

Version Control Tools: A Collaborative Vehicle for Learning in F/OS

Maha Shaikh
Department of Information Systems

London School of Economics
m.i.shaikh@lse.ac.uk

Tony Cornford
Department of Information Systems

London School of Economics
t.cornford@lse.ac.uk

Abstract

In this paper we explore how version control software

participates in learning within free/open source activities
(F/OS). We see F/OS in terms of a product, and a
community of people engaged in the process of its
development, with version control software at the centre
of all three activities as they learn and innovate. Learning
is analysed through the perspective provided by
Bateson’s Levels of Learning, a relational model that
stresses collaboration and conflict as drivers of learning
and showing how conflict resolution may lead to higher
and more profound or significant learning.

1. Introduction

It is usually taken for granted that version control
software [VCS] is an indispensable part of free/open
source [F/OS] development activity. Software patches are
accumulated and exchanged via such tools, working
systems are distributed, and developers manage some of
their communication through them. However, VCS does
more than just support development activity at the level
of changing chunks of code. Here we ask what role VCS
plays in learning in F/OS? F/OS can be seen as a
combination of three elements: a product - software that
is jointly worked on by developers and is available to a
wider group of users; a community of developers centred
around the product; and a process that they engage in

F/OS software products have certain characteristics
that can be learned about or innovated, such as their
architecture, criteria of quality, coherence and
accessibility. Given Linus’ Law, there is a particular need
for transparency to allow review. Community refers to the
norms of the developers, how they enter the community,
their motivations for participation, the ideology that binds
them together, and the levels of trust required to be self
managing. Qualities that make a F/OS process
appropriate include a high degree of responsiveness
(release early, release often), to be inclusive, reliable and
coherent (understood). Such distinctions are not absolute,
but for the sake of clarity we use them here to identify

various opportunities for learning that may be mediated to
some degree through VCS.

The structure of the paper is as follows; in the next
section we briefly introduce version control software.
This is followed by an explanation of Bateson’s learning
ideas and a quick sketch of our case study and finally
onto the analysis. The diagonal line in Table 1 indicates
the path of analysis we take.

Table 1. Role for version tools in F/OS learning

Role of Version Control Tools

Product

Community

Process
Learning

I

Learning
II

B
at

es
on

’s
 L

ev
el

s
of

 L
ea

rn
in

g

Learning
III

2. Version control software

Version control softwares are used by software
developer communities in both proprietary and free/open
source environments. Usually designated as a ‘tool’ they
are conventionally defined as ‘a mechanism for managing
the multiple versions of the software objects that are
created during the software development process [4] and
emphasise control, ‘keeping track of the configuration
items which are any documents created during a software
development process, and which are found necessary to
be placed under configuration control like requirements
documents, data flow diagrams, design documents,
source code, and test results [7]. In contrast to a simple
tool or control perspective, our view is to see VCS as an

 1

mailto:m.i.shaikh@lse.ac.uk
mailto:t.cornford@lse.ac.uk

actor within a heterogeneous network of interests which it
inscribes and translates.

Such software has long been a key part of open source
activity with a history going back at least to the origins of
UNIX [13]. F/OS communities, by their very nature,
require them to manage software revision and release
control within a multi-developer, multi-directory, multi-
group environment [3, 6]. Tools such as RCS [Revision
Control System] and SCCS [Source Code Control
System] have long been in use [8], but Concurrent
Version System [CVS], an OS product, is now recognized
to be the most popular tool in F/OS communities [17].

3. Levels of learning

To understand how learning occurs and is manifested
in F/OS we have adopted Bateson’s concepts of levels of
learning as our framework [2]. Argyris and Schon [1]
base their organizational learning work on Bateson’s
ideas, adapting it to help understand collective or
organizational learning. Bateson suggests that “what can
be studied is always a relationship or an infinite regress
of relationships. Never a ‘thing’”. This takes us away
from learning as something that can be isolated but rather,
learning occurs through relationships and collaborations
[14]. VCS mediate such relationship building and it is
central to this paper to see them as actors that are engaged
within a learning process, promoting and reflecting
learning. For Bateson learning is about some sort of
‘change’, a communication of ideas and a mastery of a
new approach or solution [11]. His view of learning is
adaptive and ecological; ‘learning is adaptation, and
evolution is its highest form’ [11], and emphasizes
learning as a product of collaboration that is inherently
social and relational. But any relational process involving
collaboration also invites paradoxes and conflict. Such
paradox and conflicts, and how they are understood or
resolved, are proposed as the key to understanding how
an individual or organization learns.

The version control software considered here has often
been at the centre of conflict. For example, conflicts over
patch submission may be resolved partly by VCS itself. It
is, after all, named as a control device, and it does,
through its process of managing software items, exercise
control over development. The choice of VCS itself has
also lead to explicit conflict, revealing the dynamic within
F/OS communities and their conception of the process
they engage in [13].

Bateson’s presents learning as occurring at four
different levels. At the lowest is Zero learning, which is
hardly any learning at all. This involves simple reflex
actions, or stimulus-response, which are needed to
maintain a local status quo.

Learning I is the ability to learn to respond to diverse
stimuli within the same or similar context – learning

something. Learning II is a reflexive activity that allows
activity to move across contexts and resolve paradox –
learning about learning. Change of context and paradox
resolution differentiates Learning I from Learning II; an
ability to adapt responses and to consciously reflect on
learning techniques and habits and improve them – often
described as learning to learn. Reflection may be
triggered by some crisis, breakdown or paradox that
forces consideration of behaviour. This can lead to either
reflection on learning habits in order to improve skills, or
cause confusion and result in a state of limited reaction.

Learning III is understood as rarer and entails a
‘profound reorganization of character’ as for example in
religious conversions. Learning III is a response to
significant challenges to established theory or paradigms.
It is an intriguing feature of open source communities that
this form of learning lies at its core, and the Linux kernel
community, for example, has over the last 10 years
undergone a series of profound reorganizations when
their learning paradigm has adapted.

4. Linux kernel case study

The F/OS case used here is the Linux kernel
community. This community has a long history of
concerns with VCS adoption and use [13]. They began
with pre-patch releases and then part of the community
adopted CVS. This VCS was not espoused by Linus
Torvalds who, after some time, chose a closed source tool
BitKeeper [BK]. This proved to be the catalyst of much
distrust and dissent. It also lead to an attempt at a ‘GPL’d
clone’ called BitBucket [9]. Torvalds backed BitKeeper
and uses it to this day. His reasons for doing so, and the
problems this caused, are discussed in Shaikh and
Cornford [13].

The creator of BitKeeper, Larry McVoy, resented the
BitBucket project and threatened to sue. At around this
time he made ‘amendments’ to the BitKeeper license
[BKL] making it impossible for any developer who had
previously worked on ‘competing’ VCS to use BK. This
threatened to become a serious dispute with the level of
distrust rising.

Another issue that arose was the incompatibility
between CVS and BK. Those developers who could not
use BK, or did not wish too because of a conflict in
ideology, were unable to access the main tree of the
Linux kernel kept by Torvalds. McVoy took the
opportunity to appease kernel developers by creating a
gateway between BK and CVS. The situation seemed to
get better only to end in further suspicion. BK’s
conversion of data into CVS did not add up completely to
what was held by BK. What was available to the CVS
users was not all the metadata and nothing McVoy said
about the insignificance of the difference altered some
kernel developers’ resentment or mistrust.

 2

5. Analysis

The brief history given in the section above will help
the reader to understand the significance of VCS for F/OS
communities. The case suggests immediately how such
software mediates aspects of the community’s governance
structure, signifies access to code and metadata, and
inscribes procedures for patch submission. Table 2,
provides our framework for analysis of how VCS engage
with activities of learning within this community and
indicates areas of learning we identify within our study of
the VCS debate within LKML. We only explore some of
the framework here, taking a path to consider learning I in
product, learning II in community, and learning level III
in process.

5.1. Learning I in Product

VCS stores source code. In the case of BK, code is
held as changesets, which are groups of deltas, accessible
to developers to read and reuse. Both BK and CVS
provide developers with an opportunity to read and
compare code written by others and thus ‘learn
something’. A requirement for comparison may arise
when more than one patch is sent to solve the same bug.
In the case of BK the second developer is made aware of
the duplication of effort and is then asked to determine
which of the two patches should be accepted by looking
at both patches side-by-side[5]. At a simple level, this
comparison affords developers a window to observe how
others would attack the same bug, but also allow the
review of other code-use in other contexts. VCS also
offers developers the chance to read metadata written by
developers to explain their lines of code [12]. This, like
the openness of source code, grants developers a chance
to compare and learn.

5.2. Learning II in Community

A slightly different scale of comparison is offered by

the ability to backtrack through deltas to see how change
has occurred and what direction it took. This can support
learning within the community through emulation and
adapting of ideas. It is at the point of adaptation of ideas
that this level of learning penetrates into the next, higher
level of Learning II. It also moves from simple learning
about code and coding to learning about aspects of
participation within the community.

A community in F/OS clings to and seeks to sustain
some ideology, has certain motivations, and relies on a
culture built on trust and peer-review. Learning II
indicates ability within such a community to adapt
behaviour when the context changes and as a result of

reflection. This level of learning is characterized by
breakdowns, paradox situations or challenges that need to
be addressed to regain some form of order.

As the brief history given above shows, VCS is seen to
exercise control over the community and (in the case of
BK) is structured to meet the needs of the governing
body. One of Torvalds’ main reasons for embracing BK
was to control who had access to ‘his’ tree. He didn’t
want all developers to have access or the ability to load
their patches without going through him first.

The community conflict over BK vs CVS, the gateway
and the metadata, challenged many people to reflect on
their current ways of working, the values they espoused,
the norms of participation and development contribution.
The context had changed and old behaviours or beliefs
would not work. Such reflection demanded some new
responses – for example, to GPL BK, to work through a
gateway, or to engage in more debate and dissent.

5.3. Learning III in Process

In conventional software engineering terms VCS are
all about process (control, tools), while in F/OS terms the
process is itself a radical reorientation of software
engineering. Here we want to analyze the role version
control tools play in challenging fundamental
assumptions and paradigms, and how learning at level III
is manifested.

There is more than one instance of such a challenge
and response in the Linux kernel case, for example in
discussion of the purity of the GPL, ownership of codes,
rules of participation and forking. Rare as this level of
learning may be in individuals, it seems to be a recurrent
theme in F/OS communities as they debate their existence
and fundamental values. Here we focus on Torvalds
decision to adopt BK [16] rather than CVS, remembering
that in 1995 Torvalds had decided clearly that he would
not use CVS for kernel development, though he was
happy to use the tool for his work at Transmeta [15]. If
this had been a move to a F/OS tools it still would have
caused a stir, but the idea of using a closed source tool to
create the kernel that stands for F/OS for many was an
outrage. It divided developers between BK and CVS
users and served as a catalyst for serious dissension and
even a threat of a fork.

Using a closed source product to create their open
source kernel threw the GPL into question and the
sanctity of the code they produced. Faced with two
equally distressing choices [or double-bind] of either
forking the kernel or adopting a closed source tool gave
rise to two responses. The community adapted in the form
to create a GPL’ed clone of BK [BitBucket] so that they
wouldn’t have to use BK, and it also reinforced a sense of
community and voice sufficient to persuade McVoy to
create the BKÆCVS gateway [10] which allowed CVS

 3

users indirect access to the source code and (some)
metadata held in the BK repository.

6. Conclusion

Our contention is that F/OS activity is based on
learning as a response to changing environmental factors
and on the basis of experience. We suggest that such
learning activity can be identified, for analytical purposes,
within three main elements, the code itself, the
community that surrounds it, and the process they engage
in. Each element has to be learned about, each element
poses problems and paradoxes that require some
reflection on learning style or modes. At times, and more
often perhaps than we thing, learning in F/OS is focused
around a questioning of certain fundamental assumptions
or core values, as in issues of license discussed here. In
all this we see version control software playing a role
within the heterogeneous network of interests. It is both a
medium of learning (e.g. code visibility), but also a
product of learning as it embodies or inscribes certain
interests, while attenuating others. We see the community
and the ‘tool’ mutually constructing one another as a
learning activity

7. References

[1]C. Argyris and D. Schön, Organization learning: A theory of
action perspective, Reading, Mass: Addison-Wesley, 1978.

[2]G. Bateson, Steps to an ecology of mind, New York:
Chandler, 1972.

[3]B. Berliner, "CVS II: Parallelizing Software Development,"
in Proceedings of Proceedings of the USENIX Winter 1990
Technical Conference, Washington D.C., 1990.

[4]G. Clemm, "Replacing Version-Control with Job-Control," in
Proceedings of Proceedings of the 2nd International Workshop
on Software configuration management, Princeton, New Jersey,
United States, 1989, pp. 162-169.

[5]V. Henson and J. Garzik, "BitKeeper for Kernel Developers,"
in Proceedings of Ottawa Linux Symposium, Ottawa, Ontario
Canada, 2002, pp. 197-212.

[6]J.D. Herbsleb and R.E. Grinter, "Splitting the organization
and integrating the code: Conway’s law revisited.," in
Proceedings of 21st International Conference on Software
Engineering (ICSE 99), Los Angeles, 1999.

[7]T. Kilpi, "New Challenges for Version Control and
Configuration Management: a Framework and Evaluation,"
IEEE Computer, no. 1st Euromicro Working Conference on
Software Maintenance and Reengineering (CSMR '97), 1997,
pp. 33-41.

[8]H. Koike and H.-C. Chu, "Integrating Version Control and
Module Management Using Three-Dimensional Visualization.,"
in Proceedings of HCI, San Francisco, California, USA, 1997,
pp. 853-856.

[9]P. Machek, BitBucket: GPL-ed BitKeeper clone, University
of Indiana, 2003.
http://www.uwsg.indiana.edu/hypermail/linux/kernel/0302.3/09
31.html

[10]L. McVoy, kernel.bkbits.net and BK->CVS gateway,
University of Indiana, 2003.
http://www.ussg.iu.edu/hypermail/linux/kernel/0305.1/0632.htm
l

[11]W.J. Rothwell, "Bateson's Heterarchy of Learning,"
Training and Development Journal, vol. July, 1983, pp. 24-27.

[12]M. Shaikh and T. Cornford, "Version Control Software for
Knowledge Sharing, Innovation and Learning in OS," in
Proceedings of Open Source Software Movements and
Communities Workshop hosted by the International Conference
on Communities and Technologies, Amsterdam, The
Netherlands, 2003, pp. 39-46.

[13]M. Shaikh and T. Cornford, "Version Management Tools:
CVS to BK in the Linux Kernel," in Proceedings of 25th
International Conference on Software Engineering - Taking
Stock of the Bazaar: The 3rd Workshop on Open Source
Software Engineering, Portland, Oregon, 2003, pp. 127-132.

[14]S. Star and K. Ruhleder, "Steps toward an Ecology of
Infrastructure: Design, Access for Large Information Space,"
Information System Research, vol. 7, no. 1, 1996, pp. 111-134.

[15]L. Torvalds, Re: CVS, Linus, and us, University of Indiana,
1995.
http://www.uwsg.indiana.edu/hypermail/linux/kernel/9602/0800
.html

[16]L. Torvalds, linux-2.5.4-pre1 - bitkeeper testing, University
of Indiana, 2002.
http://www.uwsg.indiana.edu/hypermail/linux/kernel/0202.0/09
89.html

[17]A. van der Hoek, "Configuration Management and Open
Source Projects," in Proceedings of Proceedings of the 3rd
International Workshop on Software Engineering over the
Internet, Limerick, Ireland, 2000.

 4

http://www.uwsg.indiana.edu/hypermail/linux/kernel/0302.3/0931.html
http://www.uwsg.indiana.edu/hypermail/linux/kernel/0302.3/0931.html
http://www.ussg.iu.edu/hypermail/linux/kernel/0305.1/0632.html
http://www.ussg.iu.edu/hypermail/linux/kernel/0305.1/0632.html
http://www.uwsg.indiana.edu/hypermail/linux/kernel/9602/0800.html
http://www.uwsg.indiana.edu/hypermail/linux/kernel/9602/0800.html
http://www.uwsg.indiana.edu/hypermail/linux/kernel/0202.0/0989.html
http://www.uwsg.indiana.edu/hypermail/linux/kernel/0202.0/0989.html

 5

Table 2. Framework to understand the role played by version control tools in F/OS learning

Roles for Version Control Software

Issues where learning may
centre.

Architecture
Code quality

Coding conventions
Security

Membership
Motivation
Ideology

Reputation and trust
Norms

Responsive
Inclusive
Reliable
Coherent

Product

Community

Process

Learning I

Learning 1 is an ability to
understand and repeat behaviour in
similar contexts.

� Allow developers to
compare and read the code

� Allows simple reading of
metadata

� Informs the community about
how to ‘talk’ to each other and
communicate

� A vehicle for learning
netiquette

� How to submit a patch or
read code and deltas

� Defining software activities
� Defining software roles

Learning II

Learning 2 is the ability to adapt
behaviour when the context is
changed and is a result of reflection
and paradox resolution.

� Backtracking through deltas
to see how change occurred

� Comparing patches to
improve technique

� Insights into how ‘elegant
code’ can be written

� Changing norms of
communication.

� Use of peer review
� Conflict resolution activities.

� Inscribing the management
of the software process

� Adding audit trails and
accountability

B
at

es
on

’s
 L

ev
el

s
of

 L
ea

rn
in

g

Learning III

Level 3 is a more profound ability to
challenge and change assumptions.

� Visibility of code and
architecture allow technical
challenges

� User demands meet
established practices

� Inscribing new community
norms of governance and
hierarchy

� Addressing questions of
license which challenge
openness and ownership of
code

� Challenges to issues of
openness and access to code
and metadata

� Questioning participation
� Demanding new processes

(gateway)

	Department of Information Systems
	London School of Economics
	Department of Information Systems
	London School of Economics
	
	
	
	Role of Version Control Tools

	Product
	
	
	
	Community

	Process

	Roles for Version Control Software

	Security
	
	
	
	Norms

	Coherent

	Product
	
	
	
	Community

	Process

	Learning I

	Learning II
	Learning III

