped, while for small oscillations,
there is ‘negative damping’ (that is energy is fed into the system). So one can expect that such a system will
approach some periodic behaviour, which will appear as a closed curve in the phase portrait.
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2.3.3 Phase portraits using Maple

We consider a few examples in order to illustrate how one can make phase portraits using Maple.

Consider the ODE system: x′
1(t) = x2(t) and x2(t) = −x2(t). We can plot x1 against x2 by

using DEplot. Consider for example:

> with(DEtools) :
> ode3a := diff(x1(t), t) = x2(t); ode3b := diff(x2(t), t) = −x1(t);
> DEplot({ode3a, ode3b}, {x1(t), x2(t)}, t= 0..10, x1 = −2..2, x2 = −2..2,

[[x1(0) = 1, x2(0) = 0]], stepsize = 0.01, linecolour = black);

The resulting plot is shown in Figure 2.6. The arrows show the direction field.
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Figure 2.6: Phase portrait for the ODE system x′
1 = x2 and x′

2 = −x1.

By including some more trajectories, we can construct a phase portrait in a given region, as
shown in the following example.

Example. Consider the system

{
x′

1 = −x2 + x1(1 − x2
1 − x2

2),
x′

2 = x1 + x1(1 − x2
1 − x2

2).
Using the following Maple
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x1

Figure 2.7: Phase portrait.
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command, we can obtain the phase portrait shown in Figure 2.7.

> with(DEtools) :
> ode1 := diff(x1(t), t) = −x2(t) + x1(t) ∗ (1 − x1(t)̂ 2− x2(t)̂ 2);
> ode2 := diff(x2(t), t) = x1(t) + x1(t) ∗ (1− x1(t)̂ 2− x2(t)̂ 2);
> initvalues := seq(seq([x1(0) = i + 1/2, x2(0) = j + 1/2],

i = −2..1), j = −2..1) :
> DEplot({ode1, ode2}, [x1(t), x2(t)], t= −4..4, x1 = −2..2, x2 = −2..2, [initvalues],

stepsize = 0.05, arrows = MEDIUM, colour = black, linecolour= red);

♦

Exercises.

1. Using Maple, construct phase portraits of the following systems:

(a)

{
x′

1 = x2,
x′

2 = x1.

(b)

{
x′

1 = −2x2,
x′

2 = x1.

(c)

{
x′

1 = x1 + x2,
x′

2 = x2.

2. Suppose a lake contains fish, which we simply call ‘big fish’ and ‘small fish’. In the absence
of big fish, the small fish population xs evolves according to the law: x′

s = axs, where a > 0
is a constant. Indeed, the more the small fish, the more they reproduce. But big fish eat
small fish, and so taking this into account, we have

x′
s = axs − bxsxb,

where b > 0 is a constant. The last term accounts for how often the big fish encounter the
small fish–the more the small fish, the easier it becomes for the big fish to catch them, and
the faster the population of the small fish decreases.

Figure 2.8: Big fish and small fish.

On the other hand, the big fish population evolution is given by

x′
b = −cxb + dxsxb,

where c, d > 0 are constants. The first term has a negative sign which comes from the
competition between these predators–the more the big fish, the fiercer the competition for
survival. The second term accounts for the fact that the larger the number of small fish, the
greater the growth in the numbers of the big fish.

(a) Singular points. Show that the (xs, xb) ODE system has two singular points (0, 0) and(
c
d , a

b

)
. The point (0, 0) corresponds to the extinction of both species–if both popula-

tions are 0, then they continue to remain so. The point
(

c
d , a

b

)
corresponds to population

levels at which both species sustain their current nonzero numbers indefinitely.
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Figure 2.9: Periodic variation of the population levels.

(b) Solution to the ODE system. Use Maple to plot the population levels of the two species
on the same plot, with the following data: a = 2, b = 0.002, c = 0.5, d = 0.0002,
xs(0) = 9000, xb(0) = 1000, t = 0 to t = 100.

Your plot should show that the population levels vary in a periodic manner, and the
population of the big fish lags behind the population of the small fish. This is expected
since the big fish thrive when the small fish are plentiful, but ultimately outstrip their
food supply and decline. As the big fish population is low, the small fish numbers
increase again. So there is a a cycle of growth and decline.

(c) Phase portrait. With the same constants as before, plot a phase portrait in the region
xs = 0 to xs = 10000 and xb = 0 to 4000.
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Figure 2.10: Phase portrait for the Lotka-Volterra ODE system.

Also plot in the same phase portrait the solution curves. What do you observe?
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2.4 Phase plane analysis of linear systems

In this section, we describe the phase plane analysis of linear systems. Besides allowing us to
visually observe the motion patterns of linear systems, this will also help the development of
nonlinear system analysis in the next section, since similar motion patterns can be observed in the
local behaviour of nonlinear systems as well.

We will analyze three simple types of matrices. It turns out that it is enough to consider these
three types, since every other matrix can be reduced to such a matrix by an appropriate change
of basis (in the phase portrait, this corresponds to replacing the usual axes by new ones, which
may not be orthogonal). However, in this elementary first course, we will ignore this part of the
theory.

2.4.1 Complex eigenvalues

Consider the system x′ = Ax, where A =

[
a b
−b a

]
. Then etA = eta

[
cos(bt) sin(bt)
− sin(bt) cos(bt)

]
, and

so if the initial condition x(0) has polar coordinates (r0, θ0), then the solution is given by

x(t) = etar0 cos(θ0 − bt) and y(t) = etar0 sin(θ0 − bt), t ≥ 0,

so that the trajectories are spirals if a is nonzero, moving towards the origin if a < 0, and outwards
if a > 0. If a = 0, the trajectories are circles. See Figure 2.11.
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Figure 2.11: Case of complex eigenvalues. The last figure shows the phase plane trajectory as a
projection of the curve (t, x1(t), x2(t)) in R3: case when a = 0, and b > 0.
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2.4.2 Diagonal case with real eigenvalues

Consider the system x′ = Ax, where

A =

[
λ1 0
0 λ2

]
,

where λ1 and λ2 are real numbers. The trajectory starting from the initial condition (x10, x20) is
given by x1(t) = eλ1tx10, x2(t) = eλ2tx20. We also see that Axλ2

1 = Bxλ2
2 with appropriate values

for the constants A and B. See the topmost figure in Figure 2.12 for the case when λ1, λ2 are
both negative. In general, we obtain the phase portraits shown in Figure 2.12, depending on the
signs of λ1 and λ2.

x1

x2

t
0

phase plane

λ1 < λ2 < 0 λ1 < 0 < λ2 λ2 < 0 = λ1

λ1 = λ2 < 0 λ1 = λ2 = 0

Figure 2.12: The topmost figure shows the phase plane trajectory as a projection of the curve
(t, x1(t), x2(t)) in R

3: diagonal case when both eigenvalues are negative. The other figures are
phase portraits in the case when A is diagonal with real eigenvalues case. In the case when the
eigenvalues have opposite signs, the singular point is called a saddle point.
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2.4.3 Nondiagonal case

Consider the system x′ = Ax, where

A =

[
λ 1
0 λ

]
,

where λ is a real number. It is easy to see that

etA =

[
eλt teλt

0 eλt

]
,

so that the solution starting from the initial condition (x10, x20) is given by

x1(t) = eλt(x10 + tx20), x2(t) = eλtx20.

Figure 2.13 shows the phase portraits for the three cases when λ < 0, λ = 0 and λ > 0.
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Figure 2.13: Nondiagonal case.

We note that the angle that a point on the trajectory makes with the x1 axis is given by

arctan

(
x2(t)

x1(t)

)
= arctan

(
x20

x10 + tx20

)
,

which tends to 0 or π as t → ∞.

Exercises.

1. Draw the phase portrait for the system

{
x′

1 = x1 − 3x2,
x′

2 = −2x2,
using the following procedure:

Step 1. Find the eigenvectors and eigenvalues: Show that A :=

[
1 −3
0 −2

]
has eigenvalues

1,−2, with eigenvectors v1 :=

[
1
0

]
, v2 :=

[
1
1

]
, respectively.

Step 2. Set up the coordinate system in terms of the eigenvectors: Since v1, v2 form a
bsis for R2, the solution vector x(t) can be expressed as a linear combination of v1, v2:
x(t) = α(t)v1 + β(t)v2. Note that α(t) and β(t) are the ‘coordinates’ of the point x(t) in
the directions v1 and v2, respectively. In other words, they are the ‘projections’ of the point
x(t) in the directions v1 and v2, as shown in the Figure 2.14.

Step 3. Eliminate t: Show that (α(t))2β(t) = (α(0))2β(0), and using the ‘distorted’ coor-
dinate system, draw a phase portrait for the system x′(t) = Ax(t).
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α(t)

β(t) x(t)

(1, 0)

(1, 1)
0

R2

Figure 2.14: The distorted coordinate system.

2. (∗) Let A ∈ R2 have eigenvalues a + ib and a − ib, where a, b ∈ R, and b 6= 0.

(a) If v1 := u+ iv (u, v ∈ R2) is an eigenvector corresponding to the eigenvalue a+ ib, then
show that v2 := u − iv is an eigenvector corresponding to a − ib.

(b) Using the fact that b 6= 0, conclude that v1, v2 are linearly independent in C2.

(c) Prove that u, v are linearly independent as vectors in R2. Conclude that the matrix P
with the columns u and v is invertible.

(d) Verify that

P−1AP =

[
a b
−b a

]
.

2.5 Phase plane analysis of nonlinear systems

With the phase plane analysis of nonlinear systems, we should keep two things in mind. One is
that the phase plane analysis is related to that of linear systems, because the local behaviour of
a nonlinear system can be approximated by a linear system. And the second is that, despite this
similarity with linear systems, nonlinear systems can display much more complicated patterns in
the phase plane, such as multiple singular points and limit cycles. In this section, we will discuss
these aspects. We consider the system

x′
1 = f1(x1, x2),

x′
2 = f2(x1, x2),

(2.4)

where we assume that f1 and f2 have continuous partial derivatives, and this assumption will be
continued for the remainder of this chapter. We will learn later in Chapter 4 that a consequence of
this assumption is that for the initial value problem of the system above, there will exist a unique
solution. Moreover, we will also make the assumption that solutions exist for all times in R.

2.5.1 Local behaviour of nonlinear systems

In order to see the similarity with linear systems, we decompose the the nonlinear system into a
linear part and an ‘error’ part (which is small close to a singular point), using Taylor’s theorem,
as follows.

Let (x10, x20) be an isolated singular point of (2.4). Thus f1(x10, x20) = 0 and f2(x10, x20) = 0.
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Then by Taylor’s theorem, we have

x′
1 =

[
∂f1

∂x1
(x10, x20)

]
(x1 − x10) +

[
∂f1

∂x2
(x10, x20)

]
(x2 − x20) + e1(x1 − x10, x2 − x20), (2.5)

x′
2 =

[
∂f2

∂x1
(x10, x20)

]
(x1 − x10) +

[
∂f2

∂x2
(x10, x20)

]
(x2 − x20) + e2(x1 − x10, x2 − x20), (2.6)

where e1 and e2 are such that e1(0, 0) = e2(0, 0) = 0. We translate the singular point (x10, x20)
to the origin by introducing the new variables y1 = x1 − x10 and y2 = x2 − x20. With

a :=
∂f1

∂x1
(x10, x20), b :=

∂f1

∂x2
(x10, x20),

c :=
∂f2

∂x1
(x10, x20), d :=

∂f2

∂x2
(x10, x20),

we can rewrite (2.5)-(2.6) as follows:

y′
1 = ay1 + by2 + e1(y1, y2),

y′
2 = cy1 + dy2 + e2(y1, y2).

(2.7)

We note that this new system has (0, 0) as a singular point. We will elaborate on the similarity
between the phase portrait of the system (2.4) with the phase portrait of its linear part, that is,
the system

z′1 = az1 + bz2,
z′2 = cz1 + dz2.

(2.8)

Before clarifying the relationship between (2.4) and (2.8), we pause to note some important
differences. The system (2.4) may have many singular points; one of them has been selected and
moved to the origin. If a different singular point would have been chosen, then the constants
a, b, c, d in (2.8) would have been different. The important point is that any statement relating
(2.4) and (2.8), is local in nature, in that they apply ‘near’ the singular point under consideration.
By ‘near’ here, we mean in a sufficiently small neighbourhood or ball around the singular point.
Totally different kinds of behaviour may occur in a neighbourhood of other critical points. The
transformation above must be made, and the corresponding linear part must be analyzed, for each
isolated singular point of the nonlinear system.

We now give the main theorem in this section about the local relationship between the nature
of phase portraits of (2.4) and (2.8), but we will not prove this theorem.

Theorem 2.5.1 Let (x10, x20) be an isolated singular point of (2.4), and let

A :=

[
∂f1

∂x1
(x10, x20)

∂f1

∂x2
(x10, x20)

∂f2

∂x1
(x10, x20)

∂f2

∂x2
(x10, x20)

]
.

Then we have the following:

1. If every eigenvalue of A has negative real parts, then all solutions of (2.4) starting in a
small enough ball with centre (x10, y10) converge to (x10, y10) as t → ∞. (This situation
is abbreviated by saying that the equilibrium point (x10, y10) is ‘asymptotically stable’; see
§3.3.)

2. If the matrix A has an eigenvalue with a positive real part, then there exists a ball B such
that for every ball B′ of positive radius around (x10, y10), there exists a point in B′ such that
a solution x of (2.4) starting from that point leaves the ball B. (This situation is abbreviated
by saying that the equilibrium point (x10, y10) is ‘unstable’; see §3.2.)
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We illustrate the theorem with the following example.

Example. Consider the system

x′
1 = −x1 + x2 − x1(x2 − x1),

x′
2 = −x1 − x2 + 2x2

1x2.

This nonlinear system has the singular points (−1,−1), (1, 1) and (0, 0). If we linearize around
the singular point (0, 0), we obtain the matrix




∂

∂x1
(−x1 + x2 − x1(x2 − x1))

∣∣∣∣
(0,0)

∂

∂x2
(−x1 + x2 − x1(x2 − x1))

∣∣∣∣
(0,0)

∂

∂x1
(−x1 − x2 + 2x2

1x2)

∣∣∣∣
(0,0)

∂

∂x2
(−x1 − x2 + 2x2

1x2)

∣∣∣∣
(0,0)


 =

[
−1 1
−1 −1

]
,

which has eigenvalues −1 + i and −1 − i. Thus by Theorem 2.5.1, it follows that for the above
nonlinear system, if we start close to (0, 0), then the solutions converge to (0, 0) as t → ∞.

However, not all solutions of this nonlinear system converge to (0, 0). For example, we know
that (1, 1) is also a singular point, and so if we start from there, then we stay there. ♦

The above example highlights the local nature of Theorem 2.5.1. How close is sufficiently close
is generally a difficult question to answer.

Actually more than just similarity of convergence to the singular point can be said. It turns out
that if the real parts of the eigenvalues are not equal to zero, then also the ‘qualitative’ structure
is preserved. Roughly speaking, this means that there is a map T mapping a region Ω1 around
(x10, x20) to a region Ω2 around (0, 0) such that

1. T is one-to-one and onto;

2. both T and T−1 are continuous;

3. if two points of Ω1 lie on the same trajectory of (2.8), then their images under T lie on the
same trajectory of (2.4);

4. if two points of Ω2 lie on the same trajectory of (2.4), then their images under T−1 lie on
the same trajectory of (2.8).

The mapping is shown schematically in Figure 2.15.

T

T−1

x1

x2

z1

z2

Ω1 Ω2

Figure 2.15: The mapping T .
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The actual construction of such a mapping is not easy, but we demonstrate the plausibility of
its existence by considering an example.

Example. Consider the system

x′
1 = x2,

x′
2 = x1 − x2 + x1(x1 − 2x2).

The singular points are solutions to

x2 = 0 and x1 − x2 + x2
1 − 2x1x2 = 0,

and so they are (0, 0) and (−1, 0). Furthermore,

∂f1

∂x1
= 0,

∂f1

∂x2
= 1,

∂f2

∂x1
= 1 + 2x1 − 2x2,

∂f1

∂x2
= −1 − 2x1.

At (0, 0), the matrix of the linear part is

[
0 1
1 −1

]
,

whose eigenvalues satisfy λ2 + λ − 1 = 0. The roots are real and of opposite signs, and so the
origin is a saddle point.

At (−1, 0), the matrix of the linear part is

[
0 1
−1 1

]
,

whose eigenvalues satisfy λ2 − λ + 1 = 0. The trajectories are thus outward spirals.

Figure 2.16 shows the phase portrait of the system. As expected we see that around the points
(0, 0) and (−1, 0), the local picture is similar to the corresponding linearisations. ♦

Finally, we discuss the case when the eigenvalues of the linearisation have real part equal to
0. It turns out that in this case, the behaviour of the linearisation gives no information about the
behaviour of the nonlinear system. For example, circles in the phase portrait may be converted
into spirals. We illustrate this in the following example.

Example. Consider the system

x′
1 = −x2 − x1(x

2
1 + x2

2),

x′
2 = x1 − x2(x

2
1 + x2

2).

The linearisation about the singular point (0, 0) gives rise to the matrix

[
0 −1
1 0

]

which has eigenvalues −i and i. Thus the phase portrait of the linear part comprises circles.
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Figure 2.16: Phase portrait.

If we introduce the polar coordinates r :=
√

x2
1 + x2

2 and θ = arctan(x2/x1), then we have
that

r′ = −r3,

θ′ = 1.

Thus we see that the trajectories approach the origin in spirals! ♦

Exercises. Use the linearisation theorem (Theorem 2.5.1), where possible, to describe the be-
haviour close to the equilibrium points of the following systems:

1.

{
x1 = ex1+x2 − x2,
x′

2 = −x1 + x1x2.

2.

{
x1 = x1 + 4x2 + ex1 − 1,
x′

2 = −x2 − x2e
x1 .

3.

{
x1 = x2,
x′

2 = −x3
1.

4.

{
x1 = sin(x1 + x2),
x′

2 = x2.

5.

{
x1 = sin(x1 + x2),
x′

2 = −x2.
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2.5.2 Limit cycles and the Poincaré-Bendixson theorem

In the phase portrait of the van der Pol equation shown in Figure 2.5, we suspected that the
system has a closed curve in the phase portrait, and moreover, trajectories starting inside that
curve, as well as trajectories starting outside that curve, all tended towards this curve, while a
motion starting on that curve would stay on it forever, circling periodically around the origin.
Such a curve is called a “limit cycle”, and we will study the exact definition later in this section.
Limit cycles are a unique feature that can occur only in a nonlinear system. Although in the
phase portrait in the middle of the top row of figures in Figure 2.11, we saw that if the real part of
the eigenvalues is zero, we have periodic trajectories, these are not limit cycles, since now matter
how close we start from such a periodic orbit, we can never approach it. We want to call those
closed curves limit cycles such that for all trajectories starting close to it, they converge to it either
as times increases to +∞ or decreases to −∞. In order to explain this further, we consider the
following example.

Examples. Consider the system

x′
1 = x2 − x1(x

2
1 + x2

2 − 1)

x′
2 = −x1 − x2(x

2
1 + x2

2 − 1).

By introducing polar coordinates r =
√

x2
1 + x2

2 and θ = arctan(x2/x1), the equations are trans-
formed into

r′ = −r(r2 − 1)

θ′ = −1.

When we are on the unit circle, we note that r′ = 0, and so we stay there. Thus the unit circle is a
periodic trajectory. When r > 1, then r′ < 0, and so we see that if we start outside the unit circle,
we tend towards the unit circle from the outside. On the other hand, if r < 1, then r′ > 0, and so
if we start inside the unit circle, we tend towards it from the inside. This can be made rigorous by

examining the analytical solution, given by r(t) =
(√

1 + (1/r2
0 − 1)e−2t

)−1

, θ(t) = θ0 − t, where

(r0, θ0) denotes the initial condition. So we have that all trajectories in the vicinity of the unit
circle converge to the unit circle as t → ∞.

Now consider the system

x′
1 = x2 + x1(x

2
1 + x2

2 − 1)

x′
2 = −x1 + x2(x

2
1 + x2

2 − 1).

Again by introducing polar coordinates (r, θ) as before, we now obtain

r′ = r(r2 − 1)

θ′ = −1.

When we are on the unit circle, we again have that r′ = 0, and so we stay there. Thus the unit
circle is a periodic trajectory. But now when r > 1, then r′ > 0, and so we see that if we start
outside the unit circle, we move away from the unit circle. On the other hand, if r < 1, then r′ < 0,
and so if we start inside the unit circle, we again move away from the unit circle. However, if we
start with an initial condition (r0, θ0) with r0 < 1, and go backwards in time, then we can show

that the solution is given by r(t) =
(√

1 + (1/r2
0 − 1)e2t

)−1

, θ(t) = θ0− t, and so we have that all

trajectories in the vicinity of the unit circle from inside converge to the unit circle as t → −∞. ♦
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In each of the examples considered above, we would like to call the unit circle a “limit cycle”.
This motivates the following definitions of ω- and α- limit points of a trajectory, and we will define
limit cycles using these notions.

Definition. Let x be a solution of x′ = f(x). A point x∗ is called an ω-limit point of x if there
is a sequence of real numbers (tn)n∈N such that lim

n→∞
tn = +∞ and lim

n→∞
x(tn) = x∗. The set of

all ω-limit points of x is denoted by Lω(x).

A point x∗ is called an α-limit point of x if there is a sequence of real numbers (tn)n∈N such
that lim

n→∞
tn = −∞ and lim

n→∞
x(tn) = x∗. The set of all α-limit points of x is denoted by Lα(x).

For example, if x∗ is a singular point, clearly Lω(x∗) = Lα(x∗) = x∗. We consider a few more
examples below.

Examples. Consider the system

{
x′

1 = −x1

x′
2 = x2,

which has the origin as a saddle singular point.

For any trajectory x starting on the x1-axis (but not at the origin), we have Lω(x) = (0, 0), while
Lα(x) = ∅. On the other hand, for any trajectory x starting on the x2-axis (but not at the origin),
Lω(x) = ∅, and Lα(x) = (0, 0). Finally, for any trajectory x that does not start on the x1- or the
x2-axis, the sets Lω(x) = Lα(x) = ∅.

Now consider the system

{
x′

1 = x2

x′
2 = x1,

for which all trajectories are periodic and are circles

in the phase portrait. For any trajectory starting from a point P , the sets Lω(x), Lα(x) are both
equal to the circle passing through P . ♦

We are now ready to define a limit cycle.

Definitions. A periodic trajectory is a nonconstant solution such that there exists a T > 0 such
that x(t) = x(t + T ) for all t ∈ R.

A limit cycle is a periodic trajectory that is contained in Lω(x) or Lα(x) for some other
trajectory x.

Limit cycles represent an important phenomenon in nonlinear systems. They can be found
often in engineering and nature. For example, aircraft wing fluttering is an instance of a limit
cycle frequently encountered which is sometimes dangerous. In an ecological system where two
species share a common resource, the existence of a limit cycle would mean that none of the species
becomes extinct. As one can see, limit cycles can be desirable in some cases, and undesirable in
other situations. In any case, whether or not limit cycles exist is an important question, and we
now study a few results concerning this. In particular, we will study an important result, called
the Poincaré-Bendixson theorem, for which we will need a few topological preliminaries, which we
list below.

Definitions. Two nonempty sets A and B in the plane R2 are said to be separated if there is
no sequence of points (pn)n∈N contained in A such that lim

n→∞
pn ∈ B, and there is no sequence

(qn)n∈N contained in B such that lim
n→∞

qn ∈ A.

A set that is not the union of two separated sets is said to be connected.
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A set O is open if for every x ∈ O, there exists a ǫ > 0 such that B(x, ǫ) ⊂ O.

A set Ω is called a region if it is an open, connected set.

A set A is said to be bounded if there exists a R > 0 large enough so that A ⊂ B(0, R).

For example, two disjoint circles in the plane are separated, while the quadrant {(x, y) ∈
R2 | x > 0, y > 0} is not separated from the x-axis.

Although the definition of a connected set seems technical, it turns out that sets that we would
intuitively think of as connected in a nontechnical sense are connected. For instance the annulus
{(x, y) ∈ R2 | 1 < x2 + y2 < 2} is connected, while the set Z2 is not.

Roughly speaking, an open set can be thought of as a set without its ‘boundary’. For example,
the unit disk {(x, y) ∈ R

2 | x2 + y2 < 1} is open.

The principal result is the following.

Theorem 2.5.2 (Poincaré-Bendixson) Let (x1, x2) be a solution to

{
x′

1 = f1(x1, x2),
x′

2 = f2(x1, x2),
such

that for all t ≥ t0, the solution lies in a bounded region of the plane containing no singular points.
Then either the solution is a periodic trajectory or its omega limit set is a periodic trajectory.

The proof requires advanced mathematical techniques to prove, and the proof will be omitted.
The Poincaré-Bendixson theorem is false for systems of dimension 3 or more. In the case of 2D
systems, the proof depends heavily on a deep mathematical result, known as the Jordan curve
theorem, which is valid only in the plane. Although the theorem sounds obvious, its proof is
difficult. We state this theorem below, but first we should specify what we mean by a curve.

Definitions. A curve is a continuous function f : [a, b] → R2. If for every t1, t2 ∈ [a, b] such that
t1 6= t2, there holds that f(t1) 6= f(t2), then the curve is called simple. A curve is called closed if
f(a) = f(b).

Theorem 2.5.3 (Jordan curve theorem) A simple closed curve divides the plane into two regions,
one of which is bounded, and the other is unbounded.

Figure 2.17: Jordan curve theorem.

Now that the inside of a curve is defined, the following result helps to clarify the type of region
to seek in order to apply the Poincaré-Bendixson theorem.



2.5. Phase plane analysis of nonlinear systems 43

Theorem 2.5.4 Every periodic trajectory of

{
x′

1 = f1(x1, x2)
x′

2 = f2(x1, x2)
contains a singular point in

its interior.

This theorem tells us that in order to apply the Poincaré-Bendixson theorem, the singular-
point-free-region where the trajectory lies must have at least one hole in it (for the singular point).

We consider a typical application of the Poincaré-Bendixson theorem.

Example.(∗) Consider the system

x′
1 = x1 + x2 − x1(x

2
1 + x2

2)[cos(x2
1 + x2

2)]
2

x′
2 = −x1 + x2 − x2(x

2
1 + x2

2)[cos(x2
1 + x2

2)]
2.

In polar coordinates, the equations are transformed into

r′ = r[1 − r2(cos r2)2]

θ′ = −1.

Consider a circle of radius r0 < 1 about the origin. If we start on it, then all trajectories move
outward, since

r′(t0) = r0[1 − r2
0(cos r2

0)
2] > r0[1 − r2

0 ] > 0.

Also if r(t0) =
√

π, then
r′(t0) =

√
π[1 − π] < 0,

and so trajectories starting on the circle with radius
√

π (or close to it) move inwards. Then it can
be shown that any trajectory starting inside the annulus r0 < r <

√
π stays there3. But it is clear

that there are no singular points inside the annulus r1 < r <
√

π. So this region must contain a
periodic trajectory. Moreover, it is also possible to prove that a trajectory starting inside the unit
circle is not a periodic trajectory (since it never returns to this circle), and hence its omega limit
set is a limit cycle. ♦.

It is also important to know when there are no periodic trajectories. The following theorem
provides a sufficient condition for the non-existence of periodic trajectories. In order to do that,
we will need the following definition.

Definition. A region Ω is said to be simply connected if for any simple closed curve C lying
entirely within Ω, all points inside C are points of Ω.

For example, the annulus 1 < r < 2 is not simply connected, while the unit disk r < 1 is.

Theorem 2.5.5 Let Ω be a simply connected region in R2. If the function
∂f1

∂x1
+

∂f2

∂x2
is not

identically zero in Ω and does not change sign in Ω, then there are no periodic trajectories of

x′
1 = f1(x1, x2)

x′
2 = f2(x1, x2)

in the region Ω.

3Indeed, for example if the trajectory leaves the annulus, and reaches a point r∗ inside the inner circle at time
t∗, then go “backwards” along this trajectory and find the first point t1 such that r(t1) = r0. We then arrive at

the contradiction that r∗ − r0 = r(t∗) − r(t1) =
R

t∗

t1
r′(t)dt > 0. The case of the trajectory leaving the outer circle

of the annulus can be handled similarly.
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Proof (Sketch.) Assume that a periodic trajectory exists with period T , and denote the curve
by C. Using Green’s theorem, we have

∫∫ (
∂f1

∂x1
+

∂f2

∂x2

)
dx1dx2 =

∫

C

f2dx1 − f1dx2.

But ∫

C

f2dx1 − f1dx2 =

∫ T

0

(f2(x1(t), x2(t))x
′
1(t) − f1(x1(t), x2(t))x

′
2)dt = 0,

a contradiction.

Example. Consider the system

x′
1 = x2 + x1x

2
2,

x′
2 = −x1 + x2

1x2.

Since (
∂f1

∂x1
+

∂f2

∂x2

)
= x2

1 + x2
2,

which is always strictly positive (except at the origin), the system does not have any periodic
trajectories in the phase plane. ♦.

Exercises.

1. Show that the sets A = {(x, y) ∈ R2 | xy = 1} and B = {(x, y) ∈ R2 | xy = 0} are separated.

2. Show that the system

x′
1 = 1 − x1x2

x′
2 = x1

has no limit cycles.

Hint: Are there any singular points?

3. Show that the system

x′
1 = x2

x′
2 = −x1 − (1 + x2

1)x2

has no periodic trajectories in the phase plane.

4. Prove that if the system

x′
1 = −x2 + x1(1 − x2

1 − x2
2)

x′
2 = x1 + x2(1 − x2

1 − x2
2) +

3

4
,

has a periodic trajectory starting inside the circle C x2
1 +x2

2 = 1
2 , then it will either intersect

C.

Hint: Consider the simply connected region x2
1 + x2

2 < 1
2 .



Chapter 3

Stability theory

Given a differential equation, an important question is that of the stability. In everyday language,
we say that “something is unstable” if a small deviation from the present state produces a major
change in the state. A familiar example is that of a pendulum balanced vertically upwards. A
small change in the position produces a major change–the pendulum falls. However, if on the
other hand, the pendulum is at its lowest position, for small changes in the position, the resulting
motion keeps the pendulum around the down position. In this chapter we will make these, and
related ideas, precise in the context of solutions of systems of differential equations. Roughly
speaking, a system is described as stable if by starting somewhere near its ‘equilibrium’ point
implies that it will stay around that point ever after. In the case of the motions of a pendulum,
the equilibrium points are the vertical up and down positions, and these are examples of unstable
and stable points, respectively.

Having defined the notions of stable and unstable equilibrium points, we will begin with some
elementary stability considerations, namely the stability of linear systems x′ = Ax, which can be
characterized in terms of signs of the real parts the eigenvalues of the matrix A.

In the case of general nonlinear systems, such a neat characterization is not possible. But
a useful approach for studying stability was introduced in the late 19th century by the Russian
mathematician Alexander Lyapunov, in which stability is determined by constructing a scalar
“energy-like” function for the differential equation, and examining its time variation. In this
chapter we will also study the basics of Lyapunov theory.

3.1 Equilibrium point

It is possible for a solution to correspond to only a single point in the phase portrait. Such a point
is called an equilibrium point. Stability will be formulated with respect to an equilibrium point,
that is, it is a particular equilibrium point of a differential equation for which the adjective stable,
unstable etc. applies.

Definition. A point xe ∈ R
n is called an equilibrium point of the differential equation

x′(t) = f(x(t)),

if f(xe) = 0.

45
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Recall that in the context of phase plane analysis of 2D autonomous systems, we had referred
to equilibrium points also as ‘singular points’.

Note that x(t) = xe for all t ≥ 0 is a solution to the equation

x′(t) = f(x(t)), x(0) = xe,

that is, if we start from xe, then we stay there for all future time, and hence the name ‘equilibrium’
(which usually means ‘state of balance’ in ordinary language).

Example. (Linear system) If A ∈ Rn×n and f : Rn → Rn is given by f(x) = Ax, x ∈ Rn, then
there are two possible cases:

1◦ A is invertible. The only equilibrium point in this case is the zero vector, that is, xe = 0.

2◦ A is not invertible. In this case, there are infinitely many equilibrium points. Indeed, the
set of equilibrium points is precisely the set of points in the kernel of A. ♦

A nonlinear system can have finite or infinitely many isolated equilibrium points. In the
following example we consider the familiar physical system of the pendulum.

Example. (The pendulum) Consider the pendulum shown in Figure 3.1, whose dynamics is given
by the following nonlinear equation:

ml2θ′′ + kθ′ + mgl sin θ = 0,

where k is a friction coefficient, m is the mass of the bob, l is the length of the pendulum, and g

θ

m

k

l

Figure 3.1: The pendulum.

is the acceleration due to gravity. Defining x1 = θ and x2 = θ′, we obtain the state equations

x′
1 = x2

x′
2 = − k

ml2
x2 −

g

l
sin x1.

Therefore the equilibrium points are given by

x2 = 0, sin x1 = 0,

which leads to the points (nπ, 0), n ∈ Z. Physically, these points correspond to the pendulum
resting exactly at the vertically up (n odd) and down (n even) positions. ♦

Exercise. (∗) Determine the number of equilibrium points of the system x′ = x − cosx.
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3.2 Stability and instability

Let us introduce the basic concepts of stability and instability.

Definitions. An equilibrium point xe is said to be stable if for any R > 0, there exists a r > 0
such that if ‖x(0) − xe‖ ≤ r, then for all t ≥ 0, ‖x(t) − xe‖ ≤ R.

Otherwise, the equilibrium point x0 is called unstable.

Essentially stability means that the trajectories can be kept arbitrarily close to the equilibrium
point by starting sufficiently close to it. It does not mean that if we start close to the equilibrium
point, then the solution approaches the equilibrium point, and the Figure 3.2 emphasizes this
point. This other stronger version of stability when trajectories do tend to the equilibrium point
is called asymptotic stability, which we will define in the next section.

xe

x(0)

r

R

t

Figure 3.2: Stable equilibrium.

The definition of a stable equilibrium point says that no matter what small ball B(xe, R) is
specified around the point xe, we can always find a somewhat smaller ball with radius r (which
might depend on the radius R of the big ball), such that if we start from within the small ball
B(xe, r) we are guaranteed to stay in the big ball for all future times.

On the other hand, an equilibrium point is unstable if there exists at least one ball B(xe, R)
such that for every r > 0, no matter how small, it is always possible to start from somewhere
within the small ball B(xe, r) and eventually leave the ball B(xe, R).

It is important to point out the qualitative difference between instability and the intuitive
notion of “blowing up”. In the latter, one expects the trajectories close to the equilibrium to move
further and further away. In linear systems, instability is indeed equivalent to blowing up, because
eigenvalues in the right half plane always lead to growth of the system states in some direction.
However, for nonlinear systems, blowing up is only one way of instability. The following example
illustrates this point.

Example. (van der Pol oscillator) This example shows that

Unstable is not the same as “blowing up”.

The van der Pol oscillator is described by

x′
1 = x2,

x′
2 = −x1 + (1 − x2

1)x2.
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The system has an equilibrium point at the origin.

–3

–2

–1

0

1

2

3

x2

–3 –2 –1 1 2 3

x1

Figure 3.3: Unstable equilibrium of the van der Pol equation.

The solution trajectories starting from any non-zero initial states all asymptotically approach
a limit cycle. Furthermore, the ball B(0, 1) can be shown to be within the phase-plane region
enclosed by the limit cycle. Therefore, solution trajectories starting from an arbitrarily small ball
B(0, r) will eventually get out of the ball B(0, 1) to approach the limit cycle; see Figure 3.3. This
implies that the origin is an unstable equilibrium point.

Thus, even though the solutions starting from points near the equilibrium point do not blow
up (in fact they do remain close to the equilibrium point), they do not remain arbitrarily close to
it. This is the fundamental distinction between stability and instability. ♦

Exercise. For what values of a is 0 a stable equilibrium point for the system x′ = ax?

3.3 Asymptotic and exponential stability

Sometimes it can happen that trajectories actually approach the equilibrium point. This motivates
the following definition.

Definition. An equilibrium point xe is called asymptotically stable if it is stable and there exists
a r > 0 such that if ‖x(0) − xe‖ ≤ r, then lim

t→∞
x(t) = 0.

Asymptotic stability means that the equilibrium is stable, and that in addition, if we start
close to xe, the solution actually converges to xe as the time tends to ∞; see Figure 3.4.

One may question the need for the explicit stability requirement in the definition above.
One might think: Doesn’t convergence to the equilibrium already imply that the equilibrium is
stable? The answer is no. It is possible to build examples showing that solution convergence to
an equilibrium point does not imply stability. For example, a simple system studied by Vinograd
has trajectories of the form shown in Figure 3.5. All the trajectories from nonzero initial points
within the unit disk first reach the curve C before converging to the origin. Thus the origin is
unstable, despite the convergence. Calling such an equilibrium point unstable is quite reasonable,
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xe

x(0)

r
t

Figure 3.4: Asymptotically stable equilibrium.

since a curve such as C might be outside the region where the model is valid.

x1

x2

C

Figure 3.5: Asymptotically stable, but not stable, equilibrium.

In some applications, it is not enough to know that solutions converge to the equilibrium point,
but there is also a need to estimate how fast this happens. This motivates the following concept.

Definition. An equilibrium point xe is called exponentially stable if there exist positive numbers
M , ǫ and r such that for all ‖x(0) − xe‖ ≤ r, we have

for all t ≥ 0, ‖x(t) − xe‖ ≤ Me−ǫt. (3.1)

In other words, the solutions converge to xe faster than the exponential function, and (3.1)
provides an explicit bound on the solution.

Example. The point 0 is an exponentially stable equilibrium point for the system

x′ = −(1 + (sinx)2)x.

Indeed it can be seen that the solution satisfies

x(t) = x(0) exp

(
−
∫ t

0

[
1 + (sin(x(τ)))2

]
dτ

)

(check this by differentiation!). Therefore, |x(t)| ≤ |x(0)|e−t. ♦

Note that exponential stability implies asymptotic stability. However, asymptotic stability
does not guarantee exponential stability, as demonstrated by the following example.
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Example. Consider the equation x′ = −x3. It can be shown that this has the solution

x(t) =






1
q

2t+ 1
(x(0))2

if x(0) ≥ 0,

− 1
q

2t+ 1
(x(0))2

if x(0) < 0,

for t ≥ 0. It can be seen that 0 is an asymptotically stable equilibrium point. But we now prove
that it is not exponentially stable. Suppose, on the contrary, that there exist positive M , ǫ and r
such that for all |x(0)| ≤ r, the corresponding solution x is such that for all t ≥ 0, |x(t)| ≤ Me−ǫt.
Then with x(0) = r, we would have that

∀t ≥ 0,
1√

2t + 1
r2

≤ Me−ǫt. (3.2)

Since for t ≥ 0 we have eǫt = 1 + ǫt + (ǫt)2/2 + · · · ≥ ǫt, it follows that e−ǫt ≤ 1/ǫt. From (3.2), it
follows that

∀t > 0, 1 ≤ M2

ǫ2

(
2

t
+

1

r2t2

)
.

Passing the limit as t → ∞, we obtain 1 ≤ 0, a contradiction. ♦

Exercise. For what values of a is 0 an asymptotically stable equilibrium point for the system
x′ = ax? When is it exponentially stable?

3.4 Stability of linear systems

In the scalar example x′ = ax discussed in Section 1.4, we observe that if Re(a) < 0, then the
equilibrium point 0 is exponentially stable, while if Re(a) > 0, then the equilibrium point is
unstable. Analogously, from Theorem 1.7.2, we obtain the following corollary.

Corollary 3.4.1 The equilibrium point 0 of the system x′ = Ax is exponentially stable if for all
λ ∈ σ(A), Re(λ) < 0. The equilibrium point 0 of the system x′ = Ax is unstable if there exists a
λ ∈ σ(A) such that Re(λ) > 0.

Using Theorem 2.5.1, we can sometimes deduce the stability of an equilibrium point of 2D
nonlinear system by linearisation.

As illustrated in the Examples on page 20, in the case when the real part of the eigenvalues is
zero, then the stability depends on the number of independent eigenvectors associated with these
eigenvalues.

Definition. Let A ∈ Rn×n, and let λ ∈ σ(A). The dim(ker(λI − A)) is called the geometric
multiplicity of the eigenvalue λ. The multiplicity of λ as a root of the characteristic polynomial of
A is called the algebraic multiplicity of the eigenvalue λ.

Example. If A =

[
0 1
0 0

]
, then the geometric multiplicity of the eigenvalue 0 is equal to 1,

while its algebraic multiplicity is 2.

If A =

[
0 0
0 0

]
, then the geometric multiplicity and the algebraic multiplicity of the eigen-

value 0 are both equal to 2. ♦
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We state the following criterion for stability of 0 for the system x′ = Ax without proof.

Theorem 3.4.2 Suppose that all the eigenvalues of A have nonnegative real parts. The equilib-
rium point 0 of the system x′ = Ax is stable iff all eigenvalues with zero real part have their
algebraic multiplicity equal to the geometric multiplicity.

Exercises.

1. Determine the stability of the system x′ = Ax, where A is

(a)

[
1 0
0 −1

]

(b)




1 1 0
0 −2 −1
0 0 −1





(c)




1 1 1
1 0 1
0 0 −2




(d)




−1 0 0
0 −2 0
1 0 −1




(e)




0 1 0
0 0 1
0 0 0





(f)

[
0 1
−1 0

]
.

2. For the following systems, find the equilibrium points, and determine their stability. Indicate
whether the stability is asymptotic.

(a)

{
x′

1 = x1 + x2

x′
2 = −x2 + x3

1.

(b)

{
x′

1 = −x1 + x2

x′
2 = −x2 + x3

1.

3.5 Lyapunov’s method

The basic idea behind Lyapunov’s method is the mathematical extension of a fundamental physical
observation:

If the energy of a system is continuously dissipated,
then the system eventually settles down to an equilibrium point.

Thus, we may conclude the stability of a system by examining the variation of its energy, which
is a scalar function.

In order to illustrate this, consider for example a nonlinear spring-mass system with a damper,
whose dynamic equation is

mx′′ + bx′|x′| + k0x + k1x
3 = 0,

where



52 Chapter 3. Stability theory

x denotes the displacement,

bx′|x′| is the term corresponding to nonlinear damping,

k0x + k1x
3 is the nonlinear spring force.

Assume that the mass is pulled away by some distance and then released. Will the resulting motion
be stable? It is very difficult to answer this question using the definitions of stability, since the
general solution of the nonlinear equation is unavailable. However, examination of the energy of
the system can tell us something about the motion pattern. Let E denote the mechanical energy,
given by

E =
1

2
m(x′)2 +

∫ x

0

(k0x + k1x
3)dx =

1

2
m(x′)2 +

1

2
k0x

2 +
1

4
k1x

4.

Note that zero energy corresponds to the equilibrium point (x = 0 and x′ = 0):

E = 0 iff [x = 0 and x′ = 0].

Asymptotic stability implies the convergence of E to 0. Thus we see that the magnitude of a
scalar quantity, namely the mechanical energy, indirectly says something about the magnitude of
the state vector. In fact we have

E′ = mx′x′′ + (k0x + k1x
3)x′ = x′(−bx′|x′|) = −b|x′|3,

which shows that the energy of the system is continuously decreasing from its initial value. If it
has a nonzero limit, then we note that x′ must tend to 0, and then from physical considerations,
it follows that x must also tend to zero, for the mass is subjected to a nonzero spring force at any
position other than the natural length.

Lyapunov’s method is a generalization of the method used in the above spring-mass system to
more complex systems. Faced with a set of nonlinear differential equations, the basic procedure of
Lyapunov’s method is to generate a scalar ‘energy-like’ function for the system, and examine the
time-variation of that scalar function. In this way, conclusions may be drawn about the stability of
the set of differential equations without using the difficult stability definitions or requiring explicit
knowledge of solutions.

3.6 Lyapunov functions

We begin this section with this remark: In the following analysis, for notational simplicity, we
assume that the system has been transformed so that equilibrium point under consideration is the
origin. We can do this as follows. Suppose that xe is the specific equilibrium point of the system
x′ = f(x) under consideration. Then we introduce the new variable y = x − xe, and we obtain
the new set of equations in y given by

y′ = f(y + xe).

Note that this new system has 0 as an equilibrium point. As there is a one-to-one correspondence
between the solutions of the two systems, we develop the following stability analysis assuming
that the equilibrium point of interest is 0.

The energy function has two properties. The first is a property of the function itself: it is
strictly positive unless the state variables are zero. The second property is associated with the
dynamics of the system: the function is decreasing when we substitute the state variables into the
function, and view the overall function as a function of time. We give the precise definition below.
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Definition. A function V : Rn → R is called a Lyapunov function for the differential equation

x′ = f(x) (3.3)

if there exists a R > 0 such that in the ball B(0, R), V has the following properties:

L1. (Local positive definiteness) For all x ∈ B(0, R), V (x) ≥ 0.

If x ∈ B(0, R) and V (x) = 0, then x = 0.

V (0) = 0.

L2. V is continuously differentiable, and for all x ∈ B(0, R), ∇V (x) · f(x) ≤ 0.

If in addition to L1 and L2, a function satisfies

L3. ∇V (x) · f(x) = 0 iff x = 0. Here ∇V :=

[
∂V

∂x1
. . .

∂V

∂xn

]
.

then V is called a strong Lyapunov function.

For example, the function V given by

V (x1, x2) =
1

2
ml2x2

2 + mgl(1 − cosx1), (3.4)

which is the mechanical energy of the pendulum (see the Example on page 46), is locally positive
definite, that is, it satisfies L1 above.

If the R in L1 can be chosen to be arbitrarily large, then the function is said to be globally
positive definite. For instance, the mechanical energy of the spring-mass system considered in the
previous section is globally positive definite. Note that for this system, the kinetic energy

1

2
mx2

2 =
1

2
m(x′)2

is not positive definite by itself, because it can be equal to zero for nonzero values of the position
x1 = x.

Let us describe the geometrical meaning of locally positive definite functions on R2. If we plot
V (x1, x2) versus x1, x2 in 3-dimensional space, it typically corresponds to a surface looking like
an upward cup, and the lowest point of the cup is located at the origin. See Figure 3.6.

x1

x2

x(t)

V (x(t))

Figure 3.6: Lyapunov function.

We now observe that L2 implies that the ‘energy’ decreases with time. Define v : [0,∞) → R

by v(t) = V (x(t)), t ≥ 0, where x is a solution to (3.3). Now we compute the derivative with
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respect to time of v (that is, of the map t 7→ V (x(t))), where x is a solution to x′ = f(x). By the
chain rule we have

v′(t) =
d

dt
(V (x(t)) = ∇V (x(t)) · x′(t) = ∇V (x(t)) · f(x(t)).

Since L2 holds, we know that if x(t) lies within B(0, R), then for all t ≥ 0, v′(t) ≤ 0. In Figure 3.6,
we see that corresponding to a point x(t) in the phase plane, we have the value v(t) = V (x(t)) on
the inverted cup. As time progresses, the point moves along the surface of the inverted cup. But
as v(t) decreases with time (in B(0, R)), the point on the surface is forced to move to the origin
if we start within B(0, R). In this manner we can prove stability and asymptotic stability. We do
this in the next section.

Exercise. Verify that (3.4) is a Lyapunov function for the system in the Example on page 46.

3.7 Sufficient condition for stability

Theorem 3.7.1 Let the system x′ = f(x) have an equilibrium point at 0.

1. If there exists a Lyapunov function V for this system, then the equilibrium point 0 is stable.

2. If there exists a strong Lyapunov function, then 0 is asymptotically stable.

Proof (Sketch) 1. To show stability we must show that given any R > 0, there exists a r > 0
such that any trajectory starting inside B(0, r) remains inside the ball B(0, R) for all future time.

x(·)

S(0, R)

B(0, r)

0

Figure 3.7: Proof of stability.

Let m be the minimum of V on the sphere S(0, R) = {x ∈ Rn | ‖x‖ = R}. Since V
is continuous (and S(0, R) is compact), the minimum exists, and as V is positive definite, m is
positive. Furthermore, since V (0) = 0, there exists a r > 0 such that for all x ∈ B(0, r), V (x) < m;
see Figure 3.7.

Consider now a trajectory whose initial point x(0) is within the ball B(0, r). Since t 7→ V (x(t))
is nonincreasing, V (x(t)) remains strictly smaller than m, and therefore, the trajectory cannot
possibly cross the outside sphere S(0, R). Thus, any trajectory starting inside the ball B(0, r)
remains inside the ball B(0, R), and therefore stability of 0 is guaranteed.
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2. Let us now assume that x 7→ ∇V (x) · f(x) is negative definite, and show asymptotic stability
by contradiction. Consider a trajectory starting in some ball B(0, r) as constructed above corre-
sponding to some R where the negative definiteness holds. Then the trajectory will remain in the
ball B(0, R) for all future time. Since V is bounded below and t 7→ V (x(t)) decreases continually,
V (x(t)) tends to a limit L, such that for all t ≥ 0, V (x(t)) ≥ L. Assume that this limit is not
0, that is, L > 0. Then since V is continuous and V (0) = 0, there exists a ball B(0, r0) that the
solution never enters; see Figure 3.8.

���
���
���

���
���
���

x(·)

S(0, R)

B(0, r)

B(0, r0)

Ω 0

Figure 3.8: Proof of asymptotic stability.

But then, since x 7→ −∇V (x) · f(x) is continuous and positive definite, and since the set
Ω = {x ∈ Rn | r0 ≤ ‖x‖ ≤ R} is compact, x 7→ −∇V (x) · f(x) : Ω → R has some minimum value
L1 > 0.

This is a contradiction, because it would imply that v(t) := V (x(t)) decreases from its initial

value v(0) = V (x(0)) to a value strictly smaller than L, in a finite time T0 > v(0)−L
L1

≥ 0: indeed
by the fundamental theorem of calculus, we have

v(t) − v(0) =

∫ T0

0

v′(t)dt =

∫ T0

0

∇V (x(t)) · f(x(t))dt ≤
∫ T0

0

−L1dt = −L1T0 < L − v(0)

and so v(t) < L. Hence all trajectories starting in B(0, r) asymptotically converge to the origin.

Example. A simple pendulum with viscous damping is described by

θ′′ + θ′ + sin θ = 0.

Defining x1 = θ and x2 = θ′, we obtain the state equations

x′
1 = x2 (3.5)

x′
2 = −x2 − sin x1. (3.6)

Consider the function V : R2 → R given by

V (x1, x2) = (1 − cosx1) +
1

2
x2

2.

Thsi function is locally positive definite (Why?). As a matter of fact, this function represents the
total energy of the pendulum, composed of the sum of the potential energy and the kinetic energy.
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We observe that

∇V (x) · f(x) =
[

sin x1 x2

]
·
[

x2

−x2 − sin x1

]
= −x2

2 ≤ 0.

(This is expected since the damping term absorbs energy.) Thus by invoking the above theorem,
one can conclude that the origin is a stable equilibrium point. However, with this Lyapunov
function, one cannot draw any conclusion about whether the equilibrium point is asymptotically
stable, since V is not a strong Lyapunov function. But by considering yet another Lyapunov
function, one can show that 0 is an asymptotically stable equilibrium point, and we do this in
Exercise 1 below. ♦

Exercises.

1. Prove that the function V : R2 → R given by

V (x1, x2) =
1

2
x2

2 +
1

2
(x1 + x2)

2 + 2(1 − cosx1)

is also a Lyapunov function for the system (3.5)-(3.6) (although this has no obvious physical
meaning). Prove that this function is in fact a strong Lyapunov function. Conclude that
the origin is an asymptotically stable equilibrium point for the system.

2. Consider the system

x′
1 = x2 − x1(x

2
1 + x2

2) (3.7)

x′
2 = −x1 − x2(x

2
1 + x2

2). (3.8)

Let V : R2 → R given by V (x1, x2) = x2
1 + x2

2.

(a) Verify that V is a Lyapunov function. Is it a strong Lyapunov function?

(b) Prove that the origin is an asymptotically stable equilibrium point for the system (3.7)-
(3.8).



Chapter 4

Existence and uniqueness

4.1 Introduction

A major theoretical question in the study of ordinary differential equations is: When do solutions
exist? In this chapter, we study this question, and also the question of uniqueness of solutions.

To begin with, note that in Chapter 1, we have shown the existence and uniqueness of the
solution to

x′ = Ax, x(t0) = x0.

Indeed, the unique solution is given by x(t) = e(t−t0)Ax0.

It is too much to expect that one can show existence by actually giving a formula for the
solution in the general case:

x′ = f(x, t), x(0) = x0.

Instead one can prove a theorem that asserts the existence of a unique solution if the function f
is not ‘too bad’. We will prove the following “baby version” of such a result.

Theorem 4.1.1 Consider the differential equation

x′ = f(x, t), x(t0) = C, (4.1)

where f : R → R is such that there exists a constant L such that for all x1, x2 ∈ R, and all t ≥ t0,

|f(x1, t) − f(x2, t)| ≤ L|x1 − x2|.

Then there exists a t1 > t0 and a x ∈ C1[t0, t1] such that x(t0) = x0 and x′(t) = f(x(t), t) for all
t ∈ [t0, t1].

We will state a more general version of the above theorem later on (which is for nonscalar f ,
that is, for a system of equations). The proof of this more general theorem is very similar to the
proof of Theorem 4.1.1.

The next few sections of this chapter will be spent in proving Theorem 4.1.1. Before we get
down to gory detail, though, we should discuss the method of proof.

Let us start with existence. The simplest way to prove that an equation has a solution is to
write down a solution. Unfortunately, this seems impossible in our case. So we try a variation.

57
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We write down functions which, while not solutions, are very good approximations to solutions:
they miss solving the differential equations by less and less. Then we try to take the limit of these
approximations and show that it is an actual solution.

Since all those words may not be much help, let’s try an example. Suppose that we want to
solve x2 − 2 = 0. Here’s a method: pick a number x0 > 0, and let

x1 =
1

2

(
x0 +

2

x0

)
,

x2 =
1

2

(
x1 +

2

x1

)
,

x3 =
1

2

(
x2 +

2

x2

)
,

and so on. We get a sequence of numbers whose squares get close to 2 rather rapidly. For instance,
if x0 = 1, then the sequence goes

1,
3

2
,
17

12
,
577

408
,
656657

470832
, . . . ,

and the squares are

1, 2
1

4
, 2

1

144
, 2

1

166464
, 2

1

221682772224
, . . . .

Presumably the xn’s approach a limit, and this limit is
√

2. Proving this has two parts. First,
let’s see that the numbers approach a limit. Notice that

x2
n − 2 =

1

4

(
xn−1 +

2

xn−1

)2

− 2 =
1

4

(
xn−1 −

2

xn−1

)2

≥ 0,

and so x2
n ≥ 2 for all n ≥ 1. Clearly xn > 0 for all n (recall that x0 > 0). But then

xn − xn−1 =
1

2

(
xn−1 +

2

xn−1

)
− xn−1 =

1

2xn−1
(2 − x2

n−1) < 0.

Hence (xn)n≥1 is decreasing, but is also bounded below (by 0), and therefore it has a limit.

Now we need to show that the limit is
√

2. This is easy. Suppose the limit is L. Then as

xn+1 =
1

2

(
xn +

2

xn

)
,

taking1 limits, we get L = 1
2

(
L + 2

L

)
, and so L2 = 2. So L does indeed equal

√
2, that is, we have

constructed a solution to the equation x2 − 2 = 0.

The iterative rule xn+1 = (xn+2/xn)/2 may seem mysterious, and in part, it is constructed by
running the last part of the proof backwards. Suppose x2−2 = 0. Then x = 2/x, or 2x = x+2/x,
or x = (x+2/x)/2. Now think of this equation not as an equation, but as a formula for producing
a sequence, and we are done.

Analogously, in order to prove Theorem 4.1.1, we will proceed in 3 steps:

1. Take the equation, manipulate it cleverly, and turn it into a rule for producing a sequence
of approximate solutions to the equation.

2. Show that the sequence converges.

3. Show that the limit solves the equation.

1To be precise, this is justified (using the algebra of limits) provided that lim
n→∞

xn 6= 0. But since x2
n > 2,

xn > 1 for all n, so that surely L ≥ 1.
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4.2 Analytic preliminaries

In order to prove Theorem 4.1.1, we need to develop a few facts about calculus in the vector space
C[a, b]. In particular, we need to know something about when two vectors from C[a, b] (which are
really two functions!) are “close”. This is needed, since only then can we talk about a a convergent
sequence of approximate solutions, and carry out the plan mentioned in the previous section.

It turns out that just as Chapter 1, in order to prove convergence of the sequence of matrices,
we used the matrix norm given by (1.16), we introduce the following “norm” in the vector space
C[a, b]: it is simply the function ‖ · ‖ : C[a, b] → R defined by

‖f‖ = sup
t∈[a,b]

|f(t)|,

for f ∈ C[a, b]. (By the Extreme Value Theorem, the “sup” above can be replaced by “max”, since
f is continuous on [a, b].) With the help of the above norm, we can discuss distances in C[a, b].
We think of ‖f − g‖ as the distance between functions f and g in C[a, b]. So we can also talk
about convergence:

Definition. Let (fk)k∈N be a sequence in C[a, b]. The series

∞∑

k=1

fk is said to be convergent if

there exists a f ∈ C[a, b] such that for every ǫ > 0, there exists a N ∈ N such that for all n > N ,
there holds that ∥∥∥∥∥

n∑

k=1

fk − f

∥∥∥∥∥ < ǫ.

The series

∞∑

n=1

fn is said to be absolutely convergent if the real series

∞∑

k=1

‖fk‖ converges, that is,

there exists a S ∈ R so that for every ǫ > 0, there exists a N ∈ N such that for all n > N , there
holds that ∣∣∣∣∣

n∑

k=1

‖fk‖ − S

∣∣∣∣∣ < ǫ.

Now we prove the following remarkable result, we will will use later in the next section to
prove our existence theorem about differential equations.

Theorem 4.2.1 Absolutely convergent series in C[a, b] converge, that is, if

∞∑

k=1

‖fk‖ converges in

R, then

∞∑

k=1

fk converges in C[a, b].

Note the above theorem gives a lot for very little. Just by having convergence of a real series,
we get a much richer converge–namely that of a sequence of functions in ‖ · ‖–which in particular
gives pointwise convergence in [a, b], that is we get convergence of an infinite family of sequences!
Indeed this remarkable proof works since it is based on the notion of “uniform” convergence of
the functions–convergence in the norm gives a uniform rate of convergence at all points t, which
is stronger than simply saying that at each t the sequence of partial sums converge.

Proof Let t ∈ [a, b]. Then |fk(t)| ≤ ‖fk‖. So by the Comparison Test, it follows that the real

series

∞∑

k=1

|fk(t)| converges, and so the series

∞∑

k=1

fk(t) also converges, and let f(t) =

∞∑

k=1

fk(t). So
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we obtain a function t 7→ f(t) from [a, b] to R. We will show that f is continuous on [a, b] and

that

∞∑

k=1

fk converges to f in [a, b].

The real content of the theorem is to prove that f is a continuous function on [a, b]. First
let us see what we have to prove. To prove that f is continuous on [a, b], we must show that it
is continuous at each point c ∈ [a, b]. To prove that f is continuous at c, we must show that for
every ǫ > 0, there exists a δ > 0 such that if t ∈ [a, b] satisfies |t − c| < δ, then |f(t) − f(c)| < ǫ.
We prove this by finding a continuous function near f . Assume that c and ǫ have been picked.

Since

∞∑

k=1

‖fk‖ is finite, we can choose an N ∈ N such that

∞∑

k=N+1

‖fk‖ <
ǫ

3
. Let sN (t) =

N∑

k=1

fk(t).

Then sN is continuous, since it is the sum of finitely many continuous functions, and

|sN (t) − f(t)| =

∣∣∣∣∣

∞∑

k=N+1

fk(t)

∣∣∣∣∣ ≤
∞∑

k=N+1

|fk(t)| ≤
∞∑

k=N+1

‖fk‖ <
ǫ

3
,

regardless of t. (This last part is the crux of the proof.) Since sN is continuous, we can pick δ > 0
so that if |t − c| < δ, then |sN (t) − sN (c)| < ǫ

3 . This is the delta we want: if |t − c| < δ, then

|f(t) − f(c)| ≤ |f(t) − sN (t)| + |sN (t) − sN (c)| + |sN (c) − f(c)| <
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.

This proves the continuity of f .

The rest of the proof is straightforward. We have:
∣∣∣∣∣

n∑

k=1

fk(t) − f(t)

∣∣∣∣∣ =

∣∣∣∣∣

∞∑

k=n+1

fk(t)

∣∣∣∣∣ ≤
∞∑

k=n+1

|fk(t)| ≤
∞∑

k=n+1

‖fk‖ n→∞−→ 0.

This shows that

∞∑

k=1

fk converges to f in C[a, b].

Theorem 4.2.2 Suppose
∞∑

k=1

fk converges absolutely to f in C[a, b]. Then

∞∑

k=1

∫ b

a

fk(t)dt =

∫ b

a

f(t)dt.

Proof We need to show that for any ǫ > 0, there exists an N ∈ N such that for all n > N ,
∣∣∣∣∣

n∑

k=1

∫ b

a

fk(t)dt −
∫ b

a

f(t)dt

∣∣∣∣∣ < ǫ.

Choose N such that if n ≥ N , then
∞∑

k=n+1

‖fk‖ <
ǫ

b − a
. So

∣∣∣∣∣

n∑

k=1

fk(t) − f(t)

∣∣∣∣∣ =

∣∣∣∣∣

∞∑

k=n+1

fk(t)

∣∣∣∣∣ ≤
∞∑

k=n+1

|fk(t)| ≤
∞∑

k=n+1

‖fk‖ <
ǫ

b − a
.

But then∣∣∣∣∣

n∑

k=1

∫ b

a

fk(t)dt −
∫ b

a

f(t)dt

∣∣∣∣∣ =

∣∣∣∣∣

∫ b

a

(
n∑

k=1

fk(t) − f(t))dt

∣∣∣∣∣ ≤
∫ b

a

|
n∑

k=1

fk(t) − f(t)|dt ≤
∫ b

a

ǫ

b − a
dt = ǫ.
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4.3 Proof of Theorem 4.1.1

4.3.1 Existence

Step 1. The first step in the proof is to change the equation into one which we can use for
creating a sequence. The principle for doing this is a useful and important one. We want to
arrange matters so that successive terms are close together. For this, integration is much better
than differentiation. Two functions that are close together have their integrals close together2,
but their derivatives can be far apart3.

So we should change (4.1) into something involving integrals. The easiest way to do this is to
integrate both sides. Taking into account the initial condition, we see that we get

x(t) − C =

∫ t

t0

f(x(t), t)dt,

that is,

x(t) =

∫ t

t0

f(x(t), t)dt + C.

Now we can construct our sequence.

We begin with
x0(t) = C,

and define x1, x2, x3, . . . inductively:

x1(t) =

∫ t

t0

f(x0(t), t)dt + C,

x2(t) =

∫ t

t0

f(x1(t), t)dt + C,

...

xk+1(t) =

∫ t

t0

f(xk(t), t)dt + C,

and so on. All the functions x0, x1, . . . are continuous functions. This is the sequence we will work
with.

Step 2. We want to show that the sequence of functions x0, x1, x2, . . . converges. This sequence
is the sequence of partial sums of the series

x0 + (x1 − x0) + (x2 − x1) + . . . .

So we will prove that this series, namely

x0 +

∞∑

k=0

(xk+1 − xk)

converges. In order to do this, we show that it converges absolutely, and then by Theorem 4.2.1,
we would be done.

2At least for a while. As the interval of integration gets large, the functions drift apart.
3For instance, let f(x) = 1

1010 sin(10100x), a function close to 0. If we integrate, then we get − 1

10110 cos(10100x),

which is really tiny; if we differentiate, we get 1090 cos(10100x), which can get very large.
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Thus we need to look at xk+1 − xk:

xk+1(t) − xk(t) =

∫ t

t0

[f(xk(t), t) − f(xk−1(t), t)]dt.

Since we know that

|f(xk(t), t) − f(xk−1(t), t)| ≤ L|xk(t) − xk−1(t)|,

where L is a number not depending on k or t. Then

|xk+1(t) − xk(t)| ≤
∫ t

t0

|f(xk−1(t), t) − f(xk−1(t), t)|dt

≤
∫ t

t0

L|xk(t) − xk−1(t)|dt

≤
∫ t

t0

L‖xk − xk−1‖dt

= L(t − t0)‖xk − xk−1‖.

So if we work in the interval t0 ≤ t ≤ t0 + 1
2L , we have

‖xk+1 − xk‖ ≤ L
1

2L
‖xk − xk−1‖ =

1

2
‖xk − xk−1‖.

Then, as one may check using induction,

‖xk+1 − xk‖ ≤ 1

2k
‖x1 − x0‖ (4.2)

for all k. Thus

‖x0‖ +

∞∑

k=0

‖xk+1 − xk‖ ≤ ‖x0‖ +

∞∑

k=0

1

2k
‖x1 − x0‖ < ∞,

and the series x0 +

∞∑

k=0

(xk+1 − xk) converges absolutely. By Theorem 4.2.1, it converges and has

a limit, which we denote by x.

Step 3. Now we need to know that x satisfies (4.1). We begin by taking limits in

xk+1(t) =

∫ t

t0

f(xk(t), t)dt + C.

By Theorem 4.2.2, taking limits inside the integral can be justified (see the Exercise on page 63
below), and so we get

x(t) =

∫ t

t0

f(x(t), t)dt + C. (4.3)

We see that x(t0) = C because the integral from t0 to t0 is 0. Also by the Fundamental Theorem
of Calculus, x can be differentiated (since it is given as an integral), and

x′(t) = f(x(t), t).

This proves the existence.
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4.3.2 Uniqueness

Finally, we prove uniqueness. Let y1 and y2 be two solutions. Then y1 and y2 satisfy the “inte-
grated” equation (4.3) as well.

Now we repeat some of Step 2 of the proof of the existence above. Let z = y1 − y2. Then
using (4.3), we get

|z(t)| = |y1(t) − y2(t)|

=

∣∣∣∣
∫ t

t0

(f(y1(t), t) − f(y2(t), t))dt

∣∣∣∣

≤
∫ t

t0

|f(y1(t), t) − f(y2(t), t)|dt

≤
∫ t

t0

L|y1(t) − y2(t)|dt =

∫ t

t0

L|z(t)|dt

≤
∫ t

t0

L‖z‖dt = L(t − t0)‖z‖.

Thus on the interval t0 ≤ t ≤ t0 + 1
2L , we have

‖z‖ ≤ 1

2
‖z‖,

which gives ‖z‖ ≤ 0, and so z ≡ 0, that is, y1 = y2. This completes the proof of the theorem.

Exercise. (∗) Justify taking limits inside the integral in Step 3 of the proof.

4.4 The general case. Lipschitz condition.

We begin by introducing the class of Lipschitz functions.

Definition. A function f : Rn → Rn is called locally Lipschitz if for every r > 0 there exists a
constant L such that for all x, y ∈ B(0, r),

‖f(x) − f(y)‖ ≤ L‖x − y‖. (4.4)

If there exists a constant L such that (4.4) holds for all x, y ∈ Rn, then f is said to be globally
Lipschitz.

For f : R → R, we observe that the following implications hold:

f is continuously differentiable ⇒ f is locally Lipschitz ⇒ f is continuous.

That the inclusions of these three classes are strict can be seen by observing that f(x) = |x| is
globally Lipschitz, but not differentiable at 0, and the function f(x) =

√
x is continuous, but not

locally Lipschitz. (See Exercise 1c below.)

Just like Theorem 4.1.1, the following theorem can be proved, which gives a sufficient condition
for the unique existence of a solution to the initial value problem of an ODE.
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Theorem 4.4.1 If there exists an r > 0 and a constant L such that the function f satisfies

‖f(x, t) − f(y, t)‖ ≤ L‖x − y‖ for all x, y ∈ B(0, r) and all t ≥ t0, (4.5)

then there exists a t1 > t0 such that the differential equation

x′(t) = f(x(t), t), x(t0) = x0,

has a unique solution for all t ∈ [t0, t1].

If the condition (4.5) holds, then f is said to be locally Lipschitz in x uniformly with respect
to t.

The existence theorem above is of a local character, in the sense that the existence of a solution
x∗ is guaranteed only in a small interval [t0, t1]. We could, of course, take this solution and examine
the new initial value problem

x′(t) = f(x(t), t), t ≥ t1, x(t1) = x∗(t1).

The existence theorem then guarantees a solution in a further small neighbourhood, so that the
solution can be “extended”. The process can then be repeated. However, it might happen that
the lengths of the intervals get smaller and smaller, so that we cannot really say that such an
extension will yield a solution for all times t ≥ 0. We illustrate this by considering the following
example.

Example. Consider the initial value problem

x′ = 1 + x2, t ≥ 0, x(0) = 0.

Then it can be shown that f(x) = 1 + x2 is locally Lipschitz in x (trivially uniformly in t). So a
unique solution exists in a small time interval. In fact, we can explicitly solve the above equation
and find out that the solution is given by

x(t) = tan t, t ∈ [0,
π

2
).

The solution cannot be extended to an interval larger than [0, π
2 ). ♦

Exercises.

1. (a) Prove that every continuously differentiable function f : R → R is locally Lipschitz.

Hint: Mean value theorem.

(b) Prove that every locally Lipschitz function f : R → R is continuous.

(c) (∗) Show that f(x) =
√
|x| is not locally Lipschitz.

2. (∗) Find a Lipschitz constant for the following functions

(a) sin x on R.

(b) 1
1+x2 on R.

(c) e−|x| on R.

(d) arctan(x) on (−π, π).

3. (∗) Show that if a function f : R → R satisfies the inequality

|f(x) − f(y)| ≤ L|x − y|2 for all x, y ∈ R,

then show that f is continuously differentiable on R.
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4.5 Existence of solutions

Here is an example of a differential equation with more than one solution for a given initial
condition.

Example. An equation with multiple solutions. Consider the equation

x′ = 3x
2
3

with the initial condition x(0) = 0. Two of its solutions are x(t) ≡ 0 and x(t) = t3. ♦

In light of this example, one can hope that there may be also theorems applying to more
general situations than Theorem 4.4.1, which state that solutions exist (and say nothing about
uniqueness). And there are. The basic one is:

Theorem 4.5.1 Consider the differential equation

x′ = f(x, t),

with initial condition x(t0) = x0. If the function f is continuous (but not necessarily Lipschitz
in x uniformly in t), then there exists a t1 > t0 and a x ∈ C1[t0, t1] such that x(t0) = x0 and
x′(t) = f(x(t), t) for all t ∈ [t0, t1].

The above theorem says that the continuity of f is sufficient for the local existence of solutions.
However, it does not guarantee the uniqueness of the solution. We will not give a proof of this
theorem.

4.6 Continuous dependence on initial conditions

In this section, we will consider the following question: If we change the initial condition, then
how does the solution change? The initial condition is often a measured quantity (for instance
the estimated initial population of a species of fish in a lake at a certain starting time), and we
would like our differential equation to be such that the solution varies ‘continuously’ as the initial
condition changes. Otherwise we cannot be sure if the solution we have obtained is close to the real
situation at hand (since we might have incurred some measurement error in the initial condition).
We prove the following:

Theorem 4.6.1 Let f be globally Lipschitz in x (with constant L) uniformly in t. Let x1, x2

be solutions to the equation x′ = f(x, t), for t ∈ [t0, t1], with initial conditions x0,1 and x0,2,
respectively. Then for all t ∈ [t0, t1],

‖x1(t) − x2(t)‖ ≤ eL(t−t0)‖x0,1 − x0,2‖.

Proof Let f(t) := ‖x1(t) − x2(t)‖2, t ∈ [t0, t1]. If 〈·, ·, 〉 denotes the standard inner product in
Rn, we have

f ′(t) = 2〈x′
1(t) − x′

2(t), x1(t) − x2(t)〉 = 2〈f(x1, t) − f(x2, t), x1(t) − x2(t)〉
≤ 2‖f(x1, t) − f(x2, t)‖‖x1(t) − x2(t)‖ (by the Cauchy-Schwarz inequality)

≤ 2L‖x1(t) − x2(t)‖2 = 2Lf(t).
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In other words,

d

dt
(e−2Ltf(t)) = e−2Ltf ′(t) − 2Le−2Ltf(t) = e−2Lt(f ′(t) − 2Lf(t)) ≤ 0.

Integrating from t0 to t ∈ [t0, t1] yields

e−2Ltf(t) − e−2Lt0f(t0) =

∫ t

t0

d

dτ
e−2Lτf(τ)dτ ≤ 0,

that is, f(t) ≤ e2L(t−t0)f(0). Taking square roots, we obtain ‖x1(t)−x2(t)‖ ≤ eL(t−t0)‖x0,1−x0,2‖.

Exercises.

1. Prove the Cauchy-Schwarz inequality: if x, y ∈ R
n, then |〈x, y〉| ≤ ‖x‖‖y‖.

Cauchy-Schwarz

Hint: If α ∈ R, and x, y ∈ Rn, then we have 0 ≤ 〈x+αy, x+αy〉 = 〈x, x〉+2α〈x, y〉+α2〈y, y〉,
and so it follows that the discriminant of this quadratic expression is ≤ 0, which gives the
desired inequality.

2. (∗) This exercise could have come earlier, but it’s really meant as practice for the next one.

We know that the solution to

x′(t) = x(t), x(0) = a,

is x(t) = eta. Now suppose that we knew about differential equations, but not about
exponentials. We thus know that the above equation has a unique solution, but we are
hampered in our ability to solve them by the fact that we have never come across the
function et! So we declare E to be the function defined as the unique solution to

E′(t) = E(t), E(0) = 1.

(a) Let τ ∈ R. Show that t 7→ E(t+ τ) solves the same differential equation as E (but with
a different initial condition). Show from this that for all t ∈ R, E(t + τ) = E(t)E(τ).

(b) Show that for all t ∈ R, E(t)E(−t) = 1.

(c) Show that E(t) is never 0.

3. (∗∗) This is similar to the previous exercise, but requires more work. This time, imagine that
we know about existence and uniqueness of solutions for second order differential equations
of the type

x′′(t) + x(t) = 0, x(0) = a, x′(0) = b,
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but nothing about trigonometric functions. (For example from Theorem 1.5.5, we know that
this equations has a unique solutions, and we can see this by introducing the state vector
comprising x and x′.) We define the functions S and C as the unique solutions, respectively,
to

S′′(t) + S(t) = 0, S(0) = 0, S′(0) = 1;

C′′(t) + C(t) = 0, C(0) = 1, C′(0) = 0.

(Privately, we know that S(t) = sin t and C(t) = cos t.) Now show that for all t ∈ R,

(a) S′(t) = C(t), C′(t) = −S(t).

(b) (S(t))2 + (C(t))2 = 1.

Hint: What is the derivative?

(c) S(t + τ) = S(t)C(τ) + C(t)S(τ) and C(t + τ) = C(t)C(τ) − S(t)S(τ), all τ ∈ R.

(d) S(−t) = −S(t), C(−t) = C(t).

(e) There is a a number α > 0 such that C(α) = 0. (That is, C(x) is not always positive.
If we call the smallest such number π/2, we have a definition of π from differential
equations.)
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Chapter 5

Underdetermined ODEs

5.1 Control theory

The basic objects of study in control theory are underdetermined differential equations. This
means that there is some freeness in the variables satisfying the differential equation. An example
of an underdetermined algebraic equation is x + u = 10, where x, u are positive integers. There
is freedom in choosing, say u, and once u is chosen, then x is uniquely determined. In the same
manner, consider the differential equation

dx

dt
(t) = f(x(t), u(t)), x(0) = x0, t ≥ 0, (5.1)

x(t) ∈ Rn, u(t) ∈ Rm. So if written out, equation (5.1) is the set of equations

dx1

dt
(t) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)), x1(0) = x0,1

...
dxn

dt
(t) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)), xn(0) = x0,n,

where f1, . . . , fn denote the components of f . In (5.1), u is the free variable, called the input,
which is assumed to be continuous.

69
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A control system is an equation of the type (5.1), with input u and state x. Once the input
u and the initial state x(0) = x0 are specified, the state x is determined. So one can think of a
control system as a box, which given the input u and initial state x(0) = x0, manufactures the
state according to the law (5.1); see Figure 5.1.

x′(t) = f(x(t), u(t))
x(0) = x0

u x

Figure 5.1: A control system.

Example. Suppose the population x(t) at time t of fish in a lake evolves according to the
differential equation:

x′(t) = f(x(t)),

where f is some complicated function which is known to model the situation reasonable accurately.
A typical example is the Verhulst model, where

f(x) = rx
(
1 − x

M

)
.

(This model makes sense, since first of all the rate of increase in the population should increase
with more numbers of fish–the more there are fish, the more they reproduce, and larger is the
population. However, if there are too many fish, there is competition for the limited food resource,
and then the population starts declining, which is captured by the term 1 − x

M .)

Now suppose that we harvest the fish at a harvesting rate h. Then the population evolution
is described by

x′(t) = f(x(t)) − h(t).

But the harvesting rate depends on the harvesting effort u:

h(t) = x(t)u(t).

(The harvesting effort can be thought in terms of the amount of time used for fishing, or the
number of fishing nets used, and so on. Then the above equation makes sense, as the harvesting
rate is clearly proportional to the number of fish–the more the fish in the lake, the better the
catch.)

Hence we arrive at the underdetermined differential equation

x′(t) = f(x(t)) − x(t)u(t).

This equation is underdetermined, since the u can be decided by the fisherman. This is the input,
and once this has been chosen, then the population evolution is determined by the above equation,
given some initial population level x0 of the fish. ♦

If the function f is linear, that is, if

f(ξ, υ) = Aξ + Bυ

for some A ∈ Rn×n and B ∈ Rn×m, then the control system is said to be linear. We will study
this important class of systems in the rest of this chapter.
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5.2 Solutions to the linear control system

In this section, we give a formula for the solution of a linear control system.

Theorem 5.2.1 Let A ∈ Rn×n and B ∈ Rn×m. If u ∈ (C[0, T ])m, then the differential equation

dx

dt
(t) = Ax(t) + Bu(t), x(0) = x0, t ≥ 0 (5.2)

has the unique solution x on [0, +∞) given by

x(t) = etAx0 +

∫ t

0

e(t−τ)ABu(τ)dτ. (5.3)

Proof We have

d

dt

(
etAx0 +

∫ t

0

e(t−τ)ABu(τ)dτ

)
=

d

dt

(
etAx0 + etA

∫ t

0

e−τABu(τ)dτ

)

= AetAx0 + AetA

∫ t

0

e−τABu(τ)dτ + etAe−tABu(t)

= A

(
etAx0 + etA

∫ t

0

e−τABu(τ)dτ

)
+ etA−tABu(t)

= A

(
etAx0 + etA

∫ t

0

e−τABu(τ)dτ

)
+ Bu(t),

and so it follows that x(·) given by (5.3) satisfies x′(t) = Ax(t) + Bu(t). Furthermore,

e0Ax0 +

∫ 0

0

e(0−τ)ABu(τ)dτ = Ix0 + 0 = x0.

Finally we show uniqueness. If x1, x2 are both solutions to (5.2), then it follows that x :=
x1 − x2 satisfies x′(t) = Ax(t), x(0) = 0, and so from Theorem 1.5.5 it follows that x(t) = 0 for
all t ≥ 0, that is x1 = x2.

Exercises.

1. Suppose that p ∈ C1[0, T ] is such that for all t ∈ [0, T ], p(t) + α 6= 0, and it satisfies the
scalar Riccati equation

p′(t) = γ(p(t) + α)(p(t) + β).

Prove that q given by

q(t) :=
1

p(t) + α
, t ∈ [0, T ],

satisfies
q′(t) = γ(α − β)q(t) − γ, t ∈ [0, T ].

2. Find p ∈ C1[0, 1] such that p′(t) = (p(t))2 − 1, t ∈ [0, 1], p(1) = 0.

3. It is useful in control theory to be able to make estimates on the size of the solution without
computing it precisely. Show that if for all t ≥ 0, |u(t)| ≤ M , then the solution x to
x′ = ax + bu (a 6= 0), x(0) = x0 satisfies

|x(t) − etax0| ≤
M |b|

a
[eta − 1].
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That is, the solution differs from that of x′ = ax, x(0) = x0 by at most M|b|
a [eta − 1]. What

happens to the bound as a → 0?

4. Newton’s law of cooling says that the rate of change of temperature is proportional to the
difference between the temperature of the object and the environmental temperature:

Θ′ = κ(Θ − Θe),

where κ denotes the proportionality constant and Θe denotes the environmental temperature.
In the episode of the TV series CSI, the body of a murder victim was discovered at 11:00
a.m. The medical examiner arrived at 11:30 a.m., and found the temperature of the body
was 94.6◦F. The temperature of the room was 70◦F. One hour later, in the same room, she
took the body temperature again and found that it was 93.4◦F. Estimate the time of death,
using the fact that the body temperature of any living human being is around 98.6◦F.

5.3 Controllability of linear control systems

A characteristic of underdetermined equations is that one can choose the free variable in a way
that some desirable effect is produced on the other dependent variable.

For example, if with our underdetermined algebraic equation x + u = 10 we wish to make
x < 5, then we can achieve this by choosing the free variable u to be strictly larger than 5.

Control theory is all about doing similar things with differential equations of the type (5.1).
The state variables x comprise the ‘to-be-controlled’ variables, which depend on the free variables
u, the inputs. For example, in the case of an aircraft, the speed, altitude and so on are the to-be-
controlled variables, while the angle of the wing flaps, the speed of the propeller and so on, which
the pilot can specify, are the inputs. So one of the basic questions in control theory is then the
following:

How do we choose the control inputs to achieve regulation of the state variables?

For instance, one may wish to drive the state to zero or some other desired value of the state
at some time instant T . This brings us naturally to the notion of controllability which, roughly
speaking, means that any state can be driven to any other state using an appropriate control.

For the sake of simplicity, we restrict ourselves to linear systems: x′(t) = Ax(t)+Bu(t), t ≥ 0,
where A ∈ Rn×n and B ∈ Rn×m. We first give the definition of controllability for such a linear
control system.

Example. Suppose a lake contains two species of fish, which we simply call ‘big fish’ and ‘small
fish’, which form a predator-prey pair. Suppose that the evolution of their populations xb and xs

are reasonably accurately modelled by

[
x′

b(t)
x′

s(t)

]
=

[
a11 a12

a21 a22

] [
xb(t)
xs(t)

]
.

Now suppose that one is harvesting these fish at harvesting rates hb and hs (which are inputs, since
they can be decided by the fisherman). The model describing the evolution of the populations
then becomes: [

x′
b(t)

x′
s(t)

]
=

[
a11 a12

a21 a22

] [
xb(t)
xs(t)

]
−
[

hb(t)
hs(t)

]
.
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The goal is to harvest the species of fish over some time period [0, T ] in such a manner starting
from the initial population levels [

xb(0)
xs(0)

]
=

[
xb,i

xs,i

]
,

we are left with the desired population levels
[

xb(T )
xs(T )

]
=

[
xb,f

xs,f

]
.

For example, if one of the species of fish is nearing extinction, it might be important to main-
tain some critical levels of the populations of the predator versus the prey. Thus we see that
controllability problems arise quite naturally from applications. ♦

Definition. The system
dx

dt
(t) = Ax(t) + Bu(t), t ∈ [0, T ] (5.4)

is said to be controllable at time T if for every pair of vectors x0, x1 in Rn, there exists a control
u ∈ (C[0, T ])m such that the solution x of (5.4) with x(0) = x0 satisfies x(T ) = x1.

Examples.

1. (A controllable system) Consider the system

x′(t) = u(t), t ∈ [0, T ],

so that A = 0, B = 1. Given x0, x1 ∈ R, define u ∈ C[0, T ] to be the constant function

u(t) =
x1 − x0

T
, t ∈ [0, T ].

By the fundamental theorem of calculus,

x(T ) = x(0) +

∫ T

0

x′(τ)dτ = x0 +

∫ T

0

u(τ)dτ = x0 +
x1 − x0

T
(T − 0) = x1.

2. (An uncontrollable system) Consider the system

x′
1(t) = x1(t) + u(t), (5.5)

x′
2(t) = x2(t), (5.6)

so that

A =

[
1 0
0 1

]
, B =

[
1
0

]
.

The equation (5.6) implies that x2(t) = etx2(0), and so if x2(0) > 0, then x2(t) > 0 for all
t ≥ 0. So a final state with the x2-component negative is never reachable by any control. ♦

We would like to characterize the property of controllability in terms of the matrices A and
B. For this purpose, we introduce the notion of reachable space at time T :

Definition. The reachable space of (5.4) at time T , denoted by RT , is defined as the set of all
x ∈ Rn for which there exists a control u ∈ (C[0, T ])m such that

x =

∫ T

0

e(T−τ)ABu(τ)dτ. (5.7)
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Note that the above simply says that if we run the differential equation (5.4) with the input
u, and with initial condition x(0) = 0, then x is the set of all points in the state-space that are
‘reachable’ at time T starting from 0 by means of some input u.

We now prove that RT is a subspace of Rn.

Lemma 5.3.1 RT is a subspace of R
n.

Proof We verify that RT is nonempty, and closed under addition and scalar multiplication.

S1 If we take u = 0, then ∫ T

0

e(T−τ)ABu(τ)dτ = 0,

and so 0 ∈ RT .

S2 If x1, x2 ∈ RT , then there exist u1, u2 in (C[0, T ])m such that

x1 =

∫ T

0

e(T−τ)ABu1(τ)dτ and x2 =

∫ T

0

e(T−τ)ABu2(τ)dτ.

Thus u := u1 + u2 ∈ (C[0, T ])m and

∫ T

0

e(T−τ)ABu(τ)dτ =

∫ T

0

e(T−τ)ABu1(τ)dτ + x2 =

∫ T

0

e(T−τ)ABu2(τ)dτ = x1 + x2.

Consequently x1 + x2 ∈ RT .

S3 If x ∈ RT , then there exists a u ∈ (C[0, T ])m such that

x =

∫ T

0

e(T−τ)ABu(τ)dτ.

If α ∈ R, then α · u ∈ (C[0, T ])m and

∫ T

0

e(T−τ)AB(αu)(τ)dτ = α

∫ T

0

e(T−τ)ABu(τ)dτ = αx.

Consequently αx ∈ RT .

Thus RT is a subspace of Rn.

We now prove Theorem 5.3.3, which will yield Corollary 5.3.4 below on the characterization of
the property of controllability. In order to prove Theorem 5.3.3, we will use the Cayley-Hamilton
theorem, and for the sake of completeness, we have included a sketch of proof of this result here.

Theorem 5.3.2 (Cayley-Hamilton) If A ∈ Cn×n and p(t) = tn + cn−1t
n−1 + · · · + c1t + c0 is its

characteristic polynomial, then p(A) = An + cn−1A
n−1 + · · · + c1A + c0I = 0.

Proof (Sketch) This is easy to see if A is diagonal, since

p







λ1

. . .

λn





 =




p(λ1)
. . .

p(λn)


 = 0.
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It is also easy to see if A is diagonalizable, since if A = PDP−1, then

p(A) = p(PDP−1) = Pp(D)P−1 = P0P−1 = 0.

As det : Cn×n → C is a continuous function, it follows that the coefficients of the characteristic
polynomial are continuous functions of the matrix entries. Using the fact that the set of diag-
onalizable matrices is dense in Cn×n, we see that the result extends to all complex matrices by
continuity.

Theorem 5.3.3 RT = Rn iff rank
[

B AB . . . An−1B
]

= n.

Proof If: If RT 6= Rn, then there exists a x0 6= 0 in Rn such that for all x ∈ RT , x⊤
0 x = 0.

Consequently,

x⊤
0

∫ T

0

e(T−τ)ABu(τ)dτ = 0 ∀u ∈ (C[0, T ])m.

In particular, u0 defined by u0(t) = B⊤e(T−τ)A⊤

x0, t ∈ [0, T ], belongs to (C[0, T ])m, and so

∫ T

0

x⊤
0 e(T−τ)ABB⊤e(T−τ)A⊤

x0dτ = 0,

and so it can be seen that
x⊤

0 e(T−τ)AB = 0, t ∈ [0, T ]. (5.8)

(Why?) With t = T , we obtain x⊤
0 B = 0. Differentiating (5.8), we obtain x⊤

0 e(T−t)AAB = 0,
t ∈ [0, T ], and so with t = T , we have x⊤

0 AB = 0. Proceeding in this manner (that is, successively
differentiating (5.8) and setting t = T ), we see that x⊤

0 AkB = 0 for all k ∈ N, and so in particular,

x⊤
0

[
B AB . . . An−1B

]
= 0.

As x0 6= 0, we obtain rank
[

B AB . . . An−1B
]

< n.

Only if: Let C := rank
[

B AB . . . An−1B
]

< n. Then there exists a nonzero x0 ∈ Rn

such that
x⊤

0

[
B AB . . . An−1B

]
= 0. (5.9)

By the Cayley-Hamilton theorem, it follows that

x⊤
0 AnB = x⊤

0

[
α0I + α1A + · · · + αnAn−1

]
B = 0.

By induction,
x⊤

0 AkB = 0 ∀k ≥ n. (5.10)

From (5.9) and (5.10), we obtain x⊤
0 AkB = 0 for all k ≥ 0, and so x⊤

0 etAB = 0 for all t ∈ [0, T ].
But this implies that x0 6∈ RT , since otherwise if some u ∈ C[0, T ],

x0 =

∫ T

0

e(T−τ)ABu(τ)dτ,

then

x⊤
0 x0 =

∫ T

0

x0e
(T−τ)ABu(τ)dτ =

∫ T

0

0u(τ)dτ = 0,

which yields x0 = 0, a contradiction.

The following result gives an important characterization of controllability.
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Corollary 5.3.4 Let T > 0. The system (5.4) is controllable at T iff

rank
[

B AB . . . An−1B
]

= n,

where n denotes the dimension of the state space.

Proof Only if: Let x′(t) = Ax(t) + Bu(t) be controllable at time T . Then with x0 = 0,
all the states x1 ∈ Rn can be reached at time T . So RT = Rn. Hence by Theorem 5.3.3,
rank

[
B AB . . . An−1B

]
= n.

If: Let rank
[

B AB . . . An−1B
]

= n. Then by Theorem 5.3.3, RT = Rn. Given x0, x1 ∈
Rn, we have x1 − eTAx0 ∈ Rn = RT , and so there exists a u ∈ (C[0, T ])m such that

x1 − eTAx0 =

∫ T

0

e(T−τ)ABu(τ)dτ, that is, x1 = eTAx0 +

∫ T

0

e(T−τ)ABu(τ)dτ.

In other words x(T ) = x1, where x(·) denotes the unique solution to x′(t) = Ax(t) + Bu(t),
t ∈ [0, T ], x(0) = x0.

We remark that the test:

rank
[

B AB . . . An−1B
]

= n

is independent of T , and so it follows that if T1, T2 > 0, then the system x′(t) = Ax(t) + Bu(t) is
controllable at T1 iff it is controllable at T2. So for the system x′(t) = Ax(t) + Bu(t), we usually
talk about ‘controllability’ instead of ‘controllability at T > 0’.

Examples. Consider the two examples on page 73.

1. (Controllable system) In the first example,

rank
[

B AB . . . An−1B
] (n=1)

= rank
[

B
]

= rank
[

1
]

= 1 = n,

the dimension of the state space (R).

2. (Uncontrollable system) In the second example, note that

rank
[

B AB . . . An−1B
] (n=2)

= rank
[

B AB
]

= rank

[
1 1
0 0

]
= 1 6= 2 = n,

the dimension of the state space (R2). ♦

Exercises.

1. For what values of α is the system (5.4) controllable, if

A =

[
2 1
0 1

]
, B =

[
1
α

]
?

2. (∗) Let A ∈ Rn×n and B ∈ Rn×1. Prove that if the system (5.4) is controllable, then every
matrix commuting with A is a polynomial in A.
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3. Let

A =

[
1 0
0 1

]
and B =

[
1
0

]
.

Show that the reachable subspace RT at time T of x′(t) = Ax(t) + Bu(t), t ≥ 0, is equal to

span

[
1
0

]
, that is, the set

{[
α
0

] ∣∣∣∣ α ∈ R

}
.

4. A nonzero vector v ∈ R1×n is called a left eigenvector of A ∈ Rn×n if there exists a λ ∈ R

such that vA = λv.

Show that if the system described by x′(t) = Ax(t) + Bu(t), t ≥ 0, is controllable, then for
every left eigenvector v of A, there holds that vB 6= 0.

Hint: Observe that if vA = λv, then vAk = λkv for all k ∈ N.
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Solutions

Chapter 1: Linear equations

Solutions to the exercises on page 2

1. (a) Nonautonomous.

(b) Autonomous; nonlinear.

(c) Nonautonomous.

(d) Autonomous; nonlinear.

(e) Autonomous; linear.

2. (a) x′(t) = 0, and

esin(x(t)) + cos(x(t)) = esin π + cos(π) = e0 + −1 = 1 + −1 = 0.

(b) x′(t) = d
dt (e

tax0) = d
dt(e

ta)x0 = aetax0,

ax(t) = aetax0, and

x(0) = e0ax0 = e0x0 = 1x0 = x0.

(c) x′
1(t) = d

dt sin(2t) = 2 cos(2t) = 2x2(t),

x′
2(t) = d

dt cos(2t) = −2 sin(2t) = −2x1(t).

(d) x′
1(t) = d

dt

(
1

1−t2

)
= −1

(1−t2)2 (−2t) = 2t
(

1
1−t2

)2

= 2t(x1(t))
2.

x′
2(t) = 0 = 2t(0)2 = 2t(x2(t))

2.

3. If x(t) = tm is a solution to 2tx′(t) = x(t), then 2t(mtm−1) = tm, and so (2m − 1)tm = 0.
As t ≥ 1, we obtain 2m − 1 = 0, and so m = 1/2.

Conversely, with x(t) =
√

t, we see that x′(t) = 1/(2
√

t), and so for all t > 0,

2tx′(t) = 2t
1

2
√

t
=

√
t = x(t).

4. Let x be a solution on (a, b), and let t1, t2 ∈ (a, b) be such that t1 < t2. Then we have by
the fundamental theorem of calculus that

x(t2) − x(t1) =

∫ t2

t1

x′(t)dt =

∫ t2

t1

[(x(t))2 + 1]dt ≥
∫ t2

t1

dt = t2 − t1 > 0.

Thus x(t2) > x(t1).

79
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Solutions to the exercises on page 5

1. > with(DEtools):

> ode1a := diff(x(t),t)=x(t)+(x(t))^3;

> DEplot(ode1a,x(t),t=-1..0.3,[[x(0)=1]],stepsize=0.01, linecolour=black);

0.5

1

1.5

2

2.5

3

x(t)

–1 –0.8 –0.6 –0.4 –0.2 0 0.2

t

Figure 5.2: Solution to x′ = x + x3 with x(0) = 1.

2. > with(DEtools):

> ode1b := diff(x(t),t,t)=-x(t)+(1/2)*cos(t);

> DEplot(ode1b,x(t),t=-20..20,[[x(0)=1,D(x)(0)=1]],stepsize=0.01, linecolour=black);

–4

–2

2

4

6

x(t)

–20 –10 10 20

t

Figure 5.3: Solution to x′′ + x = 1
2 cos t with x(0) = 1 and x′(0) = 1.

3. > with(DEtools):
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> ode1cA := diff(x1(t),t)=-x1(t)+x2(t);

> ode1cB := diff(x2(t),t)=x1(t)+x2(t)+t;

> DEplot(ode1cA,ode1cB,x1(t),x2(t),t=-1..1,[[x1(0)=0,x2(0)=0]],stepsize=0.01,

linecolour=black);

–0.2

–0.1

0

0.1

0.2

x1

0.2 0.4 0.6 0.8

x2

Figure 5.4: Plot of x1 versus x2.

> with(plots):

> plot1cA:=DEplot(ode1cA,ode1cB,x1(t),x2(t),t=-1..1,[[x1(0)=0,x2(0)=0]],

scene=[t,x1(t)],stepsize=0.01, linecolour=black);

> plot1cB:=DEplot(ode1cA,ode1cB,x1(t),x2(t),t=-1..1,[[x1(0)=0,x2(0)=0]],

scene=[t,x2(t)],stepsize=0.01, linecolour=black);

> display(plot1cA,plot1cB);

–0.2

0

0.2

0.4

0.6

0.8

x1(t)

–1 –0.5 0.5 1

t

Figure 5.5: Plots of x1 and x2 versus time.

4. (a) > with(DEtools):
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> ode2a := diff(x(t),t)=x(t)*(2-(1/5)*x(t)-(5*x(t))/(2+(x(t))^2));

> DEplot(ode2a,x(t),t=0..10,[[x(0)=0],[x(0)=1],[x(0)=2],[x(0)=3],

[x(0)=4], [x(0)=5], [x(0)=6],[x(0)=7],[x(0)=8],[x(0)=9],[x(0)=10]],

stepsize=0.01,linecolour=black);

0

2

4

6

8

10

x(t)

2 4 6 8 10

t

Figure 5.6: Population evolution of the budworm for various initial conditions.

(b) and (c): We can plot the function

f(x) = x

(
2 − 1

5
x − 5x

2 + x2

)
,

in the range x ∈ [0, 10] using the Maple command:

> plot(x*( 2-(1/5)*x -5*x/(2+x^2)),x=0..10);

and the result is displayed in Figure 5.14.

–5

–4

–3

–2

–1

0
2 4 6 8 10

x

Figure 5.7: Graph of the function f .

From this plot we observe that the function has zeros at (approximately) 0, 1.24, 2.64
and 6.125, and also we have

x ∈ (0, 1.24) f(x) > 0,

x ∈ (1.25, 2.63) f(x) < 0,

x ∈ (2.65, 6.12) f(x) > 0,

x ∈ (6.13,∞) f(x) < 0.

Thus for instance if x(t) is in one of the regions above, say the region (1.25, 2.63), then
x′(t) = f(x(t)) < 0, and so the function t 7→ x(t) is decreasing, and this explains the
behaviour of the curve that starts with an initial condition in this region; see Figure 5.6.
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On the other hand, in some regions the rate of change of x(t) is positive–for example
for initial conditions in the region (2.63, 6.12). This demarcation between the regions
is highlighted in Figure 5.8, and we summarize the behaviour below:

x(0) = 0 x(t) = 0 ∀t ≥ 0;

x(0) ∈ (0, 1.24) x(t) ր 1.24 as t → ∞;

x(0) ≈ 1.24 x(t) ≈ 1.24 ∀t ≥ 0;

x(0) ∈ (1.25, 2.63) x(t) ց 1.24 as t → ∞;

x(0) ≈ 2.64 x(t) ≈ 2.64 ∀t ≥ 0;

x(0) ∈ (2.65, 6.12) x(t) ր 6.125 as t → ∞;

x(0) ≈ 6.125 x(t) ≈ 6.125 ∀t ≥ 0;

x(0) ∈ (6.13,∞) x(t) ց 6.125 as t → ∞.

0

2

4

6

8

10

x(t)

2 4 6 8 10

t

Figure 5.8: Population evolution of the budworm for various initial conditions.
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Solutions to the exercises on page 8

1. With x1 := x and x2 := x′, we have

x′
1 = x′ = x2,

x′
2 = x′′ = −ω2x = −ω2x1,

that is, {
x′

1 = x2

x′
2 = −ω2x1.

2. Define w1 := x, w2 := x′, w3 = y, w4 = y′. Then we have

w′
1 = x′ = w2,

w′
2 = x′′ = −x = −w1,

w′
3 = y′ = w4,

w′
4 = y′′ = −y′ − y = −w4 − w3,

that is, 




w′
1 = w2

w′
2 = −w1

w′
3 = w4

w′
4 = −w3 − w4.
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Solutions to the exercise on page 11

Given A ∈ Cn×n, there exists an invertible matrix P such that

PAP−1 =




λ1

*
. . .

0 λn


 ,

where λ1, . . . , λn are the eigenvalues of A. Now choose ǫ1, . . . , ǫn ∈ (0, δ), where δ > 0 (chosen
suitable small eventually), and λ1 + ǫ1, . . . , λn + ǫn are all distinct. Define

B = P−1




λ1 + ǫ1

*
. . .

0 λn + ǫn


P.

Then B has distinct eigenvalues λ1+ǫ1, . . . , λn+ǫn, and so it is diagonalizable (indeed eigenvectors
corresponding to distinct eigenvalues are linearly independent!). But

‖A − B‖ =

∥∥∥∥∥∥∥
P−1




ǫ1
. . .

ǫn


P

∥∥∥∥∥∥∥
,

and this can be made arbitrarily small by choosing δ small enough.

In the above solution, we used the following result:

Theorem 5.1.5 (Triangular form) For every A ∈ Cntimesn, there exists an invertible P ∈ Cn×n

such that PAP−1 is an upper triangular matrix:

PAP−1 =




∗ . . . ∗
. . .

...
∗


 .

Furthermore, the diagonal entries of PAP−1 are the eigenvalues of A.

Proof By the fundamental theorem of algebra, every polynomial has at least one complex root,
and so A has at least one eigenvector v1. Construct a basis for Cn starting from v1. Thus there
exists an invertible P̃ ∈ Cn×n such that

P̃AP̃−1 =




λ1 ∗ . . . ∗
0
... B
0


 ,

where B ∈ C(n−1)×(n−1). Now we induct on n. By induction, we may assume the existence of an
invertible Q ∈ C(n−1)×(n−1) such that QBQ−1 is upper triangular. Let

P :=




1 0 . . . 0
0
... Q
0


 P̃ .
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Then

PAP−1 :=




λ1 ∗ . . . ∗
0
... QBQ

−1

0


 ,

which is upper triangular.

Since

det(tI − PAP−1) = det(tPIP−1 − PAP−1) = det(P (tI − A)P−1)

= det(P ) det(tI − A) det(P−1) = det(P ) det(tI − A)(det(P ))−1

= det(tI − A),

it follows that the diagonal entries of PAP−1 are the roots of det(tI − A), the characteristic
polynomials of A, and so they are the eigenvalues of A.
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Solutions to the exercises on page 11

1. (Since for commuting matrices A and B, we know that eA+B = eAeB, we must choose
noncommuting A and B.) let

A =

[
0 1
0 0

]
and B =

[
0 0
−1 0

]
.

Then

AB =

[
0 1
0 0

] [
0 0
−1 0

]
=

[
−1 0
0 0

]
6=
[

0 0
0 −1

]
=

[
0 0
−1 0

] [
0 1
0 0

]
= BA,

and so A and B do not commute. Since A2 = B2 = 0, we obtain

eA = I + A +
1

2!
A2 + · · · = I + A =

[
1 1
0 1

]
, and

eB = I + B +
1

2!
B2 + · · · = I + B =

[
1 0
−1 1

]
,

and so

eAeB =

[
1 1
0 1

] [
1 0
−1 1

]
=

[
0 1
−1 1

]
.

On the other hand,

A + B =

[
0 1
−1 0

]
,

which has eigenvalues i and −i, so that

A + B =

[
1 1
i −i

] [
i 0
0 −i

] [
1 1
i −i

]−1

.

Hence

eA+B =

[
1 1
i −i

] [
ei 0
0 e−i

] [
1 1
i −i

]−1

=

[
cos 1 sin 1
− sin 1 cos 1

]
,

and so we see that eA+B 6= eAeB.

2. We have

A = 2I +

[
0 3
0 0

]
,

and since 2I commutes with every matrix, it follows that

eA = e
2I+

2

4

0 3
0 0

3

5

= e2Ie

2

4

0 3
0 0

3

5

= e2I

(
I +

[
0 3
0 0

]
+

1

2!

[
0 3
0 0

]2
+ . . .

)

= e2I

(
I +

[
0 3
0 0

]
+ 0 + 0 + . . .

)

= e2

[
1 3
0 1

]
.
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Solutions to the exercises on page 15

1. Define Sk(A) = I + 1
1!A + 1

2!A
2 + · · · + 1

k!A
k (k ∈ N). Then we have

|(Sk(A))ij | =

∣∣∣∣(I)ij +
1

1!
(A)ij +

1

2!
(A2)ij + · · · + 1

k!
(Ak)ij

∣∣∣∣

≤ |(I)ij | +
1

1!
|(A)ij | +

1

2!
|(A2)ij | + · · · + 1

k!
|(Ak)ij | (triangle inequality)

≤ ‖I‖ +
1

1!
‖A‖ +

1

2!
‖A2‖ + · · · + 1

k!
‖Ak‖ (definition of ‖ · ‖)

≤ 1 +
1

1!
‖A‖ +

1

2!
n‖A‖2 + · · · + 1

k!
nk−1‖A‖k (Lemma 1.5.6)

≤ 1 +
1

1!
n‖A‖ +

1

2!
n2‖A‖2 + · · · + 1

k!
nk‖A‖k

≤ 1 +
1

1!
n‖A‖ +

1

2!
n2‖A‖2 + · · · + 1

k!
nk‖A‖k + · · · = en‖A‖.

Passing the limit as k → ∞, we obtain that |(eA)ij | ≤ en‖A‖. As the choice of i and j was
arbitrary, it follows that ‖eA‖ ≤ en‖A‖.

2. (a) We have

|(Av)i| =

∣∣∣∣∣∣

n∑

j=a

(A)ijvj

∣∣∣∣∣∣
≤

n∑

j=a

|(A)ij ||vj | ≤ ‖A‖
n∑

j=1

|vj | ≤ n‖A‖‖v‖,

and so ‖Av‖2 ≤ n(n‖A‖‖v‖)2. Thus for all v ∈ Rn, ‖Av‖ ≤ n3/2‖A‖‖v‖.
(b) If λ is an eigenvalue and v is a corresponding eigenvector, then we have Av = λv, and

so

|λ||vi| = |(λv)i| = |(Av)i| =

∣∣∣∣∣∣

n∑

j=a

(A)ijvj

∣∣∣∣∣∣
≤

n∑

j=a

|(A)ij ||vj | ≤ ‖A‖
n∑

j=1

|vj |.

Adding the n inequalities (for i = 1, . . . , n), we obtain

|λ|
n∑

i

|vi| ≤ n‖A‖
n∑

j=1

|vj |.

As v 6= 0, we can divide by
∑n

i=1 |vi|, and this yields that |λ| ≤ n‖A‖.
3. (a) Define Sn(A) = I + 1

1!A+ 1
2!A

2 + · · ·+ 1
n!A

n (n ∈ N). Since Av = λv, it is easy to show
by induction that Akv = λkv for all k ∈ N. Then we have

Sn(A)v =

(
I +

1

1!
A +

1

2!
A2 + · · · + 1

n!
An

)
v

= v +
1

1!
Av +

1

2!
A2v + · · · + 1

n!
Anv

= v +
1

1!
λv +

1

2!
λ2v + · · · + 1

n!
λnv

=

(
1 +

1

1!
λ +

1

2!
λ2 + · · · + 1

n!
λn

)

︸ ︷︷ ︸
=:Sn(λ)

v.

Let i ∈ {1, . . . , n},

Sn(λ)vi = (Sn(λ)v)i = (Sn(A)v)i =

n∑

j=1

(Sn(A))ijvj .
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Since lim
n→∞

(Sn(A))ij = (eA)ij and lim
n→∞

Sn(λ) = eλ, by passing the limit as n → ∞ in

the above, we obtain that

(eλv)i = eλvi =

n∑

j=1

(eA)ijvj = (eAv)i.

As the choice of i was arbitrary, it follows that eAv = eλv.

(b) Let A :=

[
4 3
3 4

]
.

i. Since tAx0 = 7tx0, we know that x0 is an eigenvector of tA corresponding to
the eigenvalue 7t. So by the previous exercise, v is also an eigenvector of etA

corresponding to the eigenvalue e7t. So the solution is

x(t) = etAx(0) = etAx0 = e7tx0 =

[
e7t

e7t

]
.

ii. Since tAx0 = tx0, we know that x0 is an eigenvector of tA corresponding to the
eigenvalue t. So v is also an eigenvector of etA corresponding to the eigenvalue et.
So the solution is

x(t) = etAx(0) = etAx0 = etx0 =

[
et

−et

]
.

iii. We observe that [
2
0

]
=

[
1
1

]
+

[
1
−1

]
,

and so

x(t) = etAx(0) = etAx0

= etA

[
2
0

]
= etA

([
1
1

]
+

[
1
−1

])

= etA

[
1
1

]
+ etA

[
1
−1

]

=

[
e7t

e7t

]
+

[
et

−et

]
(by the previous two parts of the exercise)

=

[
e7t + et

e7t − et

]
.

4. Define Sn(A) = I + 1
1!A + 1

2!A
2 + · · · + 1

n!A
n (n ∈ N). Then we have

(Sn(A))⊤ =

(
I +

1

1!
A +

1

2!
A2 + · · · + 1

n!
An

)⊤

= I⊤ +
1

1!
A⊤ +

1

2!
(A2)⊤ + · · · + 1

n!
(An)⊤

= I⊤ +
1

1!
A⊤ +

1

2!
(A⊤)2 + · · · + 1

n!
(A⊤)n

= Sn(A⊤).

Thus
[Sn(A)]ji = [(Sn(A))⊤]ij = [Sn(A⊤)]ij

and by passing the limit as n → ∞, we obtain
(
[(eA)⊤]ij =

)
[eA]ji = [eA⊤

]ij .

Since the choice of i and j was arbitrary, it follows that (eA)⊤ = eA⊤

.
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5. (a) We verify that S is nonempty and is closed under addition and scalar multiplication.

S0. Clearly the zero function f ≡ 0 belongs to S .

S1. If f1, f2 ∈ S , then f ′
1 = Af1 and f ′

2 = Af2, and so (f1 + f2)
′ = f ′

1 + f ′
2 =

Af1 + Af2 = A(f1 + f2). Thus f1 + f2 ∈ S .

S2. If f ∈ S , then f ′ = Af . Suppose that α ∈ R. Then (α · f)′ = α · f ′ = α · (Af) =
A(α · f), and so α · f ∈ S .

Thus S is a subspace of C(R; Rn).

Remark. S is thus a vector space with the operations of pointwise addition and scalar
multiplication.

(b) Suppose there exist scalars α1, . . . , αn such that α1 · f1 + · · ·+ αn · fn = 0. Then for all
t ∈ R, we have that α1f1(t) + · · · + αnfn(t) = 0. In particular, with t = 0, we obtain
that α1f1(0) + · · ·+ αnfn(0) = 0, that is, α1fe1 + · · ·+ αnen = 0. By independence of
the standard basis vectors in R

n, it follows that α1 = · · · = αn = 0. So f1, . . . , fn are
linearly independent in the vector space S .

(c) We know that span{f1, . . . , fn} ⊂ S . We now show that the reverse inclusion holds as
well. Suppose that f belongs to S , and so f ′ = Af . As f(0) ∈ Rn, and since e1, . . . , en

form a basis for R6n, we can find scalars α1, . . . , αn such that f(0) = α1e1 + · · ·+αnen.

Let f̃ := α1 · f1 + · · · + αn · fn. Then we have

f̃ ′ = (α1 · f1 + · · · + αn · fn)′ = α1 · f ′
1 + · · · + αn · f ′

n

= α1 · (Af1) + · · · + αn · (Afn) = A(α1 · f1 + · · · + αn · fn)

= Af̃.

Moreover, f̃(0) = α1 · f1(0) + · · · + αn · fn(0) = α1 · e1 + · · · + αn · en = f(0). By (the

uniqueness part of) Theorem 1.5.5, it follows that f̃ = f . Since f̃ ∈ span{f1, . . . , fn},
we obtain f ∈ S .
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Solutions to the exercises on page 18

1. We have that

sI − A =

[
s − 3 1
−1 s − 1

]
,

and so
det(sI − A) = (s − 3)(s − 1) + 1 = s2 − 4s + 4 = (s − 2)2.

Thus

(sI − A)−1 =
1

(s − 2)2

[
s − 1 −1

1 s − 3

]

=

[
s−1

(s−2)2 − 1
(s−2)2

1
(s−2)2

s−3
(s−2)2

]

=

[
s−2+1
(s−2)2 − 1

(s−2)2
1

(s−2)2
s−2−1
(s−2)2

]

=

[
1

s−2 + 1
(s−2)2 − 1

(s−2)2
1

(s−2)2
1

s−2 − s−2−1
(s−2)2

]
.

Using Theorem 1.6.2 (‘taking the inverse Laplace transform’), we obtain

etA =

[
e2t + te2t −te2t

te2t e2t − te2t

]
.

2. We have that

sI − A =




s − λ −1 0

0 s − λ −1
0 0 s − λ



 ,

and so det(sI − A) = (s − λ)3. A short computation gives

adj(sI − A) =




(s − λ)2 s − λ 1

0 (s − λ)2 s − λ
0 0 (s − λ)2



 .

By Cramer’s rule

(sI − A)−1 =
1

det(sI − A)
adj(sI − A) =




1
s−λ

1
(s−λ)2

1
(s−λ)3

0 1
s−λ

1
(s−λ)2

0 0 1
s−λ


 .

By using Theorem 1.6.2 (‘taking the inverse Laplace transform’), we obtain

etA =




eλt teλt t2

2! e
λt

0 eλt teλt

0 0 eλt



 .

3. (a) We have that

sI − A =

[
s − a −b

b s − a

]
,

and so

(sI − A)−1 =
1

(s − a)2 + b2

[
s − a b
−b s − a

]
=

[
s−a

(s−a)2+b2
b

(s−a)2+b2
−b

(s−a)2+b2
s−a

(s−a)2+b2

]
.
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By using Theorem 1.6.2 (‘taking the inverse Laplace transform’), we obtain

etA =

[
eta cos(bt) eta sin(bt)
−eta sin(bt) eta cos(bt)

]
.

(b) With x1 :=
√

kx and x2 := x′, we obtain

[
x′

1

x′
2

]
=

[ √
kx′

−kx

]
=

[ √
kx2

−
√

kx1

]
=

[
0

√
k

−
√

k 0

] [
x1

x2

]
.

Thus we obtain

[
x1(t)
x2(t)

]
= e

t

2

4

0
√

k

−
√

k 0

3

5
[

x1(0)
x2(0)

]

=

[
cos(

√
kt) sin(

√
kt)

− sin(
√

kt) cos(
√

kt)

] [ √
kx(0)
x′(0)

]

=

[
cos(

√
kt) sin(

√
kt)

− sin(
√

kt) cos(
√

kt)

] [ √
k1
0

]

=

[ √
k cos(

√
kt)

−
√

k sin(
√

kt)

]
.

Thus

x(t) =
1√
k

x1(t) = cos(
√

kt), t ≥ 0.

We have (with k = 1)

(x(t))2 + (x′(t))2 = (cos t)2 + (− sin t)2 = 1.

Thus the point (x(t), x′(t)) lies on a circle of radius 1 in the plane. Also it is easy
to see that the point (x(t), x′(t)) = (cos t,− sin t) moves clockwise on this circle with
increasing t; see Figure 5.9.

0

1

(cos t,− sin t)

Figure 5.9: Locus of the point (x(t), x′(t)) = (cos t,− sin t).

4. From Theorem 1.6.1 and Corollary 1.6.3, we conclude that for large enough real s,

(sI − A)−1 =

[ s
s2−1

1
s2−1

1
s2−1

s
s2−1

]
,
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and so

sI − A = ((sI − A)−1)−1 =

[ s
s2−1

1
s2−1

1
s2−1

s
s2−1

]−1

=

[
s −1
−1 s

]
.

Consequently, A =

[
0 1
1 0

]
.

Alternately, one could simply observe that

A =
d

dt
etA

∣∣∣∣
t=0

=
d

dt

[
cosh t sinh t
sinh t cosh t

]∣∣∣∣
t=0

=

[
sinh t cosh t
cosh t sinh t

]∣∣∣∣
t=0

=

[
0 1
1 0

]
.
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Solutions to the exercises on page 20

1. (a) The characteristic polynomial is

det(λI − A) = det

[
λ − 1 −2
−3 λ − 4

]
= λ2 − 5λ − 2,

which has the roots

λ1 =
5 +

√
25 + 8

2
and λ2 =

5 −
√

25 + 8

2
.

Since λ1 > 0, it follows from Theorem 1.7.2 that not all solutions remain bounded as
t → ∞.

(b) The characteristic polynomial is

det(λI − A) = det

[
λ − 1 0

0 λ + 1

]
= (λ − 1)(λ + 1),

which has the roots λ1 = 1 and λ2 = −1. Since λ1 > 0, it follows from Theorem 1.7.2
that not all solutions remain bounded as t → ∞.

(c) The characteristic polynomial is

det(λI − A) = det




λ − 1 −1 0

0 λ + 2 1
0 0 λ + 1



 = (λ − 1)(λ + 2)(λ + 1),

which has the roots 1,−2,−1. Since 1 > 0, it follows from Theorem 1.7.2 that not all
solutions remain bounded as t → ∞.

(d) The characteristic polynomial is

det(λI − A) = det




λ − 1 −1 −1
−1 λ −1
0 0 λ + 2


 = (λ + 2) det

[
λ − 1 −1
−1 λ

]

= (λ + 2)(λ(λ − 1) − 1) = (λ + 2)(λ2 − λ − 1),

which has the roots

λ1 = −2, λ2 =
1 +

√
5

2
and λ3 =

1 −
√

5

2
.

Since λ2 > 0, it follows from Theorem 1.7.2 that not all solutions remain bounded as
t → ∞.

(e) The characteristic polynomial is

det(λI − A) = det




λ + 1 0 0

0 λ + 2 0
−1 0 λ + 1



 = (λ + 1)(λ + 2)(λ + 1),

which has the roots −1,−2,−1. Since they are all < 0, it follows from Theorem 1.7.2
that all solutions remain bounded, and in fact they tend to 0, as t → ∞.

(f) The characteristic polynomial is

det(λI − A) = det




λ + 1 0 1
0 λ + 2 0
−1 0 λ


 = (λ + 2)(λ2 + λ + 1),
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which has the roots

λ1 = −2, λ2 =
−1 +

√
3i

2
and λ3 =

−1 −
√

3i

2
.

Since they are all have real parts < 0, it follows from Theorem 1.7.2 that all solutions
remain bounded, and in fact they tend to 0, as t → ∞.

2. The characteristic polynomial is

det(λI − A) = det

[
λ − α −(1 + α)
1 + α λ − α

]
= (λ − α)2 + (1 + α)2

which has the roots α + i(1 + α) and α − i(1 + α). Thus we have the following cases:

1◦ α > 0. Then one of the eigenvalues has positive real part, and so not all solutions are
bounded as t → ∞.

2◦ α = 0. Then the eigenvalues are i and −i, and a short computation shows that

etA =

[
cos t sin t
− sin t cos t

]

so all solutions are bounded for t ≥ 0.

3◦ α < 0. Then both the eigenvalues have negative real parts, and so all solutions are
bounded for t ≥ 0.

Consequently, the solutions are bounded iff α ≤ 0.
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Chapter 2: Phase plane analysis

Solutions to the exercises on page 24

1. (a) We have [x2 = 0 and sin(x1) = 0] iff [x1 ∈ {nπ | n ∈ Z} and x2 = 0]. Thus the singular
points are at (nπ, 0), n ∈ Z.

(b) We have [x1 − x2 = 0 and x2
2 − x1 = 0] iff [x1 = x2 and x1 = x2

2 = x2
1]. So x1 = x2 and

x1(1 − x1) = 0. Consequently, the singular points are at (0, 0) and (1, 1).

(c) We have [x2
1(x2 − 1) = 0 and x1x2 = 0] iff [(x1 = 0 or x2 = 1) and (x1 = 0 or x2 = 0)].

Thus the singular points are at (0, a), a ∈ R.

(d) If x2
1(x2 − 1) = 0 and x2

1 − 2x1x2 − x2
2 = 0, then we obtain [x1 = 0 or x2 = 1] and

[x2
1 − 2x1x2 − x2

2 = 0]. Thus we have the following two cases:

1◦ x1 = 0 and x2
2 = 0.

2◦ x1 6= 0. Then x2 = 1. Also, x2
1 − 2x1 − 1 = 0, and so x1 ∈ {1 +

√
2, 1 −

√
2}.

Hence the singular points are at (0, 0), (1 +
√

2, 1) and (1 −
√

2, 1).

(e) sin x2 = 0 iff x2 ∈ {nπ | n ∈ Z}. cosx1 = 0 iff x1 ∈ {(2m + 1)π/2 | m ∈ Z}. Thus the
singular points are at ((2m + 1)π/2, nπ), where m, n ∈ Z.

2. (a) Since x2
1/a2+x2

2/b2 = (cos t)2 +(sin t)2 = 1, we see that that (x1(t), x2(t)) traces out an
ellipse (with axes lengths a and b). Since at t = 0, (x1, x2) = (a, 0) and (x′

1, x
′
2) = (0, b),

we see that the motion is anticlockwise. The curve is plotted in Figure 5.10.

a

b

x1

x2

0

Figure 5.10: The curve t 7→ (a cos t, b sin t).

a

b

x1

x2

0

t = 0

Figure 5.11: The curve t 7→ (aet, be−2t).

(b) We observe that x1/a = et and x2/b = e−2t. Thus (x1/a)2(x2/b) = e2t · e−2t = 1.
Since x1 = aet > 0, we have x2 = (a2b)/(x2

1). At t = 0, (x1, x2) = (a, b) and for t ≥ 0,
t 7→ xa(t) = aet is increasing, while t 7→ x2(t) = be−2t is decreasing. The curve is
shown in Figure 5.11.
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3. (a) The only singular point is at 0. If the initial condition x(t0) at time t0 is such that
x(t0) 6= 0, then x′(t0) = (x(t0))

2 > 0. The phase portrait is sketched in Figure 5.12.

(b) The system has no singular point since for all real x, ex > 0. Moreover, we note that
x′(t) = ex(t) > 0. The phase portrait is sketched in Figure 5.12.

(c) The system has no singular point, since coshx = (ex +e−x)/2 > ex/2 > 0 for all x ∈ R.
Moreover, we note that x′(t) = cosh(x(t)) > 0. The phase portrait is sketched in Figure
5.12.

(d) The system has singular points at nπ, n ∈ Z. If x(t0) belongs to (2mπ, (2m + 1)π) for
some m ∈ Z, then x′(t0) = sin(x(t0)) > 0, while if x(t0) ∈ ((2m+1)π, (2m+2)π), then
x′(t0) = sin(x(t0)) < 0. The phase portrait is sketched in Figure 5.12.

(e) The system has singular points at 2nπ, n ∈ Z. Since cosx < 1 for all x ∈ R\{2nπ | n ∈
Z}, we have that if the initial condition x(t0) at time t0 does not belong to the set
{2nπ | n ∈ Z}, then x′(t0) = cos(x(t0)) − 1 < 0. The phase portrait is sketched in
Figure 5.12.

(f) The system has singular points at nπ/2, n ∈ Z. Since sin(2x) < 0 for all x ∈
(2mπ/2, (2m + 1)π/2), m ∈ Z, and sin(2x) > 0 for all x ∈ ((2m + 1)π/2, (2m + 2)π/2),
m ∈ Z, we obtain the phase portrait as sketched in Figure 5.12.

−2π

−2π

−π

−π

π

π

2π

2π

0

0

00

−4π 4π

−π
2

π
2

. . .

. . .

. . .

. . .

. . .

. . .

x′ = x2

x′ = ex

x′ = coshx

x′ = sin x

x′ = cosx − 1

x′ = sin(2x)

Figure 5.12: Phase portraits.

(a) Let the 2D autonomous system be given by

x′
1 = f1(x1, x2),

x′
2 = f2(x1, x2).

}
(5.11)

For t ∈ R, we have

y′
1(t) =

(
d

dt
x1(· + T )

)
(t)

= x′
1(t + T )

d

dt
(t + T ) (chain rule)

= x′
1(t + T ) · 1 = x′

1(t + T )

= f1(x1(t + T ), x2(t + T ))

= f1(y1(t), y2(t)).

Similarly, y′
2(t) = f2(y1(t), y2(t)). Thus (y1, y2) also satisfies (5.11).
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(b) By the first part, we know that y1 given by

y1(t) := x(t +
π

2
)

=

(
2 cos(t + π

2 )

1 + (sin(t + π
2 ))2

,
sin(2(t + π

2 ))

1 + (sin(t + π
2 ))2

)

=

( −2 sin t

1 + (cos t)2
,

− sin(2t)

1 + (cos t)2

)

is a solution. Also y2 given by

y2(t) := x(t +
3π

2
)

=

(
2 cos(t + 3π

2 )

1 + (sin(t + 3π
2 ))2

,
sin(2(t + 3π

2 ))

1 + (sin(t + 3π
2 ))2

)

=

(
2 sin t

1 + (cos t)2
,

− sin(2t)

1 + (cos t)2

)

is a solution. We observe that y1(0) = (0, 0) = y2(0). However y1 6≡ y2 since (for
example) y1(π/2) = (2, 0) 6= (02, 0) = y2(π/2). This would mean that starting from the
initial condition (0, 0), there are two different solutions y1 and y2, which contradicts
our assumption about the 2D system.

(c) Using the Maple command

> plot([2*cos(t)/(1+(sin(t))^2),sin(2*t)/(1+(sin(t))^2),t=0..10);

we have sketched the curve in Figure 5.13.

–0.6
–0.4
–0.2

0

0.2
0.4
0.6

–2 –1 1 2

Figure 5.13: The lemniscate.

4. (a) Clearly 0 is a singular point. In order to find other singular points, we use Maple. Using
the commands:

> eq:= 2-1/5*x-5*x/(2+x^2)=0;

> sols:=solve(eq,x);

> sols:=evalf(sols);

we find that the nonzero singular points are given approximately by 6.125, 1.238, 2.637.
Thus the set of singular points is {0, 1.238, 2.637, 6.125}.

(b) We can plot the function

f(x) = x

(
2 − 1

5
x − 5x

2 + x2

)
,

in the range x ∈ [0, 10] using the Maple command:

> plot(x*( 2-(1/5)*x -5*x/(2+x^2)),x=0..10);

and the result is displayed in Figure 5.14.
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–5

–4

–3

–2

–1

0
2 4 6 8 10

x

Figure 5.14: Graph of the function f .

From this plot we observe that

x ∈ (0, 1.24) f(x) > 0,

x ∈ (1.25, 2.63) f(x) < 0,

x ∈ (2.65, 6.12) f(x) > 0,

x ∈ (6.13,∞) f(x) < 0.

Thus the resulting phase portrait is as shown in Figure 5.15.

a b c
. . .0

Figure 5.15: Phase portrait for x′ = f(x). Here a, b, c are approximately 1.238, 2.637, 6.125,
respectively.

5. (a) We have

I ′ = I − αC

C′ = β(I − C − (G0 + kI)) = β((1 − k)I − C − G0).

Clearly, f1(I, C) = I − αC = 0 iff I = αC. If I = αC, then f2(I, C) = β((1 − k)αC −
C − G0), which is zero iff

C =
G0

(1 − k)α − 1
.

So the system has an equilibrium point at

(I0, C0) :=

(
αG0

(1 − k)α − 1
,

G0

(1 − k)α − 1

)
.

Since G0 > 0 and α > 0, it follows that C0 and I0 are both positive iff (1−k)α−1 > 0, or
equivalently iff k < 1−1/α. Thus an equilibrium point for which I, C, G are nonnegative
exists iff k < 1 − 1/α.

(b) If k =), then the equilibrium point is at

(I0, C0) =

(
αG0

α − 1
,

G0

α − 1

)
.

We have

I ′1 = I ′ = I − αC =

(
I1 +

αG0

α − 1

)
− α

(
C1 +

G0

α − 1

)
= I1 − αC1,

and

C′
1 = C′ = β(I − C − G0) = β

(
I1 +

αG0

α − 1
− C1 −

G0

α − 1
− G0

)
= β(I1 − C1),
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and so we obtain [
I ′1
C′

1

]
=

[
1 −α
β −β

] [
I1

C1

]
.

If α = 2 and β = 1, then we obtain

[
I ′1
C′

1

]
=

[
1 −2
1 −1

]

︸ ︷︷ ︸
=:A

[
I1

C1

]
.

We have

sI − A =

[
s − 1 2
−1 s + 1

]
,

and so

(sI − A)−1 =
1

s2 + 1

[
s + 1 −2

1 s − 1

]
=

[ s
s2+1 + 1

s2+1 −2 1
s2+1

1
s2+1

1
s2+1 − 1

s2+1s

]
.

Thus

etA =

[
cos t + sin t −2 sin t

sin t cos t − sin t

]
,

and so

I1(t) = (cos t + sin t)I1(0) − 2(sin t)C1(0) = I1(0) cos t + (I1(0) − 2C1(0)) sin t,

C1(t) = (sin t)I1(0) + (cos t − sin t)C1(0) = C1(0) cos t + (C1(0) − I1(0)) sin t.

Consequently I1, C1 oscillate (if (I1(0), C1(0)) 6= (0, 0)) and since I, C differ from I1, C1

by constants, we conclude that I, C oscillate as well.
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Solutions to the exercises on page 27

1. We solve the differential equation
dx2

dx1
=

x1

x2
.

Thus
d

x1

(
1

2
x2

2

)
= x2

dx2

dx1
= x1,

and by integrating with respect to x1, and using the fundamental theorem of calculus, we
obtain

x2
2 − x2

1 = C.

This equation describes a hyperbola in the (x1, x2)-plane. Thus the trajectories t 7→ (x1(t), x2(t))
are hyperbolas. We note that when x1(0) belongs to the right half plane, then x′

2(0) =
x1(0) > 0, and so t 7→ x2(t) should be increasing, while if x1(0) belongs to the left half
plane, then x′

2(0) = x1(0) < 0, and so t 7→ x2(t) should be decreasing. The phase portrait is
shown in Figure 5.16.

x1

x2

0

Figure 5.16: Phase portrait.

2. We solve the differential equation
dx2

dx1
=

x1

−2x2
.

Thus
d

x1
(x2

2) = 2x2
dx2

dx1
= −x1,

and by integrating with respect to x1, and using the fundamental theorem of calculus, we
obtain

x2
2 +

x2
1

2
= C.

This equation describes an ellipse in the (x1, x2)-plane. Thus the trajectories t 7→ (x1(t), x2(t))
are ellipses. We note that when x1(0) belongs to the right half plane, then x′

2(0) = x1(0) > 0,
and so t 7→ x2(t) should be increasing. Hence the motion is anticlockwise. The phase portrait
is shown in Figure 5.17.

3. (a) We note that the graph of A + B log |x| looks qualitatively the same as the graph of
B log |x|, since the constant A shifts the graph of B log |x| by A. If we multiply this
result by x, then we obtain the graph as shown in Figure 5.18.
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x1

x2

√
2a

a

0

Figure 5.17: Phase portrait.

x

y

0

B > 0

Figure 5.18: Graph of y = x(A + B log |x|).

(b) If A :=

[
1 1
0 1

]
, then sI − A =

[
s − 1 −1

0 s − 1

]
, and so

(sI − A)−1 =
1

(s − 1)2

[
s − 1 1

0 s − 1

]
=

[ 1
s−1

1
(s−1)2

0 1
s−1

]
.

Consequently, etA =

[
et tet

0 et

]
. Hence

x1(t) = et(x1(0) + tx2(0))

x2(t) = etx2(0).

We consider the following two cases:

1◦ x2(0) = 0. Then x2(t) = 0, and x1(t) = etx1(0). Thus on the x1 axis, the motion
is away from the origin.

2◦ x2 6= 0. If t ≥ 0, we have et ≥ 1, and |x2(t)| ≥ |x2(0)|, and t = log |x2(t)/x2(0)|.
Thus

x1(t) =
x2(t)

x2(0)

(
x1(0) + x2(0) log

∣∣∣∣
x2(t)

x2(0)

∣∣∣∣
)

= x2(t)(A + B log |x2(t)|),
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where

A :=
x1(0)

x2(0)
− log |x2(0)|, and B := 1 > 0.

Thus the trajectories are curves of the type found in the previous part of this
exercise. Also, if x2(0) > 0, then x2(t) → ∞ as t → ∞, and if x2(0) < 0, then
x2(t) → −∞ as t → ∞.

The phase portrait is shown in Figure 5.19.

x1

x2

0

Figure 5.19: Phase portrait.
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Solutions to the exercises on page 28

The isocline corresponding to slope α is given by

x1

x2
= α,

and so

x2 =
1

α
x1,

and these points lie on a straight line with slope 1/α. By taking different values of α, a set of
isoclines can be drawn, and in this manner a field of tangents to the trajectories are generated,
and so a phase portrait can be constructed, as shown in Figure 5.20.

Figure 5.20: Phase portrait using isoclines.
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Solutions to the exercises on page 30

1. (a) Using the following Maple commands, we obtain Figure 5.21.

> with(DEtools) :
> ode1aA := diff(x1(t), t) = x2(t);
> ode1aB := diff(x2(t), t) = x1(t);
> initvalues := seq(seq([x1(0) = i + 1/2, x2(0) = j + 1/2],

i = −2..1), j = −2..1) :
> DEplot({ode1aA, ode1aB}, [x1(t), x2(t)], t= −10..10, x1 = −2..2, x2 = −2..2,

[initvalues], stepsize= 0.05, arrows = MEDIUM, colour = black,
linecolour = red);

–2

–1

0

1

2

x2

–2 –1 1 2

x1

Figure 5.21: Phase portrait.

(b) Using the following Maple commands, we obtain Figure 5.22.

> with(DEtools) :
> ode1bA := diff(x1(t), t) = −2 ∗ x2(t);
> ode1bB := diff(x2(t), t) = x1(t);
> initvalues := seq(seq([x1(0) = i + 1/2, x2(0) = j + 1/2],

i = −2..1), j = −2..1) :
> DEplot({ode1bA, ode1bB}, [x1(t), x2(t)], t=−10..10, x1 = −2..2, x2 =−2..2,

[initvalues], stepsize= 0.05, arrows = MEDIUM, colour = black,
linecolour = red);
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x1

Figure 5.22: Phase portrait.
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(c) Using the following Maple commands, we obtain Figure 5.23.

> with(DEtools) :
> ode1cA := diff(x1(t), t) = x1(t) + x2(t);
> ode1cB := diff(x2(t), t) = x2(t);
> initvalues := seq(seq([x1(0) = i + 1/2, x2(0) = j + 1/2],

i = −2..1), j = −2..1) :
> DEplot({ode1cA, ode1cB}, [x1(t), x2(t)], t=−10..10, x1 = −2..2, x2 =−2..2,

[initvalues], stepsize= 0.05, arrows = MEDIUM, colour = black,
linecolour = red);
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Figure 5.23: Phase portrait.

2. (a) Clearly f1(xs, xb) = xs(a − bxb) = 0 iff [xs = 0 or xb = a/b]. If xs = 0, then
f2(xs, xb) = −cxb, and this is 0 iff xb = 0. On the other hand, if xb = a/b, then
f2(xs, xb) = −ca/b + xsda/b, and this is 0 iff xs = c/d. So the only singular points are
(c/d, a/b).
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x1

Figure 5.24: Plots of the solution curves and phase portrait for the Lotka-Volterra ODE system.
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(b) Using the following Maple commands, we obtain Figure 5.24.

> with(DEtools) :
> ode2bA := diff(x1(t), t) = x1(t) + x2(t);
> ode2bB := diff(x2(t), t) = x2(t);
> with(plots) :
> plot1 := DEplot({ode2bA, ode2bB}, x1(t), x2(t), t = 0..100,

[[x1(0) = 9000, x2(0) = 1000]], scene = [t, x1(t)], stepsize = 0.1) :
> plot2 := DEplot({ode2bA, ode2bB}, x1(t), x2(t), t = 0..100,

[[x1(0) = 9000, x2(0) = 1000]], scene = [t, x2(t)], stepsize = 0.1) :
> display(plot1, plot2);

(c) Using the following Maple commands, we obtain Figure 5.24.

> initvalues := seq([x1(0) = 2000, x2(0) = 500 ∗ j], j = 0..8) :
> DEplot({ode2bA, ode2bB}, [x1(t), x2(t)], t= 0..100, x1 = 0..10000, x2 = 0..4000,

[initvalues, [x1(0) = 9000, x2(0) = 1000]], stepsize = 0.1,
arrows = MEDIUM, colour = black, linecolour= red);

We observe that the solution curve from the previous part is a closed curve, indicating
the periodic rise and fall of the populations.
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Solutions to the exercises on page 34

1. Since v1 and v2 are eigenvectors corresponding to the eigenvalues 1 and −2, respectively, we
have etAv1 = etv1, and etAv2 = e−2tv2. Hence in the direction of the eigenvector v1, the
motion is away from 0, while in the direction of the eigenvector v2, the motion is towards 0.

If x(t) = α(t)v1 + β(t)v2, we have

α(t)v1 + β(t)v2 = x(t) = etAx(0) = etA(α(0)v1 + β(0)v2)

= α(0)etAv1 + β(0)etAv2

= α(0)etv1 + β(0)e−2tv2,

and by the independence of v1 and v2, it follows that α(t) = etα(0) and β(t) = e−2tβ(0).
Clearly then we have

(α(t))2β(t) = e2t(α(0))2e−2tβ(0) = (α(0))2β(0).

So we obtain the phase portrait as shown in Figure 5.25.

x1

x2

0

Figure 5.25: Phase portrait.

2. (a) Since A(u + iv) = (a + ib)(u + iv), by taking entry-wise complex conjugates, we obtain
A(u − iv) = (a − ib)(u − iv). Moreover, since u + iv is an eigenvector, u + iv 6= 0,
and so u − iv 6= 0 as well. Consequently u − iv is an eigenvector corresponding to the
eigenvalue a − ib.

(b) More generally, we prove that if v1, v2 are eigenvectors corresponding to distinct eigen-
values λ1 and λ2, respectively, of a linear transformation T : X → X , then v1, v2 are
linearly independent in the complex vector space X . For if

αv1 + βv2 = 0, (5.12)

then upon operating by T , we obtain

αλ1v1 + βλ2v2 = 0. (5.13)

Now if we subtract λ1 times the equation (5.12) from equation (5.13), then we obtain
β(λ2 − λ1)v2 = 0. Since v2 is an eigenvector, v1 6= 0, and so we conclude that β(λ2 −
λ1) = 0. But λ1 6= λ2, and so β = 0. Substituting this in (5.12) gives αv1 = 0, and so
α = 0.

If b 6= 0, the eigenvalues a + ib and a − ib are distinct and applying the above, we can
conclude that v1, v2 are independent vectors in C

2.
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(c) We note that u = (v1 + v2)/2 and v = (v1 − v2)/2i. Thus if α, β ∈ R are such that
αu + βv = 0, then we have

α

(
v1 + v2

2

)
+ β

(
v1 − v2

2i

)
= 0,

and so (β + iα)v1 + (iα − β)v2 = 0. By the independence of v1, v2, it follows that
β + iα = 0, and so α = 0 and β = 0. So u, v are linearly independent vectors in R2.

(d) We have Au + iAv = A(u + iv) = (a + ib)(u + iv) = au − bv + i(av + bu), and so it
follows that

Au = au − bv

Av = av + bu,

that is,

AP = A
[

u v
]

=
[

u v
] [ a b

−b a

]
= P

[
a b
−b a

]
,

and since P is invertible, by premultiplying by P−1, we obtain the desired result.
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Solutions to the exercises on page 39

1. We have f1(x1, x2) = x1(1 − x2) = 0 iff [x1 = 0 or x2 = 1]. But if x1 = 0, then f2(x1, x2) =
ex1+x2 − x2 = ex2 − x2 > 0 for x2 ∈ R. On the other hand, if x2 = 1, then f2(x1, x2) =
ex1+1 − 1. Clearly ex1+1 − 1 = 0 iff x1 + 1 = 0, that is, x1 = −1. So the only singular point
is (−1, 1).

Linearisation about the point (−1, 1) gives

[
∂f1

∂x1
= ex1+x2 ∂f1

∂x2
= ex1+x2 − 1

∂f2

∂x1
= −1 + x2

∂f2

∂x2
= x1

]∣∣∣∣∣
(x1,x2)=(−1,1)

=

[
1 0
0 −1

]
.

The eigenvalues are 1 and −1. Since one of the eigenvalues is positive, it follows from the
linearisation theorem that the equilibrium point (−1, 1) is unstable.

2. We note that f2(x1, x2) = −x2 − x2e
x1 = −x2(1 + ex1) = 0 iff x2 = 0. And if x2 = 0, then

f1(x1, x2) = x1 +ex1 −1 > 0 for all x1 ∈ R. So the system does not have any singular points,
and the linearisation theorem is not applicable.

3. Clearly the only singular point is (0, 0). Linearisation about the point (0, 0) gives

[
∂f1

∂x1
= 0 ∂f1

∂x2
= 1

∂f2

∂x1
= −3x2

1
∂f2

∂x2
= 0

]∣∣∣∣∣
(x1,x2)=(0,0)

=

[
0 1
0 0

]
,

which has both eigenvalues equal to 0, and so the linearisation theorem is not applicable.

4. We have f2(x1, x2) = x2 = 0 iff x2 = 0. Also, if x2 = 0, then f1(x1, x2) = sinx1 = 0 iff
x1 ∈ {nπ | n ∈ Z}. Thus the singular points are (nπ, 0), n ∈ Z, and each one of them is
isolated.

Linearisation about the point (nπ, 0) gives

[
∂f1

∂x1
= cos(x1 + x2)

∂f1

∂x2
= cos(x1 + x2)

∂f2

∂x1
= 0 ∂f2

∂x2
= 1

]∣∣∣∣∣
(x1,x2)=(nπ,0)

=

[
cos(nπ) cos(nπ)

0 1

]

=

[
(−1)n (−1)n

0 1

]
.

The eigenvalues are (−1)n and 1. Since 1 is always an eigenvalue, by the linearisation
theorem we can conclude that each equilibrium point is unstable.

5. Again, the singular points are (nπ, 0), n ∈ Z, but now the linearisation about the point
(nπ, 0) gives [

(−1)n (−1)n

0 −1

]
,

which has eigenvalues (−1)n and −1. We now consider the two possible cases:

1◦ n even: Then (−1)n = 1, and so this equilibrium point is unstable.

2◦ n odd: Then (−1)n = −1, and so this equilibrium point is aysmptotically stable.

By the linearisation theorem we conclude that the equilibrium points (2mπ, 0), m ∈ Z, are
all unstable, while the equilibrium points ((2m+1)π, 0), m ∈ Z, are all asymptotically stable.
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Solutions to the exercises on page 44

1. Let ((xn, yn))n∈N be a sequence of points in A that is convergent to (x, y). Then for all
n ∈ N, xnyn = 1, and so

xy = lim
n→∞

xn lim
n→∞

yn = lim
n→∞

xnyn = lim
n→∞

1 = 1 6= 0,

and so (x, y) 6∈ B.

On the other hand, if ((xn, yn))n∈N is a sequence of points in B that is convergent to (x, y),
then for all n ∈ N, xnyn = 0, and so

xy = lim
n→∞

xn lim
n→∞

yn = lim
n→∞

xnyn = lim
n→∞

0 = 0 6= 1,

and so (x, y) 6∈ A. Thus A and B are separated.

Remark. Note that although A and B are separated, given any ǫ > 0, we can choose a
point from A and a point from B such that their distance is smaller than ǫ. In this sense
the “distance” between the two sets is 0.

2. The system has no singular points since f2(x1, x2) = x1 = 0 implies that f1(x1, x2) =
1 − 0 · x2 = 1 6= 0. By Theorem 2.5.4, it follows that the system has no periodic trajectory,
and in particular, no limit cycle.

3. We have
∂f1

∂x1
+

∂f2

∂x2
= 0 − (1 + x2

1) < −1 < 0.

By Theorem 2.5.5 (with Ω = R
2!), it follows that the system has no periodic trajectories.

4. Suppose that the system has a periodic trajectory starting inside C and which does not
intersect C. We have

∂f1

∂x1
+

∂f2

∂x2
= 2 − 4(x2

1 + x2
2),

which is positive inside the simply connected region Ω given by x2
1 + x2

2 < 1/2. Thus by
Theorem 2.5.5, this region cannot wholly contain the periodic trajectory. So this periodic
trajectory has to intersect the circle C.
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Chapter 3: Stability theory

Solution to the exercise on page 46

We observe that x = cosx has only one real solution. This can be seen by sketching the graphs
of the functions x and cosx. Since | cosx| ≤ 1 for all real x, it follows that the graph of x does
not intersect the graph of cosx when |x| ≥ π/2 > 1. In the interval (−π/2, π/2), the graph of the
function x intersects the graph of cosx in precisely one point. See Figure 5.26. Thus there is only
one equilibrium point.

−π
2

π
2

x
cosx

0

1

−1

xe

Figure 5.26: Graphs of x and cosx.
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Solution to the exercise on page 48

If a > 0, then 0 is an unstable equilibrium point. Indeed, if R = 1, then for every r > 0, if we take
x(0) = r, we have that x(t) = etax(0) = reta → ∞ as t → ∞. Thus x(t) eventually goes outside
the ball B(0, 1). Hence 0 is an unstable equilibrium point.

On the other hand, if a ≤ 0, then 0 is a stable equilibrium point. Let R > 0. Then with
r := R, we have that for every initial condition x(0 satisfying |x(0)− 0| < r = R, there holds that
|x(t) − 0| = |etax(0)| = eta|x(0)| ≤ 1 · R = R. So 0 is a stable equilibrium point.

Hence we conclude that 0 is a stable equilibrium point for x′ = ax iff a ≤ 0.
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Solution to the exercise on page 50

We have already seen in a previous exercise that 0 is a stable equilibrium point iff a ≤ 0.

If a = 0, then 0 is not an asymptotically stable equilibrium point. Indeed, for every x(0) 6= 0,
the solution is x(t) = x(0) and this does not tend to 0 as t → ∞.

If a < 0, then with M := 1, ǫ := |a| and r := 1, we have for all initial conditions x(0) satisfying
|x(0) − 0| ≤ r = 1 that |x(t) − 0| = |x(t)| = |etax(0)| ≤ eta · 1 = 1 · e−t|a| = Me−ǫt. So 0 is an
exponentially stable equilibrium point (and in particular, it is asymptotically stable).

Hence we conclude that the following are equivalent:

1. 0 is an asymptotically stable equilibrium point for x′ = ax.

2. 0 is an exponentially stable equilibrium point for x′ = ax.

3. a < 0.
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Solutions to the exercises on page 51

1. (a) The eigenvalues are 1 and −1. Since one of the eigenvalues of A has a positive real
part, we conclude that 0 is an unstable equilibrium point.

(b) The eigenvalues are 1,−2, 1. Since one of the eigenvalues of A has a positive real part,
we conclude that 0 is an unstable equilibrium point.

(c) The eigenvalues are (1 +
√

5)/2, (1 −
√

5)/2,−2. Since one of the eigenvalues of A has
a positive real part, we conclude that 0 is an unstable equilibrium point.

(d) The eigenvalues are −1,−2,−1. Since all the eigenvalues of A have negative real parts,
we conclude that 0 is an exponentially stable equilibrium point.

(e) The eigenvalue is 0, and its geometric multiplicity is 1, while the algebraic multiplicity
is 3. So 0 is an unstable equilibrium point.

(f) The eigenvalues are i,−i. In each case the geometric and algebraic multiplicities are
both equal to 1, and so 0 is a stable equilibrium point.

2. (a) The only equilibrium point is 0. Linearisation about the point 0 gives the matrix

[
∂f1

∂x1
= 1 ∂f1

∂x2
= 1

∂f2

∂x1
= 3x2

1
∂f2

∂x2
= −1

]∣∣∣∣∣
(x1,x2)=(0,0)

=

[
1 1
0 −1

]
,

which has the eigenvalues 1,−1. Since one of the eigenvalues has a positive real part,
we conclude that 0 is an unstable equilibrium point.

(b) The equilibrium points are (0, 0), (1, 1) and (−1,−1). We have

[
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

]
=

[
−1 1
3x2

1 −1

]
.

Linearisation at (0, 0) gives the matrix

[
−1 1
0 −1

]
,

and since all its eigenvalues have a negative real part, we conclude that (0, 0) is a stable
equilibrium point.

Linearisation at (1, 1) or (−1,−1) gives the matrix

[
−1 1
3 −1

]
,

which has the eigenvalues
√

3− 1 and −
√

3− 1. Since
√

3− 1 > 0, it follows that (1, 1)
and (−1,−1) are unstable equilibrium points.
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Solution to the exercise on page 54

We check that L1 and L2 hold.

L1. Since | cos θ| ≤ 1 for real θ, it follows that mgl(1−cosx1) ≥ 0. Thus V (x) ≥ 0 for all x ∈ R2.

If V (x1, x2) = 0, then x2 = 0 and x1 = 2nπ, n ∈ Z. In order to have “V (x1, x2) = 0 only
if (x1, x2) = 0”, we must restrict x2, for instance in [−π, π]. So with the choice R = π, we
have: If x ∈ B(0, R) and V (x) = 0, then x = 0.

Finally, V (0, 0) = ml202/2 + mgl(1 − cos 0) = 0.

L2. We have

∇V (x) · f(x) =
[

mgl sin x1 ml2x2

]
·
[

x2

− k
ml2 x2 − g

l sin x1

]
= −kx2

2 ≤ 0.

Thus V is a Lyapunov function for the system.
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Solutions to the exercises on page 56

1. We verify that L1, L2, L3 hold.

L1. Since | cos θ| ≤ 1 for real θ, it follows that 2(1 − cosx1) ≥ 0. Thus V (x) ≥ 0 for all
x ∈ R2.

If V (x1, x2) = 0, then x2 = 0, x1 + x2 = 0 and cosx1 = 1. Hence x1 = x2 = 0.

Finally, V (0, 0) = 02/2 + (0 + 0)2/2 + 2(1 − cos 0) = 0.

L2. We have

∇V (x) · f(x) =
[

x1 + x2 + 2 sinx1 x1 + 2x2

]
·
[

x2

−x2 − sinx1

]
= −x1 sin x1 − 2x2

2.

We note that x1 sinx1 is not always nonnegative, but it is nonnegative for instance
in the interval [−π/2, π/2]. So with R = π/2, we have that for all x ∈ B(0, R),
∇V (x) · f(x) ≤ 0.

L3. Clearly ∇V (0) · f(0) = 0. On the other hand if x ∈ B(0, π/2) and ∇V (x) · f(x) = 0,
then we have x1 sin x1 + 2x2

2 = 0. Since x1 ∈ [−π/2, π/2], we know that x1 sinx1 ≥ 0.
Hence we can conclude that x1 sin x1 = 0 and x2 = 0. Again using the fact that
x1 ∈ [−π/2, π/2], we conclude that x1 = 0. So (x1, x2) = (0, 0).

Thus V is a strong Lyapunov function for the system. Consequently, 0 is an asymptotically
stable equilibrium point for the system.

2. (a) We verify that L1, L2, L3 hold.

L1. For all x ∈ R2, V (x1, x2) = x2
1 + x2

2 ≥ 0.
If V (x1, x2) = x2

1 + x2
2 = 0, then x1 = x2 = 0.

Finally, V (0, 0) = 02 + 02 = 0.

L2. We have

∇V (x) · f(x) =
[

2x1 2x2

]
·
[

x2 − x1(x
2
1 + x2

2)
−x1 − x2(x

2
1 + x2

2)

]
= −2(x2

1 + x2
2)

2 ≤ 0.

L3. Clearly ∇V (0) · f(0) = 0. On the other hand if ∇V (x) · f(x) = 0, then we have
2(x2

1 + x2
2)

2 = 0, and so x1 = x2) = 0.

Thus V is a strong Lyapunov function for the system.

(b) Since V is a strong Lyapunov function for the system, it follows that 0 is an asymptot-
ically stable equilibrium point.
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Chapter 4: Existence and uniqueness

Solution to the exercise on page 63

Define the continuous function gn (n = 0, 1, 2, . . . ) as follows:

gn(t) = f(xn(t), t).

Then the sequence g0, g1, g2, . . . is the sequence of partial sums of the series

g0 +

n∑

k=1

(gk+1 − gk). (5.14)

We have

|gk+1(t)−gk(t)| = |f(xk+1(t), t)−f(xk(t), t)| ≤ L|xk+1(t)−xk(t)| ≤ L‖xk+1−xk‖ ≤ 1

2k
‖x1−x0‖,

where we have used (4.2) to obtain the last inequality. Thus ‖gk+1 − gk‖ ≤ L‖x1 − x0‖/2k, and
so (5.14) converges absolutely to a function g. We have

g(t) = lim
n→∞

gn(t) = lim
n→∞

f(xn(t), t) = f(x(t), t).

By Theorem 4.2.2,

lim
n→∞

∫ t

t0

f(xn(t), t)dt = lim
n→∞

∫ t

t0

(g0(t) +

n−1∑

k=0

(gk+1(t) − gk(t)))dt =

∫ t

t0

f(x(t), t)dt.
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Solutions to the exercises on page 64

1. (a) Suppose that f : R → R is continuously differentiable. Given r > 0, if x, y ∈ B(0, r) =
[−r, r], then by the mean value theorem, there exists a c ∈ [−r, r] such that

f(x) − f(y) = f ′(c)(x − y).

Hence if M is the maximum of the continuous function |f ′| in the closed interval [−r, r]
(extreme value theorem!), it follows that

|f(x) − f(y)| = |f ′(c)(x − y)| = |f ′(c)||x − y| ≤ M |x − y|,

and so f is locally Lipschitz (with M serving as a Lipschitz constant in [−r, r]).

(b) Let f : R → R be locally Lipschitz. Let c ∈ R, and let L be a Lipschitz constant in
[−(|c|+1), |c|+1]. Given ǫ > 0, let δ := min{1, ǫ/L}. Let x ∈ R be such that |x−c| < δ.
Then |x| = |x − c + c| ≤ |x − c| + |c| ≤ δ + |c| ≤ 1 + |c|, and so x ∈ [−(|c| + 1), |c| + 1].
Clearly c ∈ [−(|c| + 1), |c| + 1]. Thus we have

|f(x) − f(c)| ≤ L|x − c| ≤ Lδ ≤ L
ǫ

L
= ǫ.

Hence f is continuous at c. Since the choice of c was arbitrary, it follows that f is
continuous.

(c) Let r > 0, and let there exist a L such that for all x, y ∈ [0, r],

|√x −√
y| ≤ L|x − y|.

Thus
|√x −√

y| ≤ L|√x −√
y||√x +

√
y|,

and for distinct x and y, we obtain

1 ≤ L|√x +
√

y|.

Now choose N large enough so that 1/N2 < r (Archimedean principle!). Then by
taking x := 1/n2 and y := 0, where n > N , we obtain

1 ≤ L · 1

n
,

and by passing the limit as n → ∞, we obtain that 1 ≤ 0, a contradiction.

2. (a) By the mean value theorem,

sin x − sin y = (cos c)(x − y),

for some real c. Since | cos c| ≤ 1, we see that for all x, y ∈ R, | sin x− sin y| ≤ 1 · |x− y|,
and so L = 1 serves as a Lipschitz constant.

(b) By the mean value theorem,

1

1 + x2
− 1

1 + y2
=

( −2c

(1 + c2)2

)
(x − y),

for some real c. Using elementary calculus, it can be shown that the function c 7→ 2|c|
(1+c2)2

has a maximum at c = 1
2 , and so we have that for all x, y ∈ R,

∣∣∣∣
1

1 + x2
− 1

1 + y2

∣∣∣∣ ≤
2 · 1

2

(1 + 1
4 )2

· |x − y|,

and so L = 16/25 serves as a Lipschitz constant.
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(c) Without loss of generality, we may assume that |x| > |y|. Then a := −|x| + |y| < 0,
and by the mean value theorem, ea − 1 = eca for some c < 0, and so |ea − 1| = |a||ec| <
|a| · 1 = |a|. Hence

|e−|x| − e−|y|| = |(e−|x|+|y| − 1)e−|y||
= |e−|x|+|y| − 1||e−|y||
≤ |e−|x|+|y| − 1| · 1
= |ea − 1|
< |a| = | − |x| + |y||
≤ |x − y|,

where the very last inequality is simply the triangle inequality. Thus L = 1 serves as a
Lipschitz constant.

(d) By the mean value theorem,

arctanx − arctany =

(
1

1 + c2

)
(x − y),

for some real c. Since |1/(1+c2)| ≤ 1, we see that for all x, y ∈ R, | arctanx−arctan y| ≤
1 · |x − y|, and so L = 1 serves as a Lipschitz constant.

3. f is in fact a constant! We have for distinct x, y ∈ R that

∣∣∣∣
f(x) − f(y)

x − y

∣∣∣∣ ≤ L|x − y|.

Hence with y = c (fixed) and x = c + h (h 6= 0), we have

∣∣∣∣
f(c + h) − f(c)

h

∣∣∣∣ ≤ L|h|,

that is,

−h ≤ f(c + h) − f(c)

h
≤ h,

and so by the Sandwich theorem,

lim
h→0

f(c + h) − f(c)

h

exists and it equals lim
h→0

h = 0. In other words, f ′(c) exists and it equals 0. Since the choice

of c was arbitrary, it follows that f is differentiable, and the derivative at each point is 0.
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Solutions to the exercises on page 66

1. If α ∈ R and x, y ∈ Rn, then with z := x + αy, we have

0 ≤ 〈z, z〉 = 〈x + αy, x + αy〉 = 〈x, x〉 + 2α〈x, y〉 + α2〈y, y〉. (5.15)

We assume now that 〈y, y〉 6= 0. (If 〈y, y〉 = 0, then the Cauchy-Schwarz inequality is
obvious, since in that case y = 0, and both sides of the inequality are 0!) If 〈y, y〉 6= 0, then
with α = −〈x, y〉/〈y, y〉, we obtain from (5.15) that

〈x, x〉 − 〈x, y〉2
〈y, y〉 ≥ 0,

and so |〈x, y〉|2 ≤ ‖x‖2‖y‖2. Taking square roots, we have |〈x, y〉| ≤ ‖x‖‖y‖.

2. (a) Let f(t) = E(t + τ), t ∈ R. Then f ′(t) = E′(t + τ) = E(t + τ) = f(t). We have
f(0) = E(τ). It is easy to check that x(t) = aE(t) satisfies the initial value problem
x′(t) = x(t), x(0) = a, and since we know that the solution is unique, we know that this
is the solution. In light of this observation, we can conclude that f(t) = f(0)E(t) =
E(τ)E(t). Consequently, E(t + τ) = E(t)E(τ).

(b) With τ = −t, we have E(t)E(−t) = E(t − t) = E(0) = 1.

(c) Since for all t ∈ R, E(t)E(−t) = 1, E(t) can never be 0.

3. (a) We have S′′(t) + S(t) = 0, and upon differentiation we obtain that S′′′(t) + S′(t) = 0.
Thus with f := S′, we see that f satisfies the equation f ′′(t) + f(t) = 0, and moreover,
we have that f(0) = S′(0) = 1, and f ′(0) = S′′(0) = −S(0) = −0 = 0. But the
equation f ′′(t) + f(t) = 0 with f(0) = 1 and f ′(0) = 0 has the unique solution (which
we have decided to denote by C). Hence (S′ =)f = C.

Furthermore, −S = S′′ = (S′)′ = C′.

(b) We have

((S(t))2 + (C(t))2)′ = 2S(t)S′(t) + 2C(t)C′(t) = 2S(t)C(t) + 2C(t)(−S(t)) = 0.

Integrating, we have (S(t))2 + (C(t))2 − ((S(0))2 + (C(0))2) = 0, that is, (S(t))2 +
(C(t))2 = (S(0))2 + (C(0))2 = 02 + 12 = 1.

(c) Let x(t) = aC(t) + bS(t). Then x′′(t) = aC′′(t) + bS′′(t) = −aC(t) − bS(t) = −x(t),
and so x satisfies the equation x′′(t) + x(t) = 0. Moreover,

x(0) = aC(0)+bS(0) = a·1+b·0 = a, and x′(0) = −aS(0)+bC(0) = −a·0+b·1 = b.

Hence x satisfies the initial value problem x′′(t) + x(t) = 0, x(0) = a, x′(0) = b. But
since we know that the solution is unique, this is the solution.

Now let f(t) = S(t + τ), t ∈ R. Then

f ′′(t) + f(t) = S′′(t + τ) + S(t + τ) = 0.

Moreover, f(0) = S(τ) and f ′(0) = C(τ). From the above, we can conclude that

f(t) = S(τ)︸︷︷︸
a

C(t) + C(τ)︸ ︷︷ ︸
b

S(t).

Thus we have S(t + τ) = S(τ)C(t) + C(τ)S(t). Differentiating with respect to t gives
C(t + τ) = −S(t)S(τ) + C(t)C(τ).
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(d) Let f(t) = S(−t), t ∈ R. Then f ′(t) = −C(−t), and f ′′(t) = −(−S(−t) · (−1)) =
−S(−t) = −f(t), and so f ′′(t) + f(t) = 0. Moreover, f(0) = S(−0) = S(0) = 0, and
f ′(0) = −C(−0) = −C(0) = −1. Hence f(t) = 0 · C(t) + (−1) · S(t) = −S(t), that is,
S(−t) = −S(t). Differentiating we obtain C(−t) · (−1) = −C(t), and so C(−t) = C(t).

(e) We will use the intermediate value theorem to conclude that such an α exists. In
order to do this, we need to show that C(x) is not always positive. We will do this by
bounding C above by a function that becomes negative.

Since (S(t))2 + (C(t))2 = 1, we see that C(t) ≤ 1. Thus S′(t) = C(t) ≤ 1. Integrating,
we obtain S(t) − S(0) = S(t) ≤ t. Hence C′(t) = −S(t) ≥ −t. Integrating, we have
C(t) − C(0) = C(t) − 1 ≥ −t2/2, and so C(t) ≥ 1 − t2/2. So S′(t) = C(t) ≥ 1 − t2/2.
Integrating, we obtain S(t) − S(0) = S(t) − 0 ≥ t− t3/6, and so S(t) ≥ t − t3/6. Thus
C′(t) = −S(t) ≤ t− t3/6. Integrating, we have C(t)−1 ≤ −t2/2+ t4/24. Consequently,
C(t) ≤ 1 − t2/2 + t4/24.

Now C(0) = 1 > 0 and C(
√

3) ≤ 1 − (
√

3)2/2 + (
√

3)4/24 = −1/8 < 0. By the
intermediate value theorem applied to the continuous function C : [0,

√
3] → R, it

follows that there exists an α ∈ (0,
√

3) such that C(α) = 0.
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Chapter 5: Underdetermined equations

Solutions to the exercises on page 71

1. By the chain rule,

q′(t) = − 1

(p(t) + α)2
p′(t) = −γ(p(t) + α)(p(t) + β)

(p(t) + α)2
= −γ(p(t) + β)

p(t) + α

= −γ
p(t) + α + β − α

p(t) + α
= −γ

[
p(t) + α

p(t) + α
+ (β − α)

1

p(t) + α

]

= −γ[1 + (β − α)q(t)] = γ(α − β)q(t) − γ,

for all t ∈ [0, T ].

2. If p(t) + 1 6= 0 for all t ∈ [0, 1], then with

q(t) :=
1

p(t) + 1
, t ∈ [0, 1],

then by the previous exercise, we have that q′(t) = 1(1 − (−1))q(t) − 1 = 2q(t) − 1, so that

q(t) = et2q(0) + e2t

∫ t

0

e−τ2(−1)1dτ = e2tq(0) − e2t

∫ t

0

e−2τdτ

= e2tq(0) +
e2t

2
(e−2t − 1) = e2tq(0) +

1 − e2t

2
.

As q(1) = 1/(p(1) + 1) = 1, we obtain 1 = e2q(0) + (1 = e2)/2, and so q(0) = (e−2 + 1)/2.
Consequently,

1

p(t) + 1
= e2t

(
e−2 + 1

2

)
+

1 − e2t

2
,

and so

p(t) =
1 − e2(t−1)

1 + e2(t−1)
, t ∈ [0, 1].

(It is easy to check that for all t ∈ [0, 1], indeed p(t) + 1 6= 0.)

3. The solution to x′ = ax + bu, x(0) = x0 is given by

x(t) = etax0 +

∫ t

0

e(t−τ)abu(τ)dτ, t ≥ 0,

and so

|x(t) − etax0| =

∣∣∣∣
∫ t

0

e(t−τ)abu(τ)dτ

∣∣∣∣

≤
∫ t

0

|e(t−τ)abu(τ)|dτ =

∫ t

0

e(t−τ)a|b||u(τ)|dτ

≤
∫ t

0

e(t−τ)a|b|Mdτ

≤ M |b|eta

∫ t

0

e−τadτ = M |b|eta 1

−a
eτa|t0

= M |b| (e
ta − 1)

a
.
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We have

lim
a→0

M |b| (e
ta − 1)

a
= M |b|t lim

a→0

(eta − 1)

ta
= M |b|t.

This bound can also be obtained directly: by the fundamental theorem of calculus,

x(t) − x(0) =

∫ t

0

x′(τ)dτ =

∫ t

0

bu(τ)dτ,

and so

|x(t) − x0| =

∣∣∣∣
∫ t

0

bu(τ)dτ

∣∣∣∣ ≤
∫ t

0

|bu(τ)|dτ ≤
∫ t

0

|b|Mdτ = |b|Mt.

4. Note that the solution to

Θ′(t) = κ(Θ(t) − Θe), t ≥ 0, Θ(0) = Θ0

is given by

Θ(t) = etκΘ0 +

∫ t

0

e(t−τ)κ(−κΘe)dτ

= etκΘ0 + etκ(−κΘe)

∫ t

0

e−τκdτ

= etκΘ0 + etκ(−κΘe)
1

−κ
[e−tκ − 1]

= etκΘ0 + Θe[1 − etκ]

= etκ[Θ0 − Θe] + Θe.

Thus Θ(t) − Θe = etκ[Θ0 − Θe].

Suppose the time of murder is chosen as the origin, and at this time, the body temperature
was 98.6◦F. At 11:30 a.m. (corresponding to a time lapse of T hours from the origin), the
body temperature is 94.6◦F, and at 12:30 a.m. (a time lapse of T +1 hours from the origin),
the body temperature is 93.4◦F. With this data we obtain,

94.6 − 70 = eTκ(98.6 − 70),

and so eTκ = 24.6/28.6. Furthermore,

93.4 − 70 = e(T+1)κ(98.6 − 70),

and this yields that

eκ =
1

eTκ

93.4 − 70

98.6 − 70
=

23.4

28.6
· 28.6

24.6
=

23.4

24.6
.

Consequently,

κ = log

(
23.4

24.6

)
≈ −0.05001042.

Thus

T =
1

κ
log

(
24.6

28.6

)
= 3.0125777 hours ≈ 3 hours.

So the time of murder was 3 hours before 11:30 a.m., that is at about 8:30 a.m.
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Solutions to the exercises on page 76

1. We have
[

B AB . . . An−1B
] (n=2)

=
[

B AB
]

=

[
1 2 + α
α α

]
.

Thus

det

[
1 2 + α
α α

]
= α − α(2 + α) = −α(1 + α),

which is 0 iff α ∈ {0,−1}. Consequently

rank
[

B AB . . . An−1B
] (n=2)

=
[

B AB
]

= n = 2

iff α 6∈ {0,−1}. Hence the system x′(t) = Ax(t) + Bu(t) is controllable iff α ∈ R \ {0,−1}.
2. Let C commute with A. As B, AB, . . . , An−1B is a basis for Rn, it follows that there exist

scalars α0, . . . , αn−1 ∈ R such that

CB = α0B + α1AB + · · · + αn−1A
n−1B. (5.16)

Define χ(A) = α0I + α1A + · · · + αn−1A
n−1. We claim that C = χ(A). From (5.16), we

have that CB = χ(A)B. As Akχ(A) = χ(A)Ak, we also have

C(AkB) = (CAk)B

= (AkC)B (since AC = CA)

= Ak(CB) = Ak(χ(A)B) = χ(A)(AkB),

for all k ∈ N. As the action of C and χ(A) on the basis {B, AB, . . . , An−1B} is identical,
C = χ(A).

3. Let u ∈ C[0, T ]. Then

x =

∫ T

0

e(T−τ)ABu(τ)dτ =

∫ T

0

[
eT−τ 0

0 eT−τ

] [
1
0

]
u(τ)dτ =

∫ T

0

[
eT−τ

0

]
u(τ)dτ

=

[ ∫ T

0
eT−τu(τ)dτ

0

]
=

(∫ T

0

eT−τu(τ)dτ

)[
1
0

]
∈ span

[
1
0

]
.

Define u(t) = αet−T /T , t ∈ [0, T ]. Then u ∈ C[0, T ]. We have

∫ T

0

e(T−τ)ABu(τ)dτ =

∫ T

0

[
eT−τ 0

0 eT−τ

] [
1
0

]
α

T
eτ−T dτ

=

∫ T

0

[
eT−τ

0

]
α

T
eτ−T dτ =

∫ T

0

[
1
0

]
α

T
dτ =

[
α
0

]
,

and so

[
α
0

]
∈ RT . Consequently RT = span

[
1
0

]
.

4. Let v be a left eigenvector of A. Then there exists a λ ∈ R such that vA = λv. Using
induction, we see that for all k ∈ N, vAk = λkv. Since the system is controllable, we have
rank

[
B AB . . . An−1B

]
= n. If vB = 0, then

v
[

B AB . . . An−1B
]

=
[

vB vAB . . . vAn−1B
]

=
[

vB λvB . . . λn−1vB
]

=
[

0 0 . . . 0
]
,

and as v 6= 0, this contradicts the fact that rank
[

B AB . . . An−1B
]

= n. So vB 6= 0.
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