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Abstract. Let D denote the open unit disk in C. Let T denote the unit circle, and let
S ⊂ T. We denote by AS(D) the set of all functions f : D ∪ S → C that are holomorphic
in D and are bounded and continuous in D ∪ S. Equipped with the supremum norm, AS(D)
is a Banach algebra, and it lies between the extreme cases of the disk algebra A(D) and the
Hardy space H∞(D). We show that AS(D) has the following properties:
P1. The corona theorem holds for AS(D).
P2. The integral domain AS(D) is not a Bézout domain, but it is a Hermite ring.
P3. The stable rank of AS(D) is 1.
P4. The Banach algebra AS(D) has topological stable rank 2.

The classes AS(D) serve as appropriate transfer function classes for infinite dimensional sys-
tems that are not exponentially stable, but stable only in some weaker sense. Consequences
of the above properties to stabilizing controller synthesis using a coprime factorization ap-
proach are discussed.

1. Notation

We will use the following standard notation:

(1) C denotes the complex plane, and C
∗ the extended complex plane.

(2) D = {z ∈ C | |z| < 1}, D = {z ∈ C | |z| ≤ 1}, T = {z ∈ C | |z| = 1}.
(3) A(D) = {f : D → C | f is holomorphic in D and f is continuous and bounded on D}.
(4) H∞(D) = {f : D → C | f is holomorphic and bounded in D}.

2. Introduction

In the factorization approach to control system analysis and synthesis, one starts with a
frequency domain description of the system in terms of its transfer function, and expresses
the transfer function as a ratio of two stable transfer functions. Many important control
problems can then be formulated and solved with this approach. The book by Vidyasagar
[32] is a classical reference and the recent papers by Quadrat [18], [19], [20] give a modern
comprehensive treatment of the factorization approach.

In order to use a factorization approach for solving control problems, we would like to
factor the unstable transfer function as a ratio of transfer functions from a certain stable
subclass. In the case of infinite-dimensional systems, there are several different notions of
internal stability: exponential stability, strong stability, weak stability and so on. In control
design, the properties demanded from the class of stable transfer functions depends on the
type of systems being considered. So it is natural to expect a wide range of function classes
for stable transfer functions in the case of infinite dimensional systems. Among the classical
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algebras considered for the purposes of systems theory, we mention the disk algebra A(D),
the Callier-Desoer class (see [1]), the Hardy space H∞(D) and the Nevanlinna class (see [5]).

In this article we introduce a new class of transfer functions appropriate for infinite-
dimensional systems that do not have an exponentially stable generator, but which is stable in
some weaker sense. For convenience we work with the unit disk, since given any holomorphic
function g defined in the right half plane, we obtain a new function g◦ defined in the disk D

by composing g with the fractional linear transformation µ : C
∗ → C

∗ given by

(1) z 7→ µ(z) = s =
1 − z

1 + z
,

that takes D to the open right half-plane C+ = {s ∈ C | Re(s) > 0}, and T to the imaginary
axis iR with the point at ∞. The map µ is one-to-one, onto and holomorphic.

In this article, we consider a family of function classes AS(D) (lying between the extremal
classes of the disk algebra A(D) and the Hardy space H∞(D)) comprising functions that
are holomorphic in the open unit disk, and bounded and continuous on the open unit disk
together with a subset S of the unit circle.

Before we begin proving the properties of AS(D) mentioned in the abstract, we give some
system theoretic background which will provide the motivation for studying these function
classes AS(D). We refer the reader to Staffans [27] for background material on the theory of
infinite-dimensional well posed linear systems. In control theory, one is interested in stable
systems. We recall that the generator A of a strongly continuous semigroup (etA)t≥0 on a
Hilbert space X is said to be exponentially stable if there exist positive constants M and ε

such that

(2) ∀t ≥ 0, ‖etA‖ ≤ Me−εt.

A necessary condition for exponential stability is that the spectrum of A, σ(A), lies in the
open left half plane {s ∈ C | Re(s) < −d} for some positive d. As there is no spectrum on iR,
the corresponding transfer function g is typically bounded and holomorphic in an open right
half plane containing the origin, and has a continuous extension to iR including the point at
infinity. Correspondingly on the unit disk, g◦ is an element in the disk algebra A(D). Thus
in the factorization approach to stabilization, the disk algebra A(D) is used as the class of
transfer functions when one has exponentially stable generators.

It turns out that exponential stability is a rather strong condition, and there are many
other weaker notions of stability that do arise often in applications. One such important
concept is that of strong stability, where one demands only that A has the following property:
for all x ∈ X, etAx → 0 (in X) as t → ∞. Thus, as opposed to exponential stability, the rate
of convergence to zero may not be uniform, but depends on what initial condition we have.
An elementary example is the following: X = `2,

A =




−1
−1

2
−1

3
. . .


 and etA =




e−t

e−
1

2
t

e−
1

3
t

. . .


 .

Then it can be shown that A is strongly stable. However, clearly A is not exponentially stable
since the spectrum of the operator A is the set of its eigenvalues −1,− 1

2 ,−1
3 , . . . , together

with 0, and so σ(A) ∩ iR 6= ∅. Typically, the transfer function g corresponding to this A

has a loss of continuity at the point 0 ∈ iR, and then g◦ is in H∞(D), but does not have a
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continuous extension to T (indeed the point 1 ∈ T corresponds to the point 0 ∈ iR under
µ). But H∞(D) is too large a space to consider, since although g◦ may not be continuously
extendible to 1, it does have a continuous extension to the whole unit circle T except the
point at 1. More generally with other notions of stability weaker than exponential stability,
the spectrum of A typically intersects the extended imaginary axis in some closed subset. We
then expect that the corresponding g◦ ∈ H∞(D) is not an element of A(D), but nevertheless
continuous at all points on T except the points of the closed set T∩µ−1(σ(A)), and hence an
element of AT∩µ−1(σ(A))(D). See Figure 1.

PSfrag replacements

0

T ∩ µ−1(σ(A))

T

D

Figure 1. Nonexponentially stable A.

Motivated by the above considerations, for systems that have generators A that are not
exponentially stable, but are stable only in some weaker sense, we introduce the following
class of functions.

Definition. Let S be a subset of T. Let

AS(D) = {f : D∪S → C | f is holomorphic in D and f is continuous and bounded on D∪S},
equipped with the supremum norm ‖ · ‖∞: if f ∈ AS(D), then ‖f‖∞ := supz∈D∪S |f(z)|.

We note that if S = T, then AT(D) is the usual disk algebra A(D), while if S = ∅, then
one obtains the Hardy space H∞(D). If S1, S2 are two subsets of T such that S1 ⊂ S2,
then we have AS2

(D) ⊂ AS1
(D). In this manner, we obtain the family of function algebras,

F = {AS(D) | S ⊂ T}, partially ordered with respect to set inclusion. Thus we classify
transfer functions by points on the imaginary axis (equivalently on T, when passing over to
the disk) to which there exists a continuous extension.

The spaces AS(D) considered here have been studied earlier from a pure mathematics point
of view, for instance, see Détraz [8] and Stray [28].

Just as with the extremal cases of the disk algebra A(D) and the Hardy space H∞(D),
which are Banach algebras, it turns out that each function class AS(D) is a Banach algebra,
and we prove this below, after we recall the notion of a Banach algebra.

Definitions. A complex algebra is a vector space R over C in which an associative and
distributive multiplication is defined, that is, x(yz) = (xy)z, (x + y)z = xz + yz, x(y + z) =
xy + xz for all x, y, z ∈ R, and which is related to scalar multiplication so that α(xy) =
x(αy) = (αx)y for all x, y ∈ R and all scalars α.

A Banach algebra is a complex algebra R which is also a Banach space under a norm
satisfying ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ R.

Theorem 2.1. Let S ⊂ T. AS(D) is a Banach algebra.
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Proof. The completeness can be shown as follows. Let (fn)n∈N be a Cauchy sequence. Then
for each z ∈ D ∪ S, the sequence (fn(z))n∈N is a Cauchy sequence in C, and so by the
completeness of C, it has a limit, say f(z). These pointwise limits give rise to a complex
valued function f defined on D ∪ S. We claim that f belongs to AS(D). f is the uniform
limit of the fn’s on D∪S. In particular, in each compact subset of D, the sequence (fn)n∈N of
holomorphic functions converges uniformly to f , and so f is holomorphic in D (see Theorem
9.12.1 on page 229 of Dieudonné [9]). Continuity and boundedness on D∪S follows from the
fact that the convergence is uniform. �

AS(D) is commutative, and has as the identity element the constant function taking value
1 everywhere on D ∪ S, and this identity element has norm 1.

We now give examples to show that these Banach algebras AS(D) arise quite naturally
when considering transfer functions of infinite-dimensional linear systems.

The first example shows that the class AS(D) is particularly useful when considering sys-
tems that have generators A that are not exponentially stable, but are stable only in some
weaker sense. Indeed, it is typical that the spectrum of A has accumulation points on the
extended imaginary axis when A is strongly stable, and so one can expect a loss of continuity
at these points on the extended imaginary axis for the transfer function.

Example. Let `2(N) denote the Hilbert space of square summable sequences, and let the
standard orthonormal basis for `2(N) be denoted by {en | n ∈ N}. Consider the system

x′(t) = A0x(t) + Bu(t)

y(t) = B∗x(t)

on `2(N), where A0 : D(A0) (⊂ `2(N)) → `2(N) and B ∈ L (C, `2(N)) are given by

(3) A0 =




0 1
−1 0

0 2
−2 0

0 3
−3 0

. . .




, and B =
1

2




1
0
1
2
0
1
3
0
...




,

where D(A0) = {x ∈ `2(N) | ∑∞
n=1(|n〈x, e2n−1〉|2 + |n〈x, e2n〉|2) < ∞}. The following

properties were shown in Curtain and Sasane [3]:

(1) A0 is a Riesz spectral operator with the eigenvalues ±ni, n ∈ N, and the corresponding
(orthogonal) Riesz basis of eigenvectors 1√

2
(en ± ien+1),

(2) A0 is the generator of a strongly continuous contraction semigroup on `2(N),
(3) A0 has compact resolvent,
(4) (A0, B) is approximately controllable, and (A∗

0, B
∗) is approximately observable,

(5) A0 − BB∗ and A∗
0 − BB∗ generate strongly stable semigroups on `2(N),

(6) g(s) = B∗(sI − A0 + BB∗)−1B has a Hankel operator that is bounded, but not
compact.

From Hartman’s theorem (see for instance Corollary 4.10 on page 46 of Partington [17]), we
see that the transfer function g(s) = B∗(sI −A0 +BB∗)−1B cannot be continuous at infinity.
Hence the corresponding function on the disk g◦ does not belong to the disk algebra A(D).
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As ‖BB∗‖ ≤ 1
4 , from Theorem 3.6 on page 209 of Kato [13], it follows that σ(A0 − BB∗) ⊂

∪m∈Z{s ∈ C | |s − mi| ≤ 1
4}. Thus with S := (∪m∈Zµ−1{s ∈ C | |s − (m + 1

2 )i| < 1
4}) ∩ T, we

have that g◦ ∈ AS(D). ♦

Example. Consider a well posed linear system with the generating operators A, B, C

and transfer function G, such that 0 ∈ C \ σ(A). Then the reciprocal system of the well
posed linear system, introduced by Curtain (see for example [2]), is the linear system with
the bounded generating operators A−1, A−1B, −CA−1, g(0) and transfer function g−(s) =
g(0) − CA−1(sI − A−1)−1A−1B = g(1

s
). Reciprocal systems are useful in the analysis of

control systems, since the operators A−1, A−1B, −CA−1, g(0) are all bounded: indeed, one
can pass from the original system to its reciprocal, solve the transformed control problem for
it, and then return back to the original system (see for example, [4]).

We note that if A is exponentially stable, then g− is bounded and holomorphic in the open
right half-plane C+ and continuous (and even holomorphic) in a neighbourhood ∞. Hence
the corresponding function g−◦ on the unit disk belongs to the space AS(D), where S is a
suitably small arc around the point {−1}. ♦

We would like to develop a factorization approach to stabilizing controller design for the
algebra AS(D). Then starting from a given plant in AS(D), we would also be able to construct
a stabilizing controller in the same class AS(D). The properties that play an important role
in the factorization approach (see [32], [18], [19], [20]) are listed below, and it is known that
the disk algebra A(D) and H∞(D) have these useful properties:

P1. The corona theorem.
P2. The Hermite property.
P3. Stable rank = 1.
P4. Topological stable rank = 2.

We prove that the properties P1, P2, P3 and P4 also hold for the infinitely many intermediate
spaces AS(D), where S is an arbitrary subset of the unit circle. That the property P1 is true
for AS(D), was already known to be true (see [28] and [8]), but we give new bounds on the
solution in Section 3.

The properties P1, P2, P3, P4 are proved in Sections 3, 4, 5, 6, respectively. Applications
of these properties to coprime factorization and stabilization are given in Section 7.

3. The corona theorem

In Section 7 we will give a test for coprimeness over AS(D) of a matrix pair (N,D) in The-
orem 7.1. This test for coprimeness is obtained by using a necessary and sufficient condition
for the Bézout identity to hold in the algebra AS(D), which is given in Theorem 3.3, called
the corona theorem for AS(D).

The first part of Theorem 3.3, that is, the statement in Theorem 3.3 up to (12), is not new,
and can be found in the Corollary on page 514 of Stray [28] and in Corollary 2 on page 835 of
Détraz [8]. Nevertheless, for the sake of completeness, a proof of Theorem 3.3 is given here.
As in [28], we reprove Theorem 3.3 using Carleson’s corona theorem and an approximation
result, but we do this for arbitrary subsets of T (as opposed to [28], where only closed subsets
of T were considered) and also show the existence of solutions with bounds (see (14) and the
remark following Theorem 3.3). This proof was shown by Rosay [25].
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Theorem 3.3 is a generalization of Carleson’s corona theorem for H∞(D), and the proof of
Theorem 3.3 given here uses the full strength of Carleson’s theorem. So we do not obtain a
new proof of the Carleson corona theorem when S = T!

The classical Carleson’s corona theorem is the following, and for a simplified proof of this
theorem, we refer the reader to Narasimhan and Nievergelt [15].

Theorem 3.1. Let f1, . . . , fn ∈ H∞(D). There exists a δ > 0 such that

(4) ∀z ∈ D,

n∑

i=1

|fi(z)| ≥ δ,

iff there exist g1, . . . , gn ∈ H∞(D) such that

(5) ∀z ∈ D,

n∑

i=1

fi(z)gi(z) = 1.

There exists a constant C∅(n, δ) such that for all f1, . . . , fn ∈ H∞(D) satisfying (4) and

(6) ∀z ∈ D, |fi(z)| ≤ 1, i ∈ {1, . . . , n},
there exist g1, . . . , gn ∈ H∞(D) satisfying (5) with the bounds

(7) ∀z ∈ D, |gi(z)| ≤ C∅(n, δ), i ∈ {1, . . . , n}.
This theorem also happens to be true with the disk algebra A(D) instead of H∞(D). A

nonconstructive proof of the corona theorem for A(D), relying on Zorn’s lemma, using the
elementary theory of Banach algebras can be found in Rudin [26] (Theorem 18.18, page 365),
which gives the result without the existence of a universal bound for the solution. Theorem
3.3 below, applied to the case S = T, also yields the existence of such a universal constant
for A(D).

Theorem 3.3 gives the same results as the above two cases, in the more general case when
S is between the two extreme cases: ∅ ⊂ S ⊂ T. This can be proved using Carleson’s corona
theorem for H∞(D) and the following approximation result.

Lemma 3.2. Let S ⊂ T. If f1, . . . , fn ∈ AS(D), then given any ε1 > 0 and any ε2 > 0, there
exists an open set Ω containing D∪S (which depends on ε1 and ε2 in general), and there exist
holomorphic functions f e

i : Ω → C, i ∈ {1, . . . , n} such that

∀z ∈ D ∪ S, ∀i ∈ {1, . . . , n}, |fi(z) − f e
i (z)| < ε1, and(8)

∀z ∈ Ω \ D, ∃z∗ ∈ S such that ∀i ∈ {1, . . . , n}, |f e
i (z) − f e

i (z∗)| < ε2.(9)

Proof. Let i ∈ {1, . . . , n}. From Theorem 1 of Range [21] (see also Davie et al. [7]), it follows
that there exists an open simply connected set Ω′

i containing D ∪ S, and an holomorphic
f e

i : Ω′
i → C such that

(10) ∀z ∈ D, |fi(z) − f e
i (z)| < ε1.

Let Ω′ = ∩n
i=1Ω

′
i, and replace f e

i ’s by their restrictions to Ω′. By using the continuity of fi on
D ∪ S, and also that of f e

i , (10) yields (8).
Let i ∈ {1, . . . , n}. For each z∗ ∈ S, there exists an ri

z∗ > 0 such that the open ball

with center z∗ and radius ri
z∗ is contained in Ω′, that is, B(z∗, ri

z∗) ⊂ Ω′, and moreover,

for all z ∈ B(z∗, ri
z∗), |f e

i (z) − f e
i (z∗)| < ε2. Define rz∗ = min{r1

z∗ , . . . , r
n
z∗}, and let Ω =

D ∪ (∪z∗∈SB(z∗, rz∗)). Then Ω is an open simply connected set containing D ∪ S, and the
restriction of f e

i ’s to Ω satisfy (8) and (9). �
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The following result is the corona theorem for the algebra AS(D).

Theorem 3.3. Let S ⊂ T and f1, . . . , fn ∈ AS(D). There exists a δ > 0 such that

(11) ∀z ∈ D ∪ S,

n∑

i=1

|fi(z)| ≥ δ,

iff there exist g1, . . . , gn ∈ AS(D) such that

(12) ∀z ∈ D ∪ S,

n∑

i=1

fi(z)gi(z) = 1.

There exists a constant CS(n, δ) such that for all f1, . . . , fn ∈ AS(D) satisfying (11) and

(13) ∀z ∈ D ∪ S, |fi(z)| ≤ 1, i ∈ {1, . . . , n}
then there exist g1, . . . , gn ∈ AS(D) satisfying (12) with the bounds

(14) ∀z ∈ D ∪ S, |gi(z)| ≤ CS(n, δ), i ∈ {1, . . . , n}.
Proof. The necessity of the condition (11) for (12) to hold is obvious, and we prove the
sufficiency. Assume that (13) holds, as this can always be ensured by multiplication by a
suitable constant (and replacing the δ). Let

(15) Mδ =
1

δ
4n

+ δ
2n

+ 1
, ε = min

{
1

2nMδC∅
(
n, δ

4Mδ

) , δ

2n

}
,

where C∅(·, ·) denotes a universal constant in Carleson’s Theorem 3.1 above.
Then from Lemma 3.2, there exists an open simply connected neighbourhood Ω of D ∪ S

and holomorphic functions f e
i : Ω → C, i ∈ {1, . . . , n}, such that

∀z ∈ D ∪ S, ∀i ∈ {1, . . . , n}, |fi(z) − f e
i (z)| < ε, and(16)

∀z ∈ Ω \ D, ∃z∗ ∈ S such that ∀i ∈ {1, . . . , n}, |f e
i (z) − f e

i (z∗)| <
δ

4n
.(17)

Then for all z ∈ D ∪ S,
n∑

i=1

|f e
i (z)| =

n∑

i=1

|fi(z) − (fi(z) − f e
i (z))| ≥

n∑

i=1

(|fi(z)| − |fi(z) − f e
i (z)|)

≥ δ − n · δ

2n
(using (11), (16) and (15))

=
δ

2
(18)

>
δ

4
.(19)

Furthermore, for z ∈ Ω \ D, we have
n∑

i=1

|f e
i (z)| =

n∑

i=1

|f e
i (z∗) − (f e

i (z∗) − f e
i (z))| (where z∗ is as in (17))

≥
n∑

i=1

(|f e
i (z∗)| − |f e

i (z∗) − f e
i (z)|) ≥ δ

2
− n · δ

4n
(using (18) and (17))

=
δ

4
.(20)
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From (19) and (20), we obtain

(21) ∀z ∈ Ω,

n∑

i=1

|f e
i (z)| ≥ δ

4
.

For all z ∈ D ∪ S,

|f e
i (z)| ≤ |f e

i (z) − fi(z)| + |fi(z)| < ε + 1

≤ δ

2n
+ 1(22)

<
δ

4n
+

δ

2n
+ 1 =

1

Mδ

.

Furthermore, for all z ∈ Ω \ D,

|f e
i (z)| ≤ |f e

i (z) − f e
i (z∗)| + |f e

i (z∗)| (where z∗ is as in (17))

<
δ

4n
+

δ

2n
+ 1 (using (17) and (22))

=
1

Mδ
.

Hence for all z ∈ Ω,

(23) |Mδf
e
i (z)| ≤ 1.

By the Riemann mapping theorem (see for instance Theorem 14.8 on page 283 of Rudin
[26]), there exists a one-to-one holomorphic map ϕ from Ω onto D. Thus ϕ−1 : D → Ω is also
holomorphic. For each i ∈ {1, . . . , n}, the maps Mδf

e
i ◦ϕ−1 ∈ H∞(D) and moreover, from (21)

and (23) we obtain for all z ∈ D,
∑n

i=1 |(Mδf
e
i ◦ ϕ−1)(z)| ≥ δ

4Mδ, and |(Mδf
e
i ◦ ϕ−1)(z)| ≤ 1.

Thus by Carleson’s corona theorem (Theorem 3.1), it follows that there exist g̃1, . . . , g̃n ∈
H∞(D) such that for all z ∈ D,

∑n
i=1(Mδf

e
i ◦ ϕ−1)(z)g̃i(z) = 1, and moreover we can choose

the g̃i’s such that for all z ∈ D, |g̃i(z)| ≤ C∅
(
n, δ

4Mδ

)
, for all i ∈ {1, . . . , n}. Now define

ge
i = Mδ g̃i ◦ ϕ, i ∈ {1, . . . , n}. Then we have that each ge

i is holomorphic in Ω, and

(24) ∀z ∈ Ω,

n∑

i=1

f e
i (z)ge

i (z) = 1 and |ge
i (z)| ≤ MδC∅

(
n,

δ

4
Mδ

)
.

Let h : D ∪ S → C be defined by

(25) h(z) =

n∑

i=1

fi(z)ge
i (z), z ∈ D ∪ S.

Then h ∈ AS(D). Furthermore, for all D ∪ S,

|h(z)| =

∣∣∣∣∣

n∑

i=1

fi(z)ge
i (z)

∣∣∣∣∣ =

∣∣∣∣∣1 −
n∑

i=1

(f e
i (z) − fi(z))ge

i (z)

∣∣∣∣∣ ≥ 1 −
n∑

i=1

|f e
i (z) − fi(z)||ge

i (z)|

≥ 1 − n · 1

2nMδC∅
(
n, δ

4Mδ

) · MδC∅

(
n,

δ

4
Mδ

)
(using (16), (15) and (24))

=
1

2
.(26)
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Now define gi : D ∪ S → C, i ∈ {1, . . . , n} by gi(z) =
ge

i (z)
h(z) , z ∈ D ∪ S. Then the gi’s belong

to AS(D), and from (25) we obtain for all z ∈ D ∪ S,
∑n

i=1 fi(z)gi(z) = 1. Moreover, for all
i ∈ {1, . . . , n},

(27) ∀z ∈ D ∪ S, |gi(z)| ≤ 2MδC∅

(
n,

δ

4
Mδ

)
=: CS(n, δ).

This completes the proof of the theorem. �

Remark. In Garnett [11] (see page 327), the following bound was given for the universal
constant C∅(n, δ) in (7):

(28) C∅(n, δ) ≤ C ·
(

n
3

2

δ2
+

n2

δ4

)
,

where C is a constant not dependent on n and δ. In Theorem 3.3, for CS(n, δ) in (14), the
following bound was obtained (see (27) in the proof):

(29) CS(n, δ) ≤ C ′ ·
(

n
3

2

(
3

n
+

4

δ

)2

+ n2

(
3

n
+

4

δ

)4
)

.

For a fixed n, the right hand sides of (28) and (29) are of the same order in δ for δ ↓ 0.

Before we derive consequences of Theorem 3.3, we recall the following terminology from
the elementary theory of Banach algebras.

Definitions. Let R be a commutative Banach algebra with identity 1R. A complex ho-
momorphism is a nonzero homomorphism ϕ : R → C such that ϕ(x + y) = ϕ(x) + ϕ(y),
ϕ(αx) = αϕ(x), ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ R and all scalars α. It can be verified that
for every complex homomorphism ϕ, there holds that ϕ(1R) = 1, and that ϕ is a continuous
linear functional with norm at most equal to 1: ‖ϕ‖ = sup‖x‖≤1 |ϕ(x)| ≤ 1. Let M(R) denote

the set of complex homomorphisms of R. Then M(R) is a subset of R∗, the set of all bounded
linear functionals from R to C, and in fact it is contained in the unit ball of R∗. R∗ can be
equipped with the weak-star topology. Recall that a set G ⊂ R∗ is open in the weak-star
topology iff for every g ∈ G, there are finitely many points x1, . . . , xn ∈ X and positive reals
ε1, . . . , εn such that ∩n

i=1{f ∈ R∗ | |f(xi)−g(xi)| < εi} ⊂ G. M(R) equipped with the induced
weak-star topology from R∗ is a topological space, and this topology on M(R) is called the
Gelfand topology.

A subset I of R is called an ideal if I is a subspace of R (as a vector space), and xy ∈ I for
all x ∈ R and y ∈ I. A maximal ideal is a proper ideal (that is, 6= R) which is not contained
in any larger proper ideal.

There is a one-to-one correspondence between homomorphisms of R onto C and maximal
ideals M in R. The correspondence is defined by M = ker(ϕ). Owing to this correspondence,
the set M(R) of all complex homomorphisms of R is called the space of maximal ideals of R.

With each element x ∈ R, we associate a complex-valued function x̂ on M(R) as follows:

x̂(ϕ) = ϕ(x), ϕ ∈ M(R).

x̂ is called the Gelfand transform of x.

We now recall the following known result.
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Lemma 3.4. Let R be a commutative complex Banach algebra with identity 1R and let M(R)
be the space of maximal ideals of R, and let M0 ⊂ M(R). Then the following are equivalent:

(1) M0 is dense (in the Gelfand topology) in M(R).
(2) Let x1, . . . , xn ∈ R. There exist y1, . . . , yn ∈ R such that x1y1 + · · · + xnyn = 1R iff

there exists a δ > 0 such that for all ϕ ∈ M0, |x̂1(ϕ)| + · · · + |x̂n(ϕ)| ≥ δ.
(3) Let Λ ∈ Rn×m. Then there is a V ∈ Rm×n such that V Λ = I iff there exists a δ > 0

such that for all ϕ ∈ M0, Λ̂(ϕ)∗Λ̂(ϕ) ≥ δI.

Proof. See for instance pages 201-203 of Duren [10]. �

In 2 and 3, we can also write ‘if’ instead of ‘iff’, as the converse can be shown to be true
for any M0 ⊂ M(R).

Let S ⊂ T. Then for each z0 ∈ D ∪ S, the evaluation map f 7→ f(z0) is a complex
homomorphism from AS(D) onto C. With this identification of the set D ∪ S as a subset of
M(AS(D)), we now obtain the following theorem.

Corollary 3.5. Let S ⊂ T. Then the following hold:

(1) D ∪ S is dense (in the Gelfand topology) in M(AS(D)).
(2) Let Λ ∈ AS(D)n×m. Then there is a V ∈ AS(D)m×n such that V Λ = I iff there exists

a δ > 0 such that for all z ∈ D ∪ S, Λ(z)∗Λ(z) ≥ δI.

Proof. This follows from Theorem 3.3 and Lemma 3.4. �

Note that 1 in the above Corollary 3.5 says that the “corona” M(AS(D)) \D ∪ S is empty.
In Section 7, we will apply the result given in item 2 of Corollary 3.5 in order to characterize

matrix coprime pairs in AS(D).

4. The Hermite property

In Section 7, we will consider unstable transfer functions that can be expressed as a quotient
of two elements from AS(D). We first remark that AS(D) is an integral domain (that is, it is
a commutative ring with an identity element in which the product of two nonzero elements
is zero iff at least one of the elements is zero), so that we can consider its field of fractions.
We will show that not every transfer function obtained as a ratio of elements of AS(D) has a
coprime factorization in AS(D) in Section 7, by using the result in Theorem 4.1 below, which
says that AS(D) is not a Bézout domain.

Definition. R is said to be a Bézout domain if every finitely generated ideal in R is principal.

The fact that AS(D) is a Bézout domain is unlike the situation with the ring H(D) of
holomorphic functions (see Theorem 15.15 of Rudin [26]), but is similar to the extremal cases
of A∅(D) = H∞(D) (see von Renteln [22]) and of AT(D) = A(D) (see Vidyasagar et al. [31]).

Theorem 4.1. Let S ⊂ T. AS(D) is not a Bézout domain.

Proof. In Logemann [14], it was shown that if R is subring of H∞(C+) that contains the
Laplace transform of functions in L1((0,∞); C), then R contains a finitely generated ideal
which is not principal. (In fact, on page 249 of [14], an explicit construction of such a finitely
generated, non-principal ideal is given in terms of Blaschke products.) The disk algebra A(D)
contains the Laplace transforms of integrable functions (composed with µ−1, where µ denotes
the Moebius function given by (1)) (see for example §A.6.2 on page 636 of Curtain and Zwart
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[6]), and A ⊂ AS(D). Consequently, AS(D) contains finitely generated ideals that are not
principal. Hence AS(D) is not a Bézout domain. �

In Section 7, we will show that Theorem 4.1 has the consequence that not every transfer
function has a coprime factorization. However, we will also show that if a transfer function
does have a right (or left) coprime factorization then it also has a left (respectively, right)
coprime factorization. This is a consequence of Theorem 4.3, which we prove next. We begin
by giving a few preliminaries.

Definitions. Let R be a ring. A square matrix U ∈ Rm×m is said to be unimodular if
it is invertible in Rm×m. Let X ∈ Rm×n with m < n. X is said to be complementable
if there exists a unimodular matrix U ∈ Rn×n that contains X as a submatrix. A row[

x1 . . . xn

]
∈ R1×n is called a unimodular row if the ideal generated by x1, . . . , xn is

equal to the ring R. A ring R is called Hermite if every unimodular row is complementable.

Let S ⊂ T. If f1, . . . , fn ∈ AS(D), then ‖
[

f1 . . . fn

]
‖∞ := supz∈D∪S(

∑n
i=1 |fi(z)|2) 1

2 .
If P ∈ AS(D)p×m, then ‖P‖∞ = supz∈D∪S ‖P (z)‖L (Cm ,Cp). The case m = p is of particular

interest. Indeed, AS(D)m×m equipped with the norm ‖ · ‖∞ is a Banach algebra with the unit
I. The set of invertible elements in AS(D)m×m is denoted by G (AS(D)m×m).

In order to prove Theorem 4.3, we will need the following key result.

Theorem 4.2. If f1, . . . , fn ∈ H∞(D) and there exists a δ > 0 such that

(30) ∀z ∈ D,

n∑

i=1

|fi(z)| ≥ δ,

then

(31) ∃Λ =

[
f

F

]
∈ G (H∞(D)n×n), where f =

[
f1 . . . fn

]
, and F ∈ H∞(D)(n−1)×n.

If g1, . . . , gn ∈ H∞(D) are such that for all z ∈ D,
∑n

i=1 fi(z)gi(z) = 1, then there exists a

F ∈ H∞(D)(n−1)×n such that Λ satisfying (31) is such that ‖Λ−1‖∞ ≤ ‖g‖∞(1 + ‖f‖∞) + 1,
where g :=

[
g1 . . . gn

]
.

Proof. By Carleson’s corona theorem, we know that under the condition (30), there exist
g1, . . . , gn in H∞(D) such that for all z ∈ D,

∑n
i=1 fi(z)gi(z) = 1. Then the result follows from

Tolokonnikov’s lemma (see for example, Appendix 3, §10 on page 293 of Nikolski [16]). �

We are now ready to prove the following theorem. This result was known in the case of
A∅ = H∞(D) (this follows from Tolokonnikov’s lemma; see §10 in Appendix 3 of Nikolski
[16]), and also in the case of the disk algebra A = AT (see Corollary 71 and Example 72 on
pages 346-347 of Vidyasagar [32]).

Theorem 4.3. Let S ⊂ T. AS(D) is a Hermite ring.

Proof. Let f1, . . . , fn ∈ AS(D) be such that the ideal generated by f1, . . . , fn is the full ring
AS(D). Then there exists a δ > 0 such that for all z ∈ D ∪ S,

∑n
i=1 |fi(z)| ≥ δ > 0. Without

loss of generality, we can also assume that for all z ∈ D∪S, (
∑n

i=1 |fi(z)|2) 1

2 ≤ 1
2 . Indeed, the

fi’s and δ can be scaled without altering the hypothesis that the ideal generated by f1, . . . , fn
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is the full ring AS(D). Let

M(δ, n) = 2
√

nC∅

(
n,

δ

4

)
+ 1, ε1 = min

{
δ

2n
,

1

2M(δ, n)
,

1

4
√

n

}
and ε2 = min

{
δ

4n
,

1

4
√

n

}
.

Then from Lemma 3.2, there exists an open connected neighbourhood Ω of D ∪ S and holo-
morphic functions f e

i : Ω → C, i ∈ {1, . . . , n}, such that

∀z ∈ D ∪ S, ∀i ∈ {1, . . . , n}, |fi(z) − f e
i (z)| < ε1, and(32)

∀z ∈ Ω \ D, ∃z∗ ∈ S such that ∀i ∈ {1, . . . , n}, |f e
i (z) − f e

i (z∗)| < ε2.(33)

Then for all z ∈ D ∪ S,

n∑

i=1

|f e
i (z)| =

n∑

i=1

|fi(z) − (fi(z) − f e
i (z))| ≥

n∑

i=1

(|fi(z)| − |fi(z) − f e
i (z)|)

> δ − n · δ

2n
=

δ

2
>

δ

4
,

and for all z ∈ Ω \ D, we have

n∑

i=1

|f e
i (z)| =

n∑

i=1

|f e
i (z∗) − (f e

i (z∗) − f e
i (z))| (where z∗ is as in (33))

≥
n∑

i=1

(|f e
i (z∗)| − |f e

i (z∗) − f e
i (z)|) >

δ

2
− n · δ

4n
=

δ

4
.

Consequently,

(34) ∀z ∈ Ω,

n∑

i=1

|f e
i (z)| >

δ

4
> 0.

Furthermore for all z ∈ D ∪ S,

(35) |f e
i (z)| ≤ |fi(z)| + |f e

i (z) − fi(z)| ≤ |fi(z)| + ε1 < |fi(z)| + ε1 + ε2,

and so for all z ∈ D ∪ S,

(
n∑

i=1

|f e
i (z)|2) 1

2 ≤ (
n∑

i=1

|fi(z)|2) 1

2 + (ε1 + ε2)
√

n ≤ sup
z∈D∪S

(
n∑

i=1

|fi(z)|2) 1

2 + (ε1 + ε2)
√

n

≤ 1

2
+ (ε1 + ε2)

√
n.(36)

On the other hand, if z ∈ Ω \ D, and if z∗ is as in (33), then

(37) |f e
i (z)| ≤ |fi(z∗)| + |fi(z∗) − f e

i (z∗)| + |f e
i (z∗) − f e

i (z)| ≤ |fi(z∗)| + ε1 + ε2,

and so for all z ∈ Ω \ D,

(

n∑

i=1

|f e
i (z)|2) 1

2 ≤ (

n∑

i=1

|fi(z∗)|2)
1

2 + (ε1 + ε2)
√

n ≤ sup
z∈D∪S

(

n∑

i=1

|fi(z)|2) 1

2 + (ε1 + ε2)
√

n

≤ 1

2
+ (ε1 + ε2)

√
n.(38)
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From (36) and (38), it follows that

(39) sup
z∈Ω

(

n∑

i=1

|f e
i (z)|2) 1

2 ≤ 1

2
+ (ε1 + ε2)

√
n ≤ 1

2
+ (

1

4
√

n
+

1

4
√

n
)
√

n ≤ 1.

By the Riemann mapping theorem, there exists a one-to-one holomorphic map ϕ from Ω onto
D. For each i ∈ {1, . . . , n}, the maps f e

i ◦ ϕ−1 ∈ H∞(D) satisfy

∀z ∈ D,

n∑

i=1

|(f e
i ◦ ϕ−1)(z)| >

δ

4
> 0 (using (34)), and

∀z ∈ D, |(f e
i ◦ ϕ−1)(z)| ≤ sup

z∈Ω
(

n∑

i=1

|f e
i (z)|2) 1

2 ≤ 1 (using (39)).

So by Carleson’s corona theorem, it follows that there exist g1, . . . , gn ∈ H∞(D) such that

∀z ∈ D,

n∑

i=1

(f e
i ◦ ϕ−1)(z)gi(z) = 1,

and for each i ∈ {1, . . . , n}, for all z ∈ D, |gi(z)| ≤ C∅
(
n, δ

4

)
.

Let f e :=
[

f e
1 . . . f e

n

]
. By Theorem 4.2, there exists Λ ∈ G (H∞(D)n×n) such that

Λ =

[
f e ◦ ϕ−1

F

]
,

where F ∈ H∞(D)(n−1)×n, and if g :=
[

g1 . . . gn

]
, then

‖Λ−1‖∞ ≤ ‖g‖∞(1 + ‖f e ◦ ϕ−1‖∞) + 1 <
√

nC∅

(
n,

δ

4

)
(1 + 1) + 1 = M(δ, n).

For z ∈ D, Λ(z)Λ−1(z) = I, and so for z ∈ Ω,

[
f e(z)

(F ◦ ϕ)(z)

]
(Λ−1 ◦ ϕ)(z) = I. In particular,

∀z ∈ D ∪ S,

[
f(z)

(F ◦ ϕ)(z)

]
(Λ−1 ◦ ϕ)(z) = I −

[
f e(z) − f(z)

0

]
(Λ−1 ◦ ϕ)(z).

As ∥∥∥∥
[

f e − f

F ◦ ϕ

]
(Λ−1 ◦ ϕ)

∥∥∥∥
∞

≤
∥∥∥∥
[

f e − f

0

]∥∥∥∥
∞
‖Λ−1 ◦ ϕ‖∞ ≤ ε1M(δ, n) ≤ 1

2
,

it follows that (see for example, Theorem 18.3 on page 357 of Rudin [26])

I −
[

f e − f

0

]
(Λ−1 ◦ ϕ) ∈ G (AS(D)n×n).

We have

F ◦ ϕ ∈ AS(D)(n−1)×n and (Λ−1 ◦ ϕ)

(
I −

[
f − f e

0

]
(Λ−1 ◦ ϕ)

)−1

∈ G (AS(D)n×n),

and

[
f(z)

(F ◦ ϕ)(z)

]
(Λ−1 ◦ ϕ)(z)

(
I −

[
f(z) − f e(z)

0

]
(Λ−1 ◦ ϕ)(z)

)−1

= I, z ∈ D ∪ S. �

In Section 7, we use this Hermite property of AS(D) to show that if an unstable transfer
function has either a left or a right coprime factorization, then it has both.
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5. Stable rank

In this section we prove that just as with A(D) and H∞(D), the stable rank of each AS(D)
equals 1. In Section 7, we will apply this result to conclude that stabilizability is equivalent
to strong stabilizability for transfer functions that are obtained as a ratio of elements from
AS(D). This means that if a plant is stabilizable (which means that there exists a controller,
possibly unstable, that stabilizes the closed loop interconnection), then in fact it can be
stabilized by a stable controller.

We begin by recalling the definition of stable rank.

Definitions. Let n ∈ N. Then the set of unimodular rows in R1×n is denoted by Un(R). A
row

[
a1 . . . an+1

]
∈ Un+1(R) is said to be stable if there exists a row

[
b1 . . . bn

]
∈

R1×n such that
[

a1 + an+1b1 . . . an + an+1bn

]
∈ Un(R).

If there exists an n ∈ N such that every vector of Un+1(R) is stable, then the stable rank
of R, is the smallest n ∈ N such that every vector of Un+1(R) is stable.

If there does not exist an n ∈ N such that every vector of Un+1(R) is stable, then the stable
rank of R, is defined to be +∞.

Sergei Treil showed that the stable rank of H∞(D) is equal to 1 (Theorem 1 in [30]):

Theorem 5.1. Let f1, f2 ∈ H∞(D). If there exists a δ > 0 such that |f1(z)| + |f2(z)| ≥ δ,
|f1(z)| ≤ 1, and |f2(z)| ≤ 1, z ∈ D, then there exists a g ∈ H∞(D) such that h := f1 + f2g ∈
G (H∞(D)), and moreover for all z ∈ D, |g(z)| ≤ D∅(δ) and |h(z)−1| ≤ D∅(δ), where D∅(δ)
denotes a constant depending only on δ.

Also, the stable rank of the disc algebra is equal to 1, and this was proved in Theorem 1
of Jones et al. [12]. We prove below that in fact the stable rank of each AS(D) is equal to 1.

Theorem 5.2. Let S ⊂ T. The stable rank of AS(D) is equal to 1.

Proof. Let
[

f1 f2

]
∈ AS(D)1×2 be a unimodular row. Without loss of generality, we may

assume that for all z ∈ D ∪ S, |f1(z)| ≤ 1
2 and |f2(z)| ≤ 1

2 . Then there exists a δ > 0 such
that for all z ∈ D ∪ S, |f1(z)| + |f2(z)| ≥ δ. Let

ε1 = min

{
δ

4
,
1

4
,

1

2
(
1 + D∅

(
δ
4

))2

}
and ε2 = min

{
δ

4
,
1

4

}
.

Proceeding as in the proof of Theorem 4.3, using Lemma 3.2, we obtain the existence of an
open connected set Ω containing D ∪ S and holomorphic functions f e

1 , f e
2 defined on Ω that

satisfy

∀z ∈ D ∪ S, |f1(z) − f e
1(z)| < ε1 and |f2(z) − f e

2(z)| < ε1,

∀z ∈ Ω \ D, ∃z∗ ∈ S such that |f e
1(z) − f e

1(z∗)| < ε2 and |f e
2(z) − f e

2(z∗)| < ε2,

∀z ∈ Ω, |f ε
1(z)| + |f ε

2(z)| >
δ

4
(see (34))

∀z ∈ Ω, |f e
1(z)| ≤ 1 and |f e

2(z)| ≤ 1, (see (35) and (37)).

If ϕ : Ω → D denotes a one-to-one holomorphic map from Ω onto D, then from Treil’s theorem
(Theorem 5.1), it follows that there exists a g ∈ H∞(D) such that

h := f e
1 ◦ ϕ−1 + (f e

2 ◦ ϕ−1) · g ∈ G (H∞(D)), with |g(z)| ≤ D∅

(
δ

4

)
and |h(z)−1| ≤ D∅

(
δ

4

)
.
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So for all z ∈ D, |h(z)| ≤ |(f e
1 ◦ ϕ−1)(z)| + |(f e

2 ◦ ϕ−1)(z)||g(z)| ≤ 1 + D∅(
δ
4 ). For all z ∈ Ω,

(f e
1(z) + f e

2(z)(g ◦ ϕ)(z)) 1
(h◦ϕ)(z) = 1. In particular, for all z ∈ D ∪ S,

(f1(z) + f2(z)(g ◦ ϕ)(z))
1

(h ◦ ϕ)(z)

= 1 − ((f e
1(z) − f1(z)) + (f e

2(z) − f2(z))(g ◦ ϕ)(z))
1

(h ◦ ϕ)(z)
=: Φ(z).

Then for all z ∈ D ∪ S,

|Φ(z)| =

∣∣∣∣1 − ((f e
1 (z) − f1(z)) + (f e

2(z) − f2(z))(g ◦ ϕ)(z))
1

(h ◦ ϕ)(z)

∣∣∣∣

≥ 1 − ε1

(
1 + D∅

(
δ

4

))2

≥ 1

2
.

Hence Φ ∈ G (AS(D)), and so f1 + f2 · (g ◦ ϕ) ∈ G (AS(D)). As g ◦ ϕ ∈ AS(D), this completes
the proof. �

6. Topological stable rank

In this section we prove that just as with A(D) and H∞(D), the topological stable rank
of each AS(D) is equal to 2. In Section 7, we will apply this theorem to show that every
unstabilizable plant is as close as we want to a stabilizable plant.

First we recall the notion of topological stable rank.

Definition. Let R be a Banach algebra. If there exists an n ∈ N such that Un(R) is dense
in R1×n in the product topology, then the topological stable rank of R is the smallest n ∈ N

such that Un(R) is dense in R1×n.
If there does not exist an n ∈ N such that Un(R) is dense in R1×n in the product topology,

then the topological stable rank of R is defined to be +∞.

We recall the following two known results.

Theorem 6.1. (Suárez [29]) The topological stable rank of H∞(D) is equal to 2.

Theorem 6.2. The following hold:

(1) The topological stable rank of A(D) is equal to 2.

(2) G (A(D)) = {0} ∪ {f ∈ A(D) | Z (f) ⊂ T}, where the notation Z (f) is used to denote
the set of zeros of f ∈ A(D): Z (f) = {z ∈ D | f(z) = 0}.

Proof. Item 1 was established in Rieffel [23]. The claim in item 2, giving the characterization

of G (A(D)), was shown in the example on page 154 following the proof of Proposition 1 in
Robertson [24]. �

Using the Theorems 6.1 and 6.2 above, we prove that the topological stable rank of AS(D)
is equal to 2, for arbitrary S ⊂ T.

Theorem 6.3. Let S ⊂ T. The topological stable rank of AS(D) is equal to 2.

Proof. Let
[

f1 f2

]
∈ AS(D)1×2. Let ε > 0. Using Lemma 3.2, we obtain the existence of

an open connected set Ω containing D∪S and holomorphic functions f e
1 , f e

2 defined on Ω that
satisfy for all z ∈ D∪ S, |f1(z) − f e

1(z)| < ε
2 and |f2(z) − f e

2(z)| < ε
2 . Let ϕ : Ω → D denote a
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one-to-one holomorphic map from Ω onto D. Then
[

f e
1 ◦ ϕ−1 f e

2 ◦ ϕ−1
]
∈ H∞(D)1×2, and

since the topological stable rank of H∞(D) is equal to 2, it follows that there exist g1, g2 in
H∞(D) such that

[
g1 g2

]
∈ U2(H

∞(D)), and for all z ∈ D, |(f e
1 ◦ϕ−1)(z)− g1(z)| < ε

2 and

|(f e
2 ◦ ϕ−1)(z) − g2(z)| < ε

2 . As
[

g1 g2

]
∈ U2(H

∞(D)), it follows that there exists a δ > 0
such that for all z ∈ D, |g1(z)|+|g2(z)| ≥ δ. Hence for all z ∈ D∪S, |(g1◦ϕ)(z)|+|(g2◦ϕ)(z)| ≥
δ > 0, and by Theorem 3.3, it follows that

[
g1 ◦ ϕ g2 ◦ ϕ

]
∈ U2(AS(D)). Moreover, for

all z ∈ D ∪ S, |f1(z) − (g1 ◦ ϕ)(z)| < ε and |f2(z) − (g2 ◦ ϕ)(z)| < ε. So it follows that the
topological stable rank of AS(D) is at most equal to 2.

Next we show that the topological stable rank cannot be 1, that is, G (AS(D)) is not dense
in AS(D). In order to do this, we first mention that since the topological stable rank of A(D) is
equal to 2, G (A(D)) is not dense in A(D). Indeed from item 2 in Theorem 6.2 above, it follows
that if f ∈ A(D) is not identically zero, and has a zero in D, then f does not lie in the closure
of G (A(D)). Consequently, the polynomial function p in A(D), defined by p(z) = z, z ∈ D,

does not belong to G (A(D)). Clearly p ∈ AS(D). We now prove that p 6∈ G (AS(D)). Assume,

on the contrary, that p ∈ G (AS(D)), then there exists a sequence (fn)n∈N in G (AS(D)) that
converges to p uniformly on D ∪ S. Let r ∈ (0, 1), and define q(z) = rz, z ∈ D, and for
each n ∈ N, gn(z) = fn(rz), z ∈ D. Then q and the gn’s all belong to A and the sequence
(gn)n∈N converges to q in A. As the fn’s belong to G (AS(D)), from item 2 of Corollary 3.5,
it follows that for each n ∈ N, there exists a δn > 0 such that for all z ∈ D ∪ S, |fn(z)| ≥ δn.
Consequently for all z ∈ D, |gn(z)| ≥ δn > 0, and by again from item 2 of Corollary 3.5 (now
with S = T!), it follows that gn ∈ G (A). But q is not identically zero, and q(0) = 0. This
contradicts the fact that any nonzero element of A having a zero in D does not belong to
G (A). This completes the proof. �

7. Coprime factorization and stabilization

Finally, in this section we proceed to give consequences for systems theory of the results
established in the previous sections. The outline is as follows.

(1) Using the corona theorem for AS(D), we give an necessary and sufficient condition for
a matrix pair to be right coprime.

(2) We consider unstable transfer functions which we write as a ratio of elements from
AS(D). Not all such unstable transfer functions will have a coprime factorization.
However, using the Hermite property of AS(D) we get the fact that a transfer function
has a doubly coprime factorization iff it has a right (or a left) coprime factorization.
Thus, using the result from Vidyasagar [32], we get a parameterization of all stabilizing
controllers, analogous to the famous Youla parameterization.

(3) Using the fact that the stable rank of AS(D) is equal to 1, we prove that plants which
are stabilizable are in fact strongly stabilizable, that is, the stabilizing controller can
be chosen to be stable.

(4) Finally, we use the property that the topological stable rank of AS(D) is 2 to show that
any transfer function is as close as we like to a transfer function that is stabilizable.

We begin by applying the result given in 2 of Corollary 3.5 in order to characterize matrix
coprime pairs in AS(D).

Definitions. Let S ⊂ T. Matrices with entries in AS(D) will be denoted by Mat(AS(D)). If
N,D ∈ Mat(AS(D)), then the pair (N,D) is called right coprime (with respect to AS(D)) if
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there exist X,Y ∈ Mat(AS(D)) such that the matrix Bézout identity holds: XN + Y D = I.
A left coprime pair of matrices is defined analogously.

The following result gives a test for coprimeness of a matrix pair.

Theorem 7.1. Let S ⊂ T. Let N ∈ AS(D)m×p and D ∈ AS(D)p×p. The pair (N,D) is right
coprime iff there exits a δ > 0 such that for all z ∈ D ∪ S, N(z)∗N(z) + D(z)∗D(z) ≥ δI.

Proof. This follows from Corollary 3.5 (see also Lemma 34 on page 340 of Vidyasagar [32]). �

We now consider unstable transfer functions that can be expressed as a quotient of two
elements from AS(D). Having shown that AS(D) is an integral domain in Theorem ??, we
can consider its field of fractions. We recall this notion below.

Definitions. If R is an integral domain, then a fraction is a symbol N
D

, where N,D ∈ R and

D 6= 0. Define the relation ∼ on the set of all fractions as follows: N1

D1
∼ N2

D2
if N1D2 = N2D1.

The relation ∼ is an equivalence relation on the set of all fractions. The equivalence class of
N
D

is denoted by [N
D

]. The field of fractions, denoted by F(R), is the set F(R) = {[ N
D

] | N,D ∈
R and D 6= 0}, of equivalence classes of the relation ∼, with addition and multiplication
defined as follows: [N1

D1
] + [N2

D2
] = [N1D2+N2D1

D1D2
] and [N1

D1
][N2

D2
] = [N1N2

D1D2
]. F(R) is then a field

with these operations. Let S ⊂ T.
Matrices with entries in F(AS(D)) will be denoted by Mat(F(AS(D))). If P ∈ Mat(F(AS(D))),

then P is said to have a right coprime factorization if there exists a pair (N,D) with
N,D ∈ Mat(AS(D)) such that D is a square matrix, det(D) 6= 0, P = ND−1, and (N,D) is
right coprime. A left coprime factorization is defined analogously. A transfer function having
a right coprime factorization and a left coprime factorization is said to have a doubly coprime
factorization.

Using the result from Theorem 4.1 which says that AS(D) is not a Bézout domain, we
obtain the following result, which says that not every element from F(AS(D)) possesses a
coprime factorization.

Corollary 7.2. Let S ⊂ T. There exist P ∈ F(AS(D)) that do not have a coprime factoriza-
tion.

Proof. This is a consequence of Lemma 7 on page 332 of Vidyasagar [32] and Theorem 4.1. �

Thus, given an arbitrary P ∈ Mat(F(AS(D))), the existence of a right coprime factorization
for P is not automatic. However, if P does have a right coprime factorization, then all right
coprime factorizations of P can be characterized, and we give this characterization in the next
result. A similar characterization can also be obtained for left coprime factorizations.

Theorem 7.3. Let S ⊂ T. If P ∈ Mat(F(AS(D))) has a right coprime factorization (N,D),
then (N ′, D′) is a right coprime factorization of P iff there exists a unimodular matrix U such
that N ′ = NU and D′ = DU .

Proof. This follows from Lemma 2 on page 331 of Vidyasagar [32]. �

Coprime factorization plays an important role in stabilizing a plant using a factorization
approach, where by ‘stabilization’, we mean the following.
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Definitions. Let S ⊂ T. Let P,C ∈ Mat(F(AS(D))). The pair (P,C) is said to be stable if

(40) H (P,C) =

[
(I + PC)−1 −P (I + PC)−1

C(I + PC)−1 (I + PC)−1

]

is well defined, and belongs to Mat(AS(D)). We define

S (P ) = {C ∈ Mat(F(AS(D))) | (P,C) is a stable pair}.
P ∈ F(AS(D))p×m is said to be stabilizable if S (P ) 6= ∅.

PSfrag replacements

u1

u2

e1

e2

P

C

+

+

+

+

Figure 2. Closed loop interconnection of the plant P and the controller C.

As shown in Figure 2, H (P,C) in (40) is the transfer function of
[

u1

u2

]
7→
[

e1

e2

]
.

The stabilization problem for a plant is solved completely once a transfer function has a
doubly coprime factorization.

Theorem 7.4. Let S ⊂ T. Let P ∈ Mat(F(AS(D))) have a right coprime factorization
(Nr, Dr) and a left coprime factorization (Dl, Nl). Let Xr, Yr, Xl, Yl ∈ Mat(AS(D)) be such
that XrNr + YrDr = I and NlXl + DlYl = I. Then

S (P ) = {(Yr − QNl)
−1(Xr + QDl) | Q ∈ Mat(AS(D)) and det(Yr − QNl) 6= 0}

= {(Xl + DrQ)(Yl − NrQ)−1 | Q ∈ Mat(AS(D)) and det(Yl − NrQ) 6= 0}.
Proof. This follows from Theorem 12 on page 364 of Vidyasagar [32]. �

We know that not every P ∈ Mat(F(AS(D))) has a coprime factorization. Thus in light of
Theorem 7.4, the natural question then arises: if P has a right (or a left) coprime factorization,
then does it have a left (respectively right) coprime factorization? It turns out that P ∈
Mat(F(AS(D))) has one iff it has the other, which we prove below in Corollary 7.5. This is a
consequence of Theorem 4.3.

Corollary 7.5. Let S ⊂ T and suppose that P ∈ Mat(F(AS(D))). Then:

(1) If P has a right coprime factorization, then P has a left coprime factorization.
(2) If P has a left coprime factorization, then P has a right coprime factorization.

Proof. This follows from Theorem 4.3 and Theorem 66 on page 347 of Vidyasagar [32]. �
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Thus the above result says that if P possesses either a left or a right coprime factorization,
then it possesses a doubly coprime factorization.

Next, using the fact that the stable rank of AS(D) is equal to 1, we show the equivalence
of stabilizability and strong stabilizability.

Definition. Let S ⊂ T. P ∈ F(AS(D))p×m is said to be strongly stabilizable if S (P ) ∩
AS(D)m×p 6= ∅.

We have the following result.

Theorem 7.6. Let S ⊂ T and suppose that P ∈ Mat(F(AS(D))). The following are equiva-
lent:

(1) P is stabilizable.
(2) P is strongly stabilizable.

Proof. This follows for instance from Corollary 6.6 on page 2280 of Quadrat [20] and Theorem
5.2. �

Finally, using the fact that the topological stable rank of AS(D) is equal to 2, we show that
every unstabilizable SISO plant defined by a transfer function P ∈ F(AS(D)) is ‘as close as
we want it to be’ to a stabilizable plant, in the following sense.

Theorem 7.7. Let S ⊂ T and suppose that P = N
D

∈ F(AS(D)), with N,D ∈ AS(D)
and D 6= 0. Given any ε > 0, there exist Nε ∈ AS(D) and Dε ∈ AS(D) \ {0} such that
‖N − Nε‖∞ < ε and ‖D − Dε‖∞ < ε, and moreover (Nε, Dε) are coprime.

Proof. This follows from Proposition 7.4 on page 2281 of Quadrat [20] and Theorem 6.3. �
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