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Abstract. — Let Q2 be a circular domain, that is, an open disk with finitely
many closed disjoint disks removed. Denote by H*°(2) the Banach algebra
of all bounded holomorphic functions on €2, with pointwise operations and
the supremum norm. We show that the topological stable rank of H°(2) is
equal to 2. The proof is based on Suarez’s theorem that the topological stable
rank of H*°(D) is equal to 2, where D is the unit disk. We also show that for
domains symmetric to the real axis, the Bass and topological stable ranks of
the real symmetric algebra Hg°(Q2) are 2.

17.2.2009

1. Introduction

The aim of this short note is to prove that the topological stable rank of the
Banach algebra H>°(Q2) of all bounded analytic functions on £ is equal to 2,
where 2 denotes a circular domain. By conformal equivalence, the same asser-
tion will hold for any finitely connected, proper domain in C whose boundary
does not contain any one-point components. We shall also show that for cir-
cular domains () that are symmetric to the real axis, the real algebra

Hg* () ={f e H*(Q) : (f(z"))" = [(2) (z € @)}
has the Bass and topological stable rank 2. Here z* denotes the complex
conjugate of z. The precise definitions are given below.
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The notion of the topological stable rank of a Banach algebra was introduced
by M. Rieffel in [6], in analogy with the notion of the (Bass) stable rank of a
ring defined by H. Bass [1]. We recall these definitions now.

Definition 1.1. — Let R be a commutative ring with identity element 1. An
n-tuple a := (aq,...,a,) € R"™ is said to be invertible or unimodular, (for short
a € Up(R)), if there exists a solution (x1,...,z,) € R"™ of the Bezout equation
2721 ajr; = 1. We say that a = (a1,...,an, ant1) € Unp1(R) is reducible if
there exist hy,...,h, € R such that (a; + hians1,...,an + hnant1) € Uy(R).

The Bass stable rank of R (denoted by bsr R) is the least n € N such that
every element a = (a1, ..., a0y, ant1) € Upt1(R) is reducible, and it is infinite
if no such integer n exists.

Let A be a commutative Banach algebra with unit element 1. The least
integer n for which U, (A) is dense in A" is called the topological stable rank
of A (denoted by tsr A) and we define tsr A = oo if no such integer n exists.

It is well known that bsr A < tsr A; see [6, Corollary 2.4].

In the case of the classical algebra H*(D) of the unit disk D = {z € C :
|z| < 1}, D. Suarez [9] showed that the topological stable rank is 2. We will
use this result in order to derive our result for H*°(€2) when € is a circular
domain.

Theorem 1.1 (Suarez [9]). — The topological stable rank of H>* (D) is 2.

Let us recall that previously Tolokonnikov [10] showed that the Bass stable
rank of H>°(Q2) is 1. That was based on S. Treil’s [11] fundamental result that
H> (D) has the Bass stable rank 1.

In [5] Mortini and Wick showed that the Bass and topological stable ranks
of the real symmetric algebra

H'(D) ={f € H*[D): (f(z"))" = f(2) (z € D)}

are 2. Using this we will show that D can be replaced by an arbitrary circular
domain symmetric to the real axis.

We now give the precise definition of a circular domain, and also fix some
convenient notation.

Notation. Let Q2 be a circular domain, of connectivity n, that is, an open
disk, D, with n—1 closed disjoint disks removed (V). Then € is the intersection
of n simply connected domains, Q = QuN Q1 N---NQ,_1, where Q; = C\ D;,
the D; being open disks in the extended complex plane C = C U {oo}. We
assume that oo € Dy. The boundary of a set €2 C C is denoted by 9f2.

Mwe tacitly assume that the closures of the removed disks are contained within D.
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Let H () denote the set of all holomorphic functions on €2, and let H>(2)
be the Banach algebra of all bounded holomorphic functions on 2, with point-
wise operations and the supremum norm.

If Q is real symmetric (that is, z € Q if and only if z* € Q), then we use the
symbol HR°(§2) to denote the set of functions f belonging to H>(12) that are
real symmetric, that is, f(z) = (f(z*))* (z € Q).

An example of a circular domain is the annulus A = {z € C: 1 < |z| < ra},
where 0 < r1 < r9. In this case A = Qg Ny, where

Qp = {ZEC: ’Z|<T2}a
O = {z€C: |z]| >nr}.

Thus Qo = C \ Dy and Q; = C\ Dy, where

Dy = {ZG@Z |Z|>7“2},
D) = {ze€C: |z| <m}.

Our main results are the following:

Theorem 1.2. — Let Q be a circular domain. The topological stable rank of
H>(Q) is 2.
Theorem 1.3. — Let Q) be circular domain symmetric to the real axis. Then

the topological and Bass stable rank of Hg°(Q2) is 2.

2. Preliminaries

The following Cauchy decomposition is well known (for HP(2) functions,
1 <p < ) [4, Proposition 4.1, p. 86] or [3, Theorem 10.12, p.181].

Lemma 2.1. — Let Q = ﬂ?:_é 2 be a circular domain of connectivity n.
Then any f € H() can be decomposed as f = fo+ f1 + -+ + fa_1, where
fj € H(Y). If additionally the real part of f is bounded above on Q, then the
same 1is true for the f;.

Proof. — Apply Cauchy’s integral formula for a null homologic cycle, close to
the boundary of €2, and use the principle of analytic continuation. Now let us
assume that the real part of f is bounded above on Q. Fix k € {0,1,...,n—1}.
Since fj(oo) = 0 for j = 1,2,...,n — 1 and }_,,; f; is holomorphic in a
neighborhood of the set C\ €, we see that the real part of each f; is bounded
above on );, for 7 =0,1,...,n — 1. [
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We will use the following factorization result; the non-symmetric version
appears in [10, Lemma 1]. Since in our viewpoint, the proof of the annulus-
case by Tolokonnikov is not complete, we give a more general proof, that
includes also the symmetric case.

Recall that a Blaschke product B with zeros (z;) in the disk

D(a,r)={2z€C: |z—a| <7}
has the form B(z) = b(%52), where b is the usual Blaschke product of the unit

r
Zj—a

disk with zeros w; = =-—. Similarly, the Blaschke product B, with zeros (z;)
in the exterior of the disk D(a,r) has the form B.(z) = b(--) where b is the

zZ—a
usual Blaschke product of the unit disk with zeros w; = Zj’"_a. We call these
functions generalized Blaschke products.
Proposition 2.2. — Let ) be a circular domain of connectivity n, n € N,

and let D; denote the bounded components of C\ Q, (j =1,--- ,n— 1), that
is, Dj is the open disk D(aj;,r;j). Define

Then every function f in H®(QY), f # 0, can be decomposed as:
f=Jo-fi-far o faor -,

where

-1
fi € H®(Q) N <H°°<U Dk)> L i=0,1,2,...,n—1,
k#j
and where T is a rational function with poles and zeros contained in the set
{ah R 7an71}-
If Q2 is a domain symmetric to the real axis, and f € HR°(S2), then each of
the functions f; and r above can be taken to be real symmetric themselves.

Proof. — We may assume that 2 is the circular domain
n—1
Q = D(ao,0) \ | J D(aj,7j),
j=1

where D; = D(aj,rj) C D(ag,m0) and where the closures of the D; (j =
1,...,n — 1) are disjoint.

Let Dg := D(ag,r9). Set ; =C\ Dy, (j =0,1,...,n—1). It is well known
that the sequence (zj) of zeros of f satisfies the generalized Blaschke condition;
that is ), dist (2x,0) converges (see [4, 8]). Split (z) into n sequences
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(2k,j)k, J = 0,1,...n—1, so that the cluster points of (2 ;) are exactly those
of (zx) that belong to 0D;, j = 0,1,...,n — 1. Let B; be the generalized
Blaschke product formed with the zeros (24 ;) of f, j =0,1,...,n—1. It is
clear that the zeros of B; cluster only at 9D;, 0 < j <n — 1.

Then f can be written as f = By - By -+ Bp_1 - g, where g € H*®(Q) and
g has no zeros in § (note that here we have used the fact that divison by B;
does not change the relative supremum of f on the boundary of €;).

By [2, p. 111-112], there exist k; € Z and h holomorphic in €, such that

9(2) = TL (= = )5,

Note that the real part of h is bounded above on 2.

By Lemma 2.1, there exist h; € H(§2;) such that h = hg +hy + -+ + hp—1
and the real part of each h; is bounded above on ;, for j = 0,1,--- ,n — 1.
Hence the functions e? € H>®(Q;).

n—1 n—1
Now f:rHBjehj, where r(z):H(z —a;)" gives the desired factorization.
J=0 J=1

In case of a symmetric domain 2 and f € H*(Q2), we can choose a; to be
real if the disk D(a;,7;) meets the real line, and the other a; in pairs (a,a*).
Thus we can ensure that 7 is real symmetric, because the exponents k; are the
same for a; and a} due to the fact that

1 [d(?)
2w Jp g(2)
where I' denotes a suitable small circle around a;.

The Blaschke products above are easily seen to be choosable in a real sym-
metric fashion. Hence, since f is real symmetric, we conclude that g is real
symmetric as well. Therefore, e” is real symmetric; that is

M) — (M) = ()"

J

)

Since 2 is a domain, h(z) — (h(z*))* equals a constant 2k7i for some k € Z.
Therefore
(e = MEVE GG ) = () b + BE)
2 2 2
Now in Cauchy’s decomposition, we simply consider the symmetric functions

Hj(z) = hj(z)+(£lj(z*))*

, and derive
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Thus we have one of the following cases
2) = X Hj(2) (z€Q)

or
) = X5 Hi?) (e Q).

In the latter case we take —r instead of r. Thus all the factors in
n—1
f=r H BjeHj
=0

are symmetric. ]

We recall that the corona theorem holds for H*°(2) when 2 is a circular
domain; see for example [4, Theorem 6.1, p.195].

Proposition 2.3. — Let Q) be a circular domain. Then (f1,..., fn) is invert-
ible in H>®(Q) if and only if there exists a 6 > 0 such that

S =6 (zeq).
j=1

This corona-theorem is of course true for Hg°(€2). Indeed, if f; € HR°(2)

and (g1,...,9gn) is a solution of 370, g;f; = 1 in H>(Q), then (g1,...,7s) i
a solution of the Bezout equation 2?21 gifi = 1in HR°(QY), where g;(z) :=

n

$DHGED (¢ @),

We will need two technical results, which are proved below. In the fol-
lowing, the notation M (R) is used to denote the maximal ideal space of the
unital commutative Banach algebra R. Also the complex homomorphism from
H> () to C of point evaluation at a point z € 2 will be denoted by ¢, that
is, @.(f) = f(2), f € H®(Q).

Let zg € 2. The set

My (H*(Q)) = {p € M(H™(Q)) : ¢(2) = 20}

is called the fiber of M (H®°(2)) over zp. It is well known (see [4]), that we
have ¢(f) = 0 for some ¢ € M, ,(H*>(2)) if and only if liminf, .. |f(2)| = 0.
The zero set of f € H>®(Q) is the set {¢ € M(H>®(Q)) : p(f) = 0}.

We need a Lemma that lets us decompose two functions that live on different
circular domains. To this end, let Dy, Dy be open disks in C such that D; N
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Dy = (). Next, define ; := C\ D; for j = 1,2. Suppose that f; € H>(Q;)
for j = 1,2 are non-zero functions. Next, set

Zy = {f € 0Dy =0 : f2(§) =0 and lirznﬁisnf If1(2)] = 0},

z€Q1NNo

oy = {6 € 0Dy =00 : f1(§) =0 and limiénf |f2(2)| = O}, and

z2€Q1NQ9

73 = {ateﬂQQ:fl(a):fg(a):O},

Lemma 2.4. — Let D1, Dy be open disks in C such that D; Dy = (). Define
Q; :=C\ Dj. Let f; € H*®(Q;) be nonzero functions. Then the zero sets of
f1 and fa meet in at most a finite number of fibers of H* (21 N Q2). In other
words, there exist at most finitely many z; € {11 Ny for which

liminf |f;(2)| = liminf | fa(2)| = 0.

Moreover, fi and fo can be written as

f1 = H (Z—Zj)mjﬁl, and
2;€Z2UZ3
;) ~
fo = H (z — Zé)ijg
Z;-EZlLJZg

where ﬁj is in H®(Q1 N Q2) and has the property that for any element ¢ €
M(H>®(Q N Q) either o(FL) # 0 or ¢(Fy) # 0.

Additionally, when A\ € Q1 N Qa, each p € M\(H*> (21 N Qg)) is such that
© = px € M(H*> (1)) whenever A € Qa, or ¢ = @\ € M(H*>(2)) whenever
A€ Q.

Proof. — 1t is clear that if ¢ € M(H*(Q21 NQy)), then ¢ € M(H*(2,)) and
o € M(H®(2)).

Now the set Z3 ={z € Q1 N Qs | f1(2) = fa(z) = 0} is finite, for otherwise,
there is an accumulation point of zeros in 9 or in 9. But 9 is contained
in 9, and 9y is contained in ;. So either f; or f5 is identically 0, a
contradiction.

Consider the set Zs and let A € Zy. There are only finitely many zeros of
f1 on the circle 9Dy C 1, since f; is not identically zero. Similarly, we can
can argue in the case when A € Z;. Thus, Z; is finite as well. This completes
the proof. O

It is clear that an analogous version holds true for the symmetric case.
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Lemma 2.5. — Let D1, Dy be open disks in C such that D1\ Dy = (). Define
Q1 :=C\ Dy and Qg := C\ Dy. Let f1,91 € H*®(Q) and fz,g2 € H*(Q2)
be nonconstant functions such that there exists § > 0 such that the following
hold:
(P1) For all z € Qq, |f1(2)| +|g1(2)| = 9.
(P2) For all z € Qq, |f2(2)| + |g2(2)| = 9.
Then, for every e > 0, there exist F1,G1 € H>®(Qy), F», Go € H*™(Q2) such
that

(Fy, Ga) is invertible in H*> (1 N Qg),
(G1, F3) is invertible in H>® (2 N Q)
(F1,Gy) is invertible in H*>(£y),
(Fy, G2) is invertible in H>(Q2), and
C5) [lfr = Full + llgr — Gull + |[.f2 = F2[| + [lg2 — Ga| <.
In particular, (Fy Fa, G1G2) is invertible in H* (1 N Qg).

Proof. — Consider the pair (fi,g2) € H*(21) x H*(£22). By Lemma 2.4 we
may perturb the finitely many zeros of f; belonging to Se U S3 and those of g9
that lie in 57 so that the new functions F; and G5 form an invertible pair in
H>(21NQ2). Now we do the same with the pair (g1, f2) in H>(Q1) x H>®(Q2).
This gives an invertible pair (G1, F) € H*>(Q; N Q2). By choosing these
perturbations sufficiently small, we see that the pairs (F7,G1) and (Fz, G2)
stay invertible in the associated space H®°(1), respectively H>°(23). This
yields that (F} Fy, G1G2) is invertible in H*(Q; N y). O

It is clear that an analogous version holds true for the symmetric case.

3. Proof of tsr(H>(2))=2
Proof of Theorem 1.2. — Let f,g € H*°(R2). By Proposition 2.2, we can write

f = fo-fu---- Jn—1-m,

where f; and g; € H>(€;). We note that since the rational functions r,s
have zeros and poles only in the set {ai,...,a,—1}, it follows that r,s are

invertible in H*°(Q2). Since each ; is simply connected, it follows from the
fact that the topological stable rank of H*°(D) is 2 and the Riemann map-
ping theorem, that also the topological stable rank of H*(£;) is equal to 2.
Hence the pairs (fo,90),- -, (fn-1,9n—1) can be replaced by unimodular pairs

(f0,90)s -+ (fn—1,gn—1) such that for every i =0,1,...,n —1

1fi = filloo + 1195 — Gilloo <€
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By a repeated application of Lemma 2.5 to the pairs (fk,g]) with j # k, we
get the existence of Fy,..., F,_1, Go,...,Gp_1, such that

”Fk - kaoo + ”Gk - gk”oo <,
and the pair (Fj, G;) is unimodular in H*°(2;, N ;) for all 0 < k,j <n — 1.
By the elementary theory of Banach algebras, it follows that there exists a
& > 0 such that
[Fr(2)| +1Gj(2)| 26 (2 € N EY).
Thus there exists a ¢’ > 0 such that with

f = Fy-Fy-Fy_q1-r,
G = Go-Gr-Gn_1-s,
we have forall z€ Q =QogN---NQy_1,

@)+ [3(z)] = 4.
By the corona theorem for H>(£2), we obtain that (f,§) is a unimodular pair

in H°(Q). Also, it can be seen that given ¢ > 0, we can choose € > 0 small
enough at the outset so that

1F = Flloo + I = Flloo < €.
This completes the proof. O

The same proof shows that the topological stable rank of H°(Q) is 2 as
well. Since the unimodular pair (z,1 — 22) is not reducible (here we assume
that | — 1,1 C Q, —1,1 ¢ Q,) we have that the Bass stable rank of HR°(2) is
not one. Since the Bass stable rank is always less than the topological stable
rank, we obtain that it must be 2.
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