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Abstract: This paper applies a continuous-time model to study the equilibrium of an
economy consisting one normal agent and one constrained agent who has to maintain his
intermediate wealth above a stochastic benchmark whose value is determined endogenously.
After characterizing the optimization problems, I use the martingale approach to derive the
equilibrium market dynamics in closed-form to compare with the normal economy. In the
benchmarking economy before the constraint date, asset price, volatility and risk premium
are higher than those in the normal economy for risky benchmarks. When the benchmark
is relatively safe, asset price is higher but volatility, risk premium and the optimal fraction
of wealth invested in the risky asset are decreased.



2

This paper studies the effect of a portfolio benchmarking constraint on the equilibrium

market dynamics. The economy has a normal agent with log utility over continuous con-

sumption and a constrained agent (also with log utility) whose intermediate wealth must

be no less than a stochastic benchmarking constraint. Using the martingale approach, I

solve this continuous-time consumption-based general equilibrium model explicitly to get

the equilibrium assets prices, risk premium, volatility, optimal strategy and compare them

with those in a normal economy. To my knowledge, this is the first paper to investigate

the equilibrium effects of this benchmarking constraint.

The constraint studied here is a requirement that an agent’s wealth is no less than a

stochastic benchmark index, whose parameters are exogenously given but the value of this

benchmark is determined endogenously. The problem of beating a constant floor has been

studied by the portfolio insurance literature, e.g. the equilibrium analysis of portfolio in-

surance by Basak (1995) and Grossman and Zhou (1996). However, the portfolio insurance

constraint only ensures the agent doesn’t lose more than a certain level without asking for

a high return when the state is good. The inclusion of a stochastic benchmark index in the

stochastic benchmarking constraint means the agent’s performance has to beat the index

when market does well and therefore, imposing such a constraint on agent ensures good

performance. Since there are only two assets in the economy, a risk-free asset and a risky

stock, and markets are complete, the stochastic benchmark is a replication portfolio using

the bond and stock. Then, the riskiness of the benchmark is measured by the positions in

the risk-free asset. Since the benchmark index is achievable through passive management,

it is considered as the minimum return that is required for active portfolio management.

After describing the economy, which apart from the existence of the constraint is the stan-

dard set-up following Lucas (1978), I first characterize the portfolio choice problems for the
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normal agent and the constrained agent. The approach is the martingale representation

approach as in Cox and Huang (1989) and Basak (1995). Then I get explicit solutions for

the equilibrium market dynamics using the martingale approach for option pricing and Ito’s

lemma. Similar procedure has been used by Basak (1995) but the alternative consideration

of the stochastic benchmark complicates the discussion of equilibrium effects.

I find that in the stochastic benchmarking economy before the constraint date, the risky

asset price is higher than that in the normal economy because the constrained agent con-

sumes less than if he’s not constrained. Since the risk-free asset is in zero net supply, the

extra investment from the constrained agent goes into the risky asset market and drives up

the risky asset’s price. After the constraint date, there’s no effect. The increase in stock

price also reflects the agent’s preference for consumption and dividend after the constraint

date. When the benchmark is risky, which means the replication portfolio has a short

position on the risk-free asset, then the risk premium, volatility, and the optimal fraction

of wealth invested in the risky asset by the constrained agent are increased by the presence

of the constraint. While if the benchmark is relatively safe, i.e. the replication portfolio

contains positive position in the risk-free asset, then the risk premium, volatility, and the

optimal fraction of wealth invested in the risky asset by the constrained agent are always

decreased by the presence of the constraint. In both cases, the degree of the effects are

state-dependent.

The rationale behind these findings is when there are more (less) demand for the risky

asset from the constrained agent, the volatility has to increase (decrease) so as to clear the

market. It is also because that the stock price in this economy is equal to the normal econ-

omy price plus the present value of an option-like payoff that represents the effects from

the benchmarking constraint. For the risky benchmark case, the extra payoff is like a call
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option payoff and the effect is thus volatility increasing; but for the safe benchmark case

extra payoff is like a put option payoff and the effect becomes volatility decreasing. From

the modeling aspect, the market price of risk is constant and the SPDs before the constraint

date are not directly affected by the existence of the constraint due to the use of the con-

sumption good as numeraire and the existence of intermediate dividend for consumption,

which are not true in some other papers that have contrary conclusions for certain parts of

the model, for instance Grossman and Zhou (1996). However, the conclusion of this paper

is consistent with that for the portfolio insurance model of Basak (1995) which has the

similar set-up and approach with this paper.

The closest literatures are the equilibrium analysis of portfolio insurance by Basak (1995)

and Grossman and Zhou (1996). Basak (1995) builds a similar consumption-based general

equilibrium model and compares the explicit expressions for equilibrium market dynamics

in the portfolio insurance economy with those in the normal economy. The portfolio insur-

ers’ strategies are similar to the synthetic put approach and the presence of the intermediate

portfolio insurance constraints decreases the risk premium, volatility and optimal fraction

of wealth invested in the risky asset. Although there are multiple normal and constrained

agents, the selection of log utility ensures the SPDs are not affected by the constraints since

they are derived by market clearing of intermediate consumption. In contrast, Grossman

and Zhou (1996) adopts a different set-up in which the portfolio insurance constraint is on

the final date and there’s no intermediate consumption so agents only care about consump-

tion at the final date which is financed by a lump-sum of dividend. Therefore, the pricing

kernels before the final date are directly affected by the constraint and that makes the over-

all effect of portfolio insurance to be increasing risk premium and volatility. However, the

use of bond price as the numeraire results in different predictions with Basak (1995) and

makes the model impossible to be solved explicitly. As mentioned above, these two papers
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only consider the case of portfolio insurance which is benchmarking on a constant floor

while Tepla (2001) studies the optimal portfolio choice of an agent who performs against a

stochastic benchmark similar to the one considered here but doesn’t derive the equilibrium

results.

The rest of the paper is organized as follows. Section 1 presents the model and char-

acterizes the optimization problems of agents. Section 2 solves for the equilibrium and

provides the main results on the effect of the stochastic benchmarking constraint. Then

Section 3 presents more discussion on the equilibrium effects. Finally, Section 5 concludes.

1 The Model

1.1 The Economy

In a finite horizon [0, T ′] pure-exchange economy that has a single consumption good, let B

denote a Brownian Motion on a complete probability space (Ω,F ,P). Let {Ft; t ∈ [0, T ′]}

be the augmentation by null sets of the filtration generated by B which represents all un-

certainties in the economy.

1.1.1 Securities

There are two securities. S is a risky stock in constant net supply of 1 and pays dividend

at rate δt in [0, T ′]. The dividend process follows a Geometric Brownian Motion.

dδt = δt(µδdt + σδdBt), t ∈ [0, T ′] (1)

dSt + δtdt = St(µtdt + σtdBt + qAt), t ∈ [0, T ′] (2)
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The stock price is a diffusion process with an FT -measurable jump at time T , which is the

constraint date before the final date T ′.

S0 is a risk-less asset (money market account) in zero net supply and also has a jump,

which together with the jump in St account for the anticipated discontinuity in the equi-

librium.

dS0
t = S0

t (rtdt + q0At), t ∈ [0, T ′] (3)

Here, At ≡ 1t≥T . The FT -measurable random variable q is the jump size parameter. To

rule out arbitrage, q = q0 = ln(ST /ST−) where ST− denotes the left limit of ST .

The asset price is continuous semi-martingale because the demand for consumption will

increase discontinuously immediately after the constraint date T . Thus the demand for

the risky asset will jump down, resulting in a downward jump in asset price. The jump is

necessary for the equilibrium conditions to hold, which will be discussed in the section for

equilibrium.

1.1.2 State Price Density

To apply the martingale approach, consider the state price density process (SPD),

πt =
1

S0
0

exp(−
∫ t

o

rsds−
∫ t

o

θsdBs −
1

2

∫ t

o

θ2
sds− qAt) (4)

where θt = (µt − rt)/σt is the market price of risk. The SPD process also contains a jump.

Apply Ito’s lemma to πt,

dπt = −πt(rtdt + θtdBt + qAt), t ∈ [0, T ′] (5)

and use the SPD process, the relationship between the stock price and future dividends is

St =
1

πt

E[

∫ T ′

t

πsδsds | Ft], t ∈ [0, T ′] (6)
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1.1.3 Agents

There are two agents in the economy, i.e. agent n and agent m, each endowed with xn0

and xm0 at time zero. Let Xit denote the optimal invested wealth for agent i at time t,

i = n, m.

dXit = (1−Φit)Xit(rtdt+qAt)+ΦitXit(µtdt+σtdBt +qAt)−citdt, i = n, m, t ∈ [0, T ′] (7)

where Φit denotes the optimal fraction of wealth invested in the risky asset and cit is the

consumption process for agent i. Both agents have a time-additive state-independent utility

function for consumption. The function u(cit) is the same for both agents and is continuous

with continuous first derivatives, strictly increasing, strictly concave. Hereafter, all optimal

quantities are denoted with a caret (ˆ).

X̂it =
1

πt

E[

∫ T ′

t

πsĉisds | Ft], t ∈ [0, T ′] (8)

Agent n is the normal agent while agent m is the constrained benchmarker who faces a

stochastic benchmarking constraint at time T so that he has to maintain his time T wealth

above a stochastic benchmark aST + b where a and b are exogenously given constants. So

the constraint is set to be XmT− ≥ aST + b. Refine aS0 + b = xm0 then the value of b char-

acterize the riskiness of the benchmark and the choice of parameter values has important

impact on the equilibrium properties.

1.2 The Optimization Problems

The normal agent solves the following problem:

max
cn

E[

∫ T ′

0

u(cns)ds]

subject to E[

∫ T ′

0

πscnsds] ≤ π0xn0
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Assuming a solution exists, the solution is:

ĉnt = I(λnπt) t ∈ [0, T ′] (9)

where I(·) is the inverse of u′(·) and λn solves:

E[

∫ T ′

0

πsI(λnπs)ds] = π0xn0 (10)

The constrained agent m solves:

max
cm,XmT−

E[

∫ T ′

0

u(cms)ds]

subject to E[

∫ T

0

πscmsds + πT−XmT−] ≤ π0xn0

E[

∫ T ′

T

πscmsds | FT ] ≤ πT−xmT− almost surely,

XmT− ≥ aST + b almost surely

Lemma 1.

Assuming a solution exists, the solution is:

ĉmt = I(λm1πt) t ∈ [0, T ) (11)

ĉmt = I(λm2πt) t ∈ [T, T ′] (12)

where λm1 and λm2 solve:

E[

∫ T

0

πsI(λm1πs)ds + πT− max{aST + b,
1

πT−
E[

∫ T ′

T

πsI(λm1πs)ds|FT ]}] = π0xm0 (13)

E[

∫ T ′

T

πsI(λm2πs)ds|FT ] = πT− max{aST + b,
1

πT−
E[

∫ T ′

T

πsI(λm1πs)ds|FT ]} (14)

N.B.(1) λn, λm1 are constant, λm2 is FT -measurable random variable. (2) If xn0 = xm0, then

λm1 ≥ λn. (3) λm1 = λm2 if the benchmarking constraint is not binding and λm1 > λm2 if
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it is binding.

For the optimal invested wealth at time T ,

X̂nT− =
1

πT−
E[

∫ T ′

T

πsI(λnπs)ds | FT ] (15)

X̂mT− = max{aST + b,
1

πT−
E[

∫ T ′

T

πsI(λm1πs)ds | FT ]} (16)

2 The Equilibrium

In the rest of this paper, I first solve for the equilibrium in this benchmarking economy

and then compare it with the normal economy in which only normal agents exist. For

simplicity, we only consider log-utility while similar approach can be applied to power and

negative exponential utilities.

The equilibrium condition is given by market clearing:

δt = ĉnt + ĉmt t ∈ [0, T ′] (17)

Thus in this case, the derivation of SPD follows Basak (1995):

δt = I(λnπt) + I(λm1πt) t ∈ [0, T ) (18)

δt = I(λnπt) + I(λm2πt) t ∈ [T, T ′] (19)

For u(c) = log(c), the solution for πt is:

πt = (
1

λn

+
1

λm1

)
1

δt

t ∈ [0, T ) (20)

πt = (
1

λn

+
1

λm2

)
1

δt

t ∈ [T, T ′] (21)
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Apply Ito’s lemma on πt which follows the dynamics in equation (5),

rt = µδ − σ2
δ = r (22)

θt = σδ = θ (23)

q = ln(
1

λn

+
1

λm1

)− ln(
1

λn

+
1

λm2

) ≤ 0 (24)

The short-rate and market price of risk are constant, while the SPD has a jump at

time T . If the SPD is continuous, the normal agent’s demand for consumption will

also be continuous. But when agent m’s constraint is binding, since λm1 > λm2 and

ĉmT− = 1/λm1πT−, ĉmT = 1/λm2πT , his demand for consumption will jump upwards imme-

diately after time T , leading the aggregate demand for consumption jump upwards, which

is impossible given a continuous dividend process. Hence, there must be a jump in the SPD

to smooth agent m’s demand for consumption. And the jump in SPD is upward because

agent m values consumption after the constraint date more than before the date.

Then, define the equity market as the total optimal wealth invested in the stock and denote

it by X̂emt. Since the money market account is in zero net supply, the equity market is

equal to the total optimal wealth invested by the two agents.

X̂emt = X̂nt + X̂mt t ∈ [0, T ′] (25)

Also, since the risky asset is in net supply of 1,

St = X̂emt = X̂nt + X̂mt t ∈ [0, T ′] (26)
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2.1 Asset Prices

Now, we can derive explicit solutions for Xemt, St, µt, σt, φt. To compare with the normal

economy, denote the normal economy terms by X̄emt, S̄t, µ̄t, σ̄t, φ̄t.

In the normal economy:

S̄t = X̄emt =
¯̂
Xnt =

1

π̄t

E[

∫ T ′

t

π̄s
1

λnπ̄s

ds | Ft]

= (T ′ − t)δt t ∈ [0, T ′] (27)

In the benchmarking economy, for t ∈ [T, T ′]:

St = Xemt = X̂nt + X̂mt

=
1

πt

E[

∫ T ′

t

πs
1

λnπs

ds | Ft] +
1

πt

E[

∫ T ′

t

πs
1

λm2πs

ds | Ft]

=
1

( 1
λn

+ 1
λm2

) 1
δt

(
1

λn

+
1

λm2

)(T ′ − t)

= (T ′ − t)δt (28)

So St = S̄t = (T ′ − t)δt, for t ∈ [T, T ′]. This is true because the benchmarking economy

becomes the normal economy after T . Then we study the economy before T .

Lemma 2. For t ∈ [0, T ):

St = Xemt = X̂nt + X̂mt

=
1

πt

E[

∫ T ′

t

πs
1

λnπs

ds|Ft] +
1

πt

E[

∫ T

t

πs
1

λm1πs

ds + πT−X̂mT−|Ft]

=
λm1

λn + λm1

(T ′ − t)δt +
λn

λn + λm1

(T − t)δt

+
1

πt

E[πT− max{aST + b,
1

πT−
E[

∫ T ′

T

πsI(λm1πs)ds|FT ]}|Ft]

=
λm1

λn + λm1

(T ′ − t)δt +
λn

λn + λm1

(T − t)δt +
λn

λn + λm1

(T ′ − T )δt

+
1

πt

E[πT− max{aST + b− λn

λn + λm1

(T ′ − T )δT−, 0}|Ft]

= S̄t +
1

πt

E[πT− max{aST + b− λn

λn + λm1

(T ′ − T )δT−, 0}|Ft] (29)
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N.B. St ≥ S̄t, for t ∈ [0, T ). This is true because before time T agent m consumes less

than if he’s unconstrained. So he invests more than he would if unconstrained. Since the

risk-free asset is in zero net supply, the extra investment from agent m goes into the stock

market and drives the price up before time T .

Now focus on the explicit solution of St for t ∈ [0, T ). From the equation (28), ST =

(T ′ − T )δT , and by the continuity of δt, δT− = δT . So, replace ST by (T ′ − T )δT−, rewrite

equation (29) as:

St = (T ′ − t)δt +
1

πt

E[πT− max{(a− λn

λn + λm1

)(T ′ − T )δT− + b, 0}|Ft] (30)

Since the process δt is a Geometric Brownian Motion, we can apply the martingale ap-

proach to take the expectation in equation (30). Hereafter, we assume (a − λn

λn+λm1
)b < 0

which means there’s uncertainty over the relative performance of the benchmark and the

unconstrained strategy. Now, solve equation (30), we have:

Proposition 1. In the benchmarking economy,

St = (T ′ − t)δt + (a− λn

λn + λm1

)(T ′ − T )N(z1)δt + be−r(T−t)N(z2) (31)

where

z1 = z2 + σδ

√
T − t

z2 =
ln[(a− λn

λn+λm1
)(T ′ − T )δt/− b] + (r − 1

2
σ2

δ )(T − t)

σδ

√
T − t
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N(·) is the distribution function of normal random variable. And we also have:

X̂mt = St − X̂nt = St −
λm1

λn + λm1

(T ′ − t)δt (32)

2.2 Volatility and Risk Premium

Apply Ito’s lemma on St, we get explicit solutions for the volatility and risk premium in

both the normal and benchmarking economies.

Proposition 2.

In the normal economy, for t ∈ [0, T ′],

σ̄t = σδ (33)

µ̄t − r = σ2
δ (34)

In the benchmarking economy, for t ∈ [T, T ′],

σt = σδ (35)

µt − r = σ2
δ (36)

While for t ∈ [0, T ),

σt = [1− be−r(T−t)N(z2)

St

]σδ (37)

µt − r = [1− be−r(T−t)N(z2)

St

]σ2
δ (38)

Whether the volatility and risk premium in the benchmarking economy are greater or
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less than those in the normal economy only depends on the sign of the fraction term inside

the bracket. Therefore, for t ∈ [0, T ):

Corollary 1.

For b < 0 (b > 0), the volatility and risk premium in the benchmarking economy are higher

(lower) than those in the normal economy.

The volatility and risk premium in the normal economy are constant. However, they’re

time-varying in the presence of the stochastic benchmarking constraint. In general, the

volatility and risk premium will increase when the benchmark is risky (b < 0 means the

benchmark is equivalent to borrowing money to invest in the risky asset). While for rel-

atively safe benchmarks (with b > 0), volatility and risk premium will decrease. In both

cases, the degree of the increase or decrease is state-dependent. To better understand the

results for volatility, I further investigate agents’ optimal strategies.

2.3 The Optimal Strategy

Denote the optimal fraction of wealth invested in the risky asset by Φ̂nt and Φ̂mt for agent

n and agent m. Apply Ito’s lemma on πtX̂nt and πtX̂mt, we get explicit solutions for Φ̂nt

and Φ̂mt in the benchmarking economy.

Proposition 3.

For t ∈ [0, T ′],

Φ̂nt = (µt − r)/σ2
t (39)

While for Φ̂mt, when t ∈ [T, T ′],

Φ̂mt = Φ̂nt = (µt − r)/σ2
t (40)
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When t ∈ [0, T ),

Φ̂mt = [1− be−r(T−t)N(z2)

X̂mt

]
µt − r

σ2
t

(41)

Similar to the analysis on volatility and risk premium, we have:

Corollary 2.

For b < 0 (b > 0), the constrained agent invests more (less) fraction of wealth in the risky

asset than the normal agent.

3 Discussion of the Equilibrium

We have seen that when the benchmark is equivalent to borrowing an amount of money

and investing in the risky asset, the existence of this risky benchmark increases risk pre-

mium, volatility conditionally. While when the benchmark is relatively safe, those terms

are smaller in the benchmarking economy than in the normal economy. In both cases, the

risky asset price is always higher in the presence of the benchmarking constraint than in

the normal economy. The conclusion here is consistent with that of Basak (1995), in which

the portfolio insurance constraint can be viewed as a special case of what we study here.

Such findings may be contrary to conventional wisdom, e.g. Grossman and Zhou (1996),

which says the inclusion of the portfolio insurance constrained agent should increase volatil-

ity and risk premium. However, the results here are understandable in the following ways:
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Firstly, seen from proposition 3 and corollary 2, the effect of volatility can be explained by

the optimal fraction of wealth invested in the stock by both agent. In the normal economy,

both agents optimally invest all their wealth into the stock (as implied by the log-utility).

In the safe benchmark case, the constrained agent has to invest less in the stock so as to

hold some risk-free asset. To clear the market, it means the unconstrained agent has to

take more than he would in the normal economy. Since we have,

Φ̂nt = (µt − r)/σ2
t = θ/σt (42)

so the only way to make the unconstrained agent be willing to hold more stock is to decrease

σt. While if the benchmark is risky, the constrained agent may have to hold more stock. So

the volatility has to increase to induce the unconstrained agent to sell. This suggests that

in this economy which has a constant market price of risk (θ), the volatility of the stock has

to decrease (increase) so as to make it more (less) attractive to the unconstrained agent.

In both case, since the constrained agent has to adjust his demand for the stock condition-

ally, the degree to which the volatility is increased or decreased is therefore state-dependent.

In another attempt to explain the effect on volatility, recall the expression for St before T in

equation (30). The stock price in the benchmarking economy is the normal economy price

plus an expectation term which is the present value of an option-like payoff, which is a call

option payoff when the benchmark is risky, and a put option payoff when the benchmark

is safe. For the safe benchmark case, when the market goes down, the put option value

goes up, which helps stabilize stock price. So the volatility is decreased in the presence

of the constraint. However, in the risky benchmark case, when the market goes down the

call option value goes down as well so the stock price falls even further and the constraint

increases volatility.
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The results for the safe benchmark case is consistent with Basak (1995) which has the

similar set-up in using consumption as numeraire and having intermediate consumption,

dividend and constraint date. These features result in a constant market price of risk as

compared to the price of consumption. But in Grossman and Zhou (1996), the market price

of risk is time-varying as they used bond price as numeraire and there’s no intermediate

consumption so the pre-constraint pricing kernels are conditional expectations of the final

one and therefore directly affected by the constraint. Therefore, the volatility is affected by

both the change in market price of risk and the change in agent’s risk aversion, and they

show that the overall effect is a higher volatility.

4 Concluding Remarks

This paper studies the equilibrium effect of a stochastic benchmarking constraint. The econ-

omy has a normal agent with log utility over continuous consumption and a constrained

agent whose intermediate wealth must meet a stochastic benchmarking constraint. Using

the martingale approach, I solve this consumption-based general equilibrium model ex-

plicitly to get the equilibrium assets prices, risk premium, volatility, optimal strategy and

compare them with those in a normal economy. The problem of the equilibrium effects of

portfolio insurance studied by Basak (1995) and Grossman and Zhou (1996) is a special

case of the problem studied here.

In the stochastic benchmarking economy before the constraint date, the risky asset price is

higher than that in the normal economy because the constrained agent consumes less than

if he’s not constrained. Since the risk-free asset is in zero net supply, the extra investment

flows into the risky asset market and drives up the risky asset’s price. When the benchmark
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is chosen to be a risky one, i.e. can be replicated by borrowing an amount of money to

invest in the risky asset, then the risk premium, volatility are increased by the presence

of the constraint. While if the benchmark is relatively safe, i.e. the replication portfolio

of which contains positive position in the risk-free asset, the risk premium, volatility are

decreased. In both cases, the degree of the increase or decrease are state-dependent.

The rationale behind these findings is when there are more (less) demand for the risky

asset from the constrained agent, the volatility has to increase (decrease) so as to clear the

market. This is true because in this model the market price of risk is constant and the

SPDs before the constraint date are not directly affected by the existence of the constraint

due to the existence of intermediate dividend for consumption. The model has consistent

results with the portfolio insurance model of Basak (1995) that has the similar set-up and

approach with this paper.

In an earlier version of the paper, I considered a more general case in which the constrained

agent has to maintain time T wealth above the maximum of the stochastic constraint and

a constant floor (i.e. max[aST + b, K]). Thus we can view the overall effect of this con-

straint as the mixture of the effect from the benchmark constraint and the effect from the

floor constraint. The individual effect of the floor constraint is volatility-decreasing, so

does that for a safe benchmark constraint. But the effect of a risky benchmark constraint

is volatility-increasing. So the individual effects from the benchmark constraint and the

floor constraint are in the same direction if the benchmark is safe; and they’re in opposite

directions in the benchmark is risky. Therefore, for a risky benchmark, when market is

good, a risky benchmark constraint is more likely to bind. Its volatility-increasing effect

overshadows the volatility-decreasing effect of the floor constraint so the overall effect is

volatility-increasing. But when market is bad, the floor constraint’s effect is stronger as
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it’s more like to bind, so the overall effect is volatility-decreasing. For the safe benchmark

case, the two individual effects are both volatility-decreasing, so does the overall effect.
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5 Appendix (very brief proof of some results)

Proof of Lemma 1: see Basak (1995)’s proof of lemma 3, replace K by aST + b.

Proof of Proposition 1: Follow the martingale approach for the Black-Scholes option

pricing formula.

Proof of Proposition 2: Apply Ito’s lemma on the explicit solution for S̄t and St, get

the expression for the drift and diffusion terms. Also, we have

dSt + δtdt = St(µtdt + σtdBt, t ∈ [0, T ) (43)

by definition, so we can solve for µt − r and σt. After getting the explicit solution for σt,

we can then use the relationship that (µt − r)/σt = θt = σδ to derive µt − r.

Proof of Proposition 3: Applying Ito’s lemma on the product πtX̂t gives

d(πtX̂t) + πtĉtdt = πtX̂t[Φ̂tσt − θt]dBt (44)

again apply Ito’s lemma on the explicit solutions of X̂nt and X̂mt, equalizing the diffusion

term solves Φ̂nt and Φ̂mt.
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