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A Appendices

A.1 Data, further estimation results, and robustness checks
A.1.1 Evaluating the comprehensiveness of the MLS rental listings data

Since the use of rental listings data in this paper is relatively new to the literature, it is important to ex-
amine how comprehensive are the Toronto MLS rental listings. This section shows through webscraping
that MLS data provide an unusually high coverage of long-term and verifiable rental listings in the City
of Toronto compared to other online rental platforms. Specifically, the MLS data capture over 90% of
rental properties listed on the second-most popular rental listing platform in Toronto.

The Multiple Listing Service (MLS) is a database created by the Canadian Real Estate Association
(CREA) and used by real-estate professionals to share and access information about properties for sale or
lease. It enables cooperation among real-estate agents and brokers, who can pool their listings and share
commissions on property transactions. An alternative popular rental listings platform is Toronto Rentals
(hereafter referred to as TR), which is the second-largest website serving Toronto and the surrounding
GTA since 1995.

For the period between 23rd November 2022 and 23rd February 2023, all rental listings from the
MLS on realtor.ca (REALTOR.ca, 2022) and from TR (rentals.ca/toronto, Toronto Rentals,
2022) were webscraped. For each MLS listing, information was collected on the MLS ID, the address
(as a string), the listing date, the number of bedrooms, the number of bathrooms, and the asking rent. For
each TR listing, the information collected was the address (specified in terms of latitude and longitude),
the listing date, the number of bedrooms, the number of bathrooms, and the asking-rent range.

To compare the two scraped datasets, MLS address strings were cleaned and parsed to apply Google
Maps API to geocode the coordinates of each listing. The MLS listings were then matched with the TR
listings by the geocoded address, the number of rooms, and a window around the listing date. Since
a property might be listed on one platform first and later on another platform, the comparison was
restricted to properties listed on TR between 25th November and 5th December 2022. The exercise then
checked how many of these listings were also on the MLS during the same or surrounding time period.

Figure A.1 shows a map of the locations of rental listings in the City of Toronto. Yellow dots
indicate MLS listings. Grey dots are TR listings that match with listings in the MLS data. Red dots are
TR listings that are at least 200 metres away from the closest MLS listing, which is taken as an indicator
that these listings were not included in the MLS.

There were 4,359 unique MLS records during the period studied, and the TR dataset includes a total
of 3,516 entries. Out of all the TR listings, 294 were not matched with an MLS record, accounting for
approximately 8.4% of the TR data. This fraction is likely to be overestimated because of inaccuracies
in the manual matching of the MLS listings’ coordinates.

There are also short-term rental websites such as Kijiji in Toronto. However, listings on these plat-
forms are not included in the analysis for several reasons. First, unlike MLS or TR listings, Kijiji listings
are unverified and less reliable, with most of them posted by anonymous users. Second, Kijiji users of-
ten forget to remove their listings when they are no longer active, making it questionable in what time
window a listing counts as active. Third, Kijiji listings do not provide precise address information and
can only be identified at neighbourhood level. Finally, unlike MLS or TR listings, most Kijiji listings
are for short-term lets that are distinct from the longer-term rentals in the main analysis.

A.1.2 Descriptive statistics
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Figure A.1: Rental listings in Toronto between 25th November and 5th December 2022

Table A.1: Land transfer tax (LTT) rates by property value in the Greater Toronto Area

City of Toronto (effective from 1st February 2008) Province of Ontario (effective from 7th May 1997)

$0–55,000 0.5% $0–55,000 0.5%
$55,000–400,000 1.0% $55,000–250,000 1.0%
$400,000+ 2.0% $250,000–400,000 1.5%

$400,000+ 2.0%

Sources: Municipal Land Transfer Tax, City of Toronto, http://www.toronto.ca/taxes/mltt.htm;
Provincial Land Transfer Tax, Historical Land Transfer Tax Rates, Province of Ontario. Reproduced from
Dachis, Duranton and Turner (2012).
Notes: For the municipal LTT, exemptions are given to first-time buyers for purchases below a value of
$400,000, while for the provincial LTT, the first-time buyer exemption value threshold is $227,500.

Table A.2: Changes in the effective land transfer tax rate within the City of Toronto

Fraction of first-time buyers All of city Within 5km of border Within 3km of border

0% 1.521% 1.518% 1.507%
100% 1.041% 1.036% 1.014%
40% 1.329% 1.325% 1.310%

Notes: The table shows the average LTT rates before and after the new LTT for all transactions within the city,
and those within 5km or 2km inside the city border. The sample is restricted to detached house transactions.
The effective LTT rate is the mean transfer tax as a percentage of the sales price, combining provincial and city-
level taxes, averaged over transactions between January 2006 and January 2008 to control for compositional
effects. The effective LTT rates are imputed based on the tax rates before and after the new LTT is introduced,
and the change in the effective LTT rate is taken to be the difference between the two.
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Figure A.2: Geography of the sample used for estimation

A.1.3 Housing-stock composition

As a check on the assumption that there are no significant differences in housing composition potentially
picked up by the coefficient on the LTT dummy, columns (1) and (2) of Table A.4 present evidence on
property characteristics on opposite sides of the city border before the new LTT is introduced. The
sample is restricted to the pre-tax-rise period, and each property characteristic is regressed on a border
dummy that indicates being inside the City of Toronto, controlling for the usual factors. The border
coefficients are statistically insignificant in most cases, and quantitatively small even when statistically
significant. This indicates that properties transacted on opposite sides of the border were more or less
similar before the new LTT.

In columns (3) and (4), each property characteristic is further regressed on the LTT dummy that is
an interaction of the border dummy and the post-tax-rise dummy, controlling for the usual factors. The
LTT dummy coefficients are statistically insignificant in almost all cases. As expected, cross-border
differences in property characteristics, if any, remain stable before and after the new LTT. This ensures
the coefficients on the LTT dummy in the main empirical specifications pick up the impact of the new
transaction tax, rather than changes in housing-stock composition.
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Table A.3: Descriptive statistics

Pre-LTT Post-LTT Pre-&post-LTT
2006:1–2008:1 2008:2–2010:2 2008:1–2012:2 2006:1–2018:2

Greater Toronto Area
# BTO sales per year 53,018 45,962 46,232 52,109
# BTR sales per year 2,545 2,670 3,139 4,529
Days on the market (mean) 31.3 29.6 27.2 25.1
Days on the market (median) 21.0 20.0 18.0 16.0
Sale price (mean) 381,238 408,106 442,050 540,237
Sale price (median) 321,000 347,500 372,000 425,000
Price-rent ratio (mean) 20.3 20.6 21.9 25.8
Price-rent ratio (median) 17.4 18.2 19.0 21.6

City of Toronto
# BTO sales per year 27,718 23,832 24,621 27,639
# BTR sales per year 1,572 1,685 1,947 2,620
Days on the market (mean) 30.5 28.8 27.1 25.4
Days on the market (median) 20.0 18.0 17.0 15.0
Sale price (mean) 401,504 426,363 460,903 553,380
Sale price (median) 318,000 343,000 369,900 417,900
Price-rent ratio (mean) 20.7 20.9 22.2 25.7
Price-rent ratio (median) 16.9 17.9 18.8 21.1

5km border sample
# BTO sales per year 16,785 14,521 14,525 16,503
# BTR sales per year 908 1,015 1,155 1,548
Days on the market (mean) 33.3 30.7 28.1 26.2
Days on the market (median) 23.0 20.0 18.0 17.0
Sale price (mean) 345,754 371,534 405,536 503,184
Sale price (median) 315,000 338,000 361,000 408,000
Price-rent ratio (mean) 19.6 20.3 21.8 25.9
Price-rent ratio (median) 16.4 17.2 18.3 20.8

3km border sample
# BTO sales per year 8,504 7,435 7,327 8,074
# BTR sales per year 348 400 461 608
Days on the market (mean) 33.7 31.3 28.6 26.5
Days on the market (median) 24.0 21.0 19.0 17.0
Sale price (mean) 339,412 361,448 394,667 488,217
Sale price (median) 314,000 334,300 357,000 401,000
Price-rent ratio (mean) 19.0 19.5 21.1 25.7
Price-rent ratio (median) 15.9 16.1 17.3 20.1

Source: Multiple Listing Service (MLS) residential records (2006–2018).
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Table A.4: Comparison of property characteristics across the city border

Property characteristic (1) (2) (3) (4)

Heating 0.000490 0.000320 −0.000406 −0.000120
(0.000394) (0.000236) (0.000486) (0.000329)

Observations 10,389 17,916 42,444 73,550

Basement −0.00498 −0.00831** −0.00133 0.00234
(0.00391) (0.00310) (0.00458) (0.00351)

Observations 10,389 17,916 42,444 73,550

Family 0.0227 −0.0907*** −0.0478 −0.0145
(0.0344) (0.0263) (0.0381) (0.0292)

Observations 10,347 17,834 42,444 73,548

Fire 0.00368 −0.0229*** −0.00655 −0.000543
(0.00713) (0.00562) (0.00795) (0.00621)

Observations 10,389 17,916 42,444 73,550

Bedrooms 0.00535 0.0157* 0.0138 0.0139
(0.0105) (0.00817) (0.0110) (0.00870)

Observations 10,389 17,916 42,444 73,550

Bathrooms −0.115*** −0.120*** −0.0229 −0.0200
(0.0137) (0.0109) (0.0157) (0.0123)

Observations 10,389 17,916 42,444 73,550

Rooms −0.0322 −0.0274 −0.0193 −0.0339*
(0.0273) (0.0185) (0.0232) (0.0178)

Observations 10,389 17,916 42,444 73,550

Lot −1305.3 −918.3 1051.8 177.8
(1006.3) (600.3) (967.1) (903.3)

Observations 10,389 17,916 42,444 73,550

Distance threshold 3km 5km 3km 5km
LTT sample period Pre Pre All All

Notes: Data comprise detached house transactions from January 2006 to February 2012. A unit of observation
is a transaction. In columns (1) and (2), the coefficients are from regressions of a property characteristic on
a border dummy that indicates a location is in the City of Toronto. In columns (3) and (4), the coefficients
are from regressions of a property characteristic on the LTT dummy that indicates a location in the City of
Toronto and in the period after the LTT is introduced. All regressions control for other property characteristics,
and year, month, and property-type fixed effects. Regressions for columns (3) and (4) include an indicator for
the post-LTT period and an indicator for the City of Toronto. Distance threshold is the maximum distance to
the Toronto city border for a transaction to be included in the sample. LTT sample period specifies whether a
transaction occurred before or after the new LTT. Standard errors are in parentheses, and *, **, and *** denote
statistical significance at the 10%, 5%, and 1% levels.
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A.1.4 Empirical specifications

The econometric specification is a variant of the regression discontinuity design developed by Dachis,
Duranton and Turner (2012) applied to a broader set of housing-market outcomes.

Let t denote the time before (t < 0) or after (t > 0) the imposition of the new LTT, where the time
unit is measured in months. Let d denote distance from the city border, with d < 0 meaning a location
in the suburbs and d > 0 in the City of Toronto. Let i denote the unit of observation, community ×
property type × year × month in the market-segment regressions, household × month in the moving
hazard regressions, and a transaction in the sales price and time-on-the-market regressions.

Define the following indicator variables based on time and distance:

χ
POST =

{
1 if t ≥ 0
0 if t < 0

, and χ
CT =

{
1 if d ≥ 0
0 if d < 0

.

The main variable of interest is the LTT dummy χPOST ×χCT. Let yit denote an outcome of interest, for
example, buy-to-own transactions or the sales price. Let xit denote the vector of property characteristics
for unit i at time t in addition to χPOST and χCT. To address anticipation effects that may arise from the
announcement of the new LTT, define the following dummy variables:

χ
τ =

{
1 if t = τ and d ≤ 0
0 otherwise

, for τ ∈ {−3,−2,−1,0,1,2,3} .

Some regressions include an interaction between the LTT dummy and areas away from the border, e.g,
2km away. To control for these differential effects, define the dummy variables:

χ
x>d̄ =

{
1 if t > 0 and d ≥ d̄
0 otherwise

, for d̄ > 0 .

The general model is

yit = λ χ
POST ×χ

CT +β
′xit +χ

τ +νt +δi + εit ,

where νt represents year fixed effects and month fixed effects, δi represents community fixed effects,
and εit is the error term. Notably, the specifications allow for separate time trends for transactions inside
and outside of the city to control for Toronto-specific trends that may be caused by factors other than
the LTT. In the all-properties sample, community × property type, month × property type, and year ×
property type fixed effects are also included.

A.1.5 Additional results
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Figure A.3: Kaplan-Meier estimate of homeowners’ moving hazard function

Table A.5: The effects of the transaction tax on sales and leases separately

(1) (2) (3)

log(#Sales) −0.177*** −0.0937** −0.108**
(0.0519) (0.0405) (0.0361)

Observations 6,540 10,798 13,437

log(#Leases) 0.0765 0.0985* 0.109**
(0.0470) (0.0550) (0.0516)

Observations 2,660 5,545 6,006

Sample Border Border Border
Distance threshold 5km 5km 5km
Border Yes Yes Yes
Semi-detached No No Yes
Detached Yes Yes Yes
Condo apartments No Yes Yes

Notes: The sample comprises transactions from 2006 to 2012 that are within 5km of the City of Toronto border.
Given the limited sample size for the detached houses rental market (column 1), the sample is expanded to
include also condominiums and semi-detached houses (columns 2 and 3). Each cell of the table represents a
separate regression of an outcome on the LTT interaction dummy. All regressions include a post-LTT dummy,
and city, community, year, and calendar month fixed effects, as well as their interactions with the property
type. Six dummy variables are included for transactions inside the city of Toronto during the last three months
of 2007 and the first three of 2008. City time trends and distance LTT trends are included. Property type rows
indicate whether the property type was included in the regression. The border row indicates if a border sample
was used, and the distance threshold indicates the distance threshold defining the sample. Robust standard
errors are in parentheses and *, **, and *** indicate significance at the 10%, 5%, and 1% levels.
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Table A.6: Effects of the transaction tax on prices and time-on-the-market

(1) (2) (3) (4)

Dependent variable: log(Sales price)
LTT −0.0176** −0.0232** −0.0235 −0.0123***

(0.00824) (0.00953) (0.0147) (0.00342)
Observations 14,702 24,970 14,808 110,952

Dependent variable: log(Time-on-the-market)
LTT 0.426*** 0.420*** 0.347*** 0.396***

(0.0589) (0.0623) (0.0542) (0.0474)
Observations 14,704 24,973 14,809 110,961

Sample Border Border Border All
Distance threshold 3km 5km 5km All
Property characteristics Yes Yes Yes Yes
City indicators ±3 m. Yes Yes Yes Yes
City time trends Yes Yes Yes Yes
Distance LTT trends Yes Yes Yes
Donut hole 2km

Notes: The data comprise detached house transactions from 2006 to 2012. The unit of observation is a trans-
action. Repeat sales transactions taking place within 18 months of one another are discarded. All regressions
include an indicator for the post-LTT period, an indicator for the city of Toronto, community fixed effects,
calendar month fixed effects, a rich set of time-varying property characteristics, as well as separate time trends
for transactions inside and outside the City of Toronto. The distance threshold is the maximum distance to
the Toronto city border for a transaction to be included in the sample. City indicators ±3 m. are six dummy
variables for transactions inside the City of Toronto during the last three months of 2007 and the first three of
2008. Distance LTT trend denotes the inclusion of an interaction term between the LTT and a dummy vari-
able for properties between 2.5km and 5km away from the city border in columns (2)–(3) and the interaction
between the LTT and the distance from the city border in column (4). Standard errors clustered by community
are in parentheses, and *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels.
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A.1.6 Robustness checks

Table A.7: Estimated tax effects excluding the financial-crisis period

(1) (2) (3) (4) (5) (6)
Excluding Excluding Excluding

2008:4–2009:12 2008:1–2009:12 2007:10–2009:12

log(#Leases/#Sales) 0.508** 0.590** 0.492** 0.581** 0.489** 0.568*
(0.238) (0.291) (0.238) (0.291) (0.238) (0.291)

Observations 1,827 1,221 1,774 1,186 1,672 1,114

log(#BTO sales) −0.404*** −0.258* −0.405*** −0.259* −0.404*** −0.257*
(0.121) (0.155) (0.121) (0.155) (0.121) (0.155)

Observations 4,484 2,685 4,319 2,584 4,062 2,432

log(#BTR sales) 0.107** 0.129** 0.106** 0.129** 0.100* 0.128**
(0.0509) (0.0626) (0.0508) (0.0625) (0.0516) (0.0637)

Observations 751 486 727 467 675 432

Event of moving −0.204*** −0.182* −0.190*** −0.196** −0.137** −0.157
(0.0542) (0.0954) (0.0548) (0.0963) (0.0559) (0.0978)

log(Original price) −0.0498 −0.0785 −0.0401 −0.0621 −0.0284 −0.0589
(0.0447) (0.0511) (0.0453) (0.0523) (0.0460) (0.0537)

logϕ 0.397*** 0.391*** 0.398*** 0.392*** 0.399*** 0.392***
(0.00888) (0.0113) (0.00910) (0.0116) (0.00936) (0.0119)

Observations 2,025,845 1,182,656 1,921,838 1,122,344 1,820,454 1,063,626

log(Sales price) −0.0400** −0.0666*** −0.0379** −0.0562** −0.0404** −0.0561**
(0.0153) (0.0188) (0.0139) (0.0173) (0.0141) (0.0174)

Observations 32,822 21,108 30,226 19,404 28,474 18,273
log(Time-on-market) 0.189*** 0.270*** 0.241*** 0.234** 0.176** 0.189**

(0.0549) (0.0689) (0.0618) (0.0826) (0.0740) (0.0924)
Observations 20,873 13,652 18,894 12,341 17,810 11,664

Sample Border Border Border Border Border Border
Distance threshold 5km 5km 5km 5km 5km 5km
Donut hole 2km 2km 2km
Months removed 21 21 24 24 27 27

Notes: The table shows the results of the robustness checks for the crisis period removing 21, 24, or 27 months. The sample comprises
transactions from 2006 to 2012. The first three rows present the estimated coefficients for the leases-to-sales ratio, BTO sales, and BTR
sales. The market segment regressions in the first three rows use detached house transactions. Each cell of the table represents a separate
regression of an outcome on the LTT interaction dummy. For the moving hazard regressions, a unit of observation is a homeowner
whose property is listed on MLS. For the transaction level regressions, a unit of observation is a property transaction. Repeat sales
transactions taking place within 12 months of one another are discarded for the moving hazard model and 18 months for the transaction
level regressions. All regressions include a post-LTT dummy, controls for time-varying house characteristics, community, year, month,
property type fixed effects, and their interactions. Six dummy variables are included for transactions inside the City of Toronto during the
last three months of 2007 and the first three of 2008 whenever this applies. The border row indicates if a border sample was used, and
the distance threshold indicates the distance radius used in the sample. The donut hole row indicates the number of kilometres from the
city border excluded from the sample. Standard errors are in parentheses and *, **, and *** indicate significance at the 10%, 5%, and 1%
levels, respectively.
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Table A.8: Placebo test based on pseudo-borders within Toronto

Pseudo-border at 3km Pseudo-border at 5km

log(#Leases/#Sales) 0.161 0.0967 −0.0341 0.155 −0.0984 0.0325 0.157 0.0376
(0.141) (0.120) (0.228) (0.115) (0.162) (0.101) (0.143) (0.0976)

Observations 1,200 1,746 546 2,081 1,041 2,371 1,330 2,544

log(Price/Rent) 0.0200 0.00898 −0.0235 0.0128 0.0258 0.0729** 0.0987** 0.0654**
(0.0337) (0.0306) (0.0778) (0.0305) (0.0669) (0.0340) (0.0391) (0.0329)

Observations 1,832 2,411 565 2,649 1,303 2,958 1,625 3,234

log(#BTO sales) 0.0606 0.0205 0.0655 0.00614 −0.0693 −0.0527 −0.0462 −0.0389
(0.0734) (0.0611) (0.0760) (0.0576) (0.0847) (0.0534) (0.0607) (0.0509)

Observations 2,605 3,845 2,605 4,481 2,171 5,032 3,801 5,572

log(#BTR sales) −0.0160 −0.157 −0.109 −0.159 −0.0534 −0.0895 −0.0349 −0.0793
(0.102) (0.112) (0.137) (0.105) (0.108) (0.0875) (0.103) (0.0843)

Observations 523 780 494 883 418 1,000 744 1,083

Pseudo-border at 4km Pseudo-border at 6km

log(#Leases/#Sales) −0.0374 0.0442 0.155 0.00374 0.228 0.0836 −0.0195 0.0434
(0.146) (0.109) (0.171) (0.0994) (0.155) (0.107) (0.149) (0.0987)

Observations 1,233 2,081 848 2,520 1,032 2,134 1,102 2,591

log(Price/Rent) −0.000958 0.00544 0.0401 0.0372 0.0588 0.0833** 0.106** 0.0854**
(0.0405) (0.0346) (0.0781) (0.0281) (0.0861) (0.0382) (0.0402) (0.0323)

Observations 1,658 2,649 965 3,216 1,047 2,557 1,480 3,244

log(#BTO sales) −0.0913 −0.0292 −0.0305 −0.0377 −0.0227 −0.0552 −0.0885 −0.00809
(0.0759) (0.0564) (0.0667) (0.0516) (0.0829) (0.0568) (0.0626) (0.0499)

Observations 2,471 4,481 3,190 5,392 2,139 4,470 3,590 5,846

log(#BTR sales) −0.0468 −0.0977 −0.189 −0.0596 −0.0469 0.0298 −0.0462 0.0273
(0.0961) (0.0948) (0.118) (0.0876) (0.113) (0.0907) (0.103) (0.0785)

Observations 527 883 598 1,075 395 866 706 1,074

Distance threshold 2km 4km 4km 5km 2km 4km 4km 5km
City indicators ±3 m. Yes Yes Yes Yes Yes Yes Yes Yes
City time trends Yes Yes Yes Yes Yes Yes Yes Yes
Distance LTT trends Yes Yes Yes Yes Yes Yes
Donut hole 1km 1km

Notes: Each cell of the table represents a separate regression of an outcome on the LTT interaction dummy. The sample comprises
detached house transactions from 2006 to 2012. There are four panels, each showing the results of a placebo test with different
distances from the Toronto border. All regressions include a post-LTT dummy, and city, community, year, and calendar month fixed
effects. Six dummy variables are included for transactions inside the City of Toronto during the last three months of 2007 and the
first three of 2008 whenever this applies. Distance threshold indicates the radius used in the sample. Robust standard errors are in
parentheses, and *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table A.9: Robustness checks on threshold to distinguish BTO and BTR transactions

Dependent variable (1) (2) (3) (4)

6-month cutoff to distinguish BTO and BTR
log(#BTO sales) −0.115** −0.135** −0.117** −0.158***

(0.0577) (0.0433) (0.0546) (0.0322)
log(#BTR sales) 0.194** 0.200*** 0.206*** 0.0956**

(0.0739) (0.0518) (0.0612) (0.0477)

12-month cutoff to distinguish BTO and BTR
log(#BTO sales) −0.0835 −0.0972** −0.0799 −0.128***

(0.0580) (0.0438) (0.0554) (0.0326)
log(#BTR sales) 0.167** 0.144** 0.148** 0.0478

(0.0637) (0.0472) (0.0588) (0.0431)

24-month cutoff to distinguish BTO and BTR
log(#BTO sales) −0.110* −0.116** −0.0917 −0.125***

(0.0592) (0.0447) (0.0566) (0.0333)
log(#BTR sales) 0.139** 0.113** 0.114** 0.0298

(0.0602) (0.0442) (0.0526) (0.0411)

Sample Border Border Border All
Distance threshold 3km 5km 5km All
City indicators ±3 m. Yes Yes Yes Yes
City time trends Yes Yes Yes Yes
Distance LTT trends Yes Yes Yes
Donut hole 2km

Notes: See the footnote to Table 1. Standard errors are in parentheses, and *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels.
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Table A.10: Effect of the transaction tax by property type

Dependent variable (1) (2) (3) (4) (5)

log(#Leases/#Sales) 0.147** 0.105** 0.101** 0.0719* 0.0730*
(0.0503) (0.0478) (0.0436) (0.0408) (0.0391)

Observations 10,233 14,713 17,216 19,817 21,719

log(Price/Rent) −0.0695** −0.0451** −0.0440** −0.0386** −0.0367**
(0.0338) (0.0194) (0.0188) (0.0177) (0.0176)

Observations 3,745 7,660 8,383 9,313 9,876

log(#BTO sales) −0.0722** −0.0467* −0.0507** −0.0529** −0.0478**
(0.0256) (0.0276) (0.0233) (0.0208) (0.0191)

Observations 26,639 27,304 36,753 45,585 52,598

log(#BTR sales) 0.0822** 0.0439* 0.0458* 0.0415* 0.0376*
(0.0389) (0.0258) (0.0242) (0.0230) (0.0219)

Observations 3,550 5,376 6,069 6,945 7,475

Distance threshold 20km 20km 20km 20km 20km
Detached Yes Yes Yes Yes Yes
Semi-detached Yes No Yes Yes Yes
Condo apartments No Yes Yes Yes Yes
Condo townhouse No No No Yes Yes
Row/attached/townhouse No No No No Yes

Notes: The table shows estimates of the tax effects for different types of properties. The sample comprises
transactions from 2006 to 2012. Given the limited sample size for condos and apartments, the border sample
radius is extended from 5km to 20km and different property segments are combined flexibly. In addition to
the extensive controls in Table 1, property type × neighbourhood and property type × year × month fixed
effects are included to control for differences in housing stock composition and variations in how different
property type segments evolve over time. Each cell of the table represents a separate regression of an outcome
on the LTT interaction dummy. All regressions include a post-LTT dummy, and city, community, year, and
calendar-month fixed effects, as well as the interaction between these fixed effects and property types. Six
dummy variables are included for transactions inside the City of Toronto during the last three months of 2007
and the first three of 2008. City time trends and distance LTT trends are included. Property type rows indicate
whether the property type was included in the regression. Border indicates if a border sample was used, and
the distance threshold indicates the distance radius used in the sample. Standard errors are clustered at the
neighbourhood, year, and property type levels using three-way clustering. *, **, and *** indicate significance
at the 10%, 5%, and 1% levels.
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Table A.11: Robustness checks on the moving hazard rate

(1) (2) (3) (4)
Sample period 2006–2010

Event of moving −0.156** −0.218*** −0.243** −0.286***
(0.0736) (0.0636) (0.111) (0.0520)

Observations 1,012,969 1,690,705 982,110 3,395,033
Sample period 2016–2018

Event of moving −0.125** −0.179*** −0.213** −0.259***
(0.0597) (0.0476) (0.0722) (0.0357)

Observations 4,327,556 7,306,558 4,296,732 14,969,191

Sample Border Border Border All
Distance threshold 3km 5km 5km All
City indicators ±3 m. Yes Yes Yes Yes
City time trends Yes Yes Yes Yes
Distance LTT trends Yes Yes Yes
Donut hole 2km

Notes: The table shows the estimated effect of the LTT on the moving hazard rate. The sample comprises
detached house transactions in the GTA. The first panel shows the estimates for the period 2006–2010 and
the second panel shows the estimates for the period 2016–2018. Each cell of the table represents a separate
regression of an outcome on the LTT interaction dummy. See the footnote to Table 2 for more details. Standard
errors clustered by the community are in parentheses, and *, **, and *** indicate significance at the 10%, 5%,
and 1% levels, respectively.

Table A.12: Robustness checks on sales prices at the market-segment level

Dependent variable (1) (2) (3) (4)

Sample period 2006–2010
log(Price) −0.0186** −0.0172*** −0.0122** −0.0125**

(0.00610) (0.00488) (0.00613) (0.00442)
Observations 7,515 12,939 7,949 37,698

Sample period 2006–2018
log(Price) −0.0200*** −0.0174*** −0.0125** −0.0155***

(0.00525) (0.00418) (0.00524) (0.00378)
Observations 11,169 19,227 11,802 55,895

Sample Border Border Border All
Distance threshold 3km 5km 5km All
City indicators ±3 m. Yes Yes Yes Yes
Distance LTT trends Yes
Donut hole 2km

Notes: The estimation sample covers four types of properties: detached houses, townhouses, condominiums,
and apartments. A unit of observation is a market segment defined by community × property type × year
× month. The dependent variable is the average sales price within each market segment. Each cell of the
table represents a separate regression on the LTT interaction dummy. All regressions include a dummy for the
post-LTT period, and city × property type, year × property type, month × property type, and community ×
property type fixed effects. See the footnote to Table 1. Robust standard errors are in parentheses, and *, **,
and *** denote statistical significance at the 10%, 5%, and 1% levels.
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Figure A.4: Household stocks and flows in the model
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Figure A.5: Property stocks and flows in the model
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A.2 Deriving the equations of the model
This section shows how to derive equations exactly characterizing the non-household-specific aggregate
variables of the model with a finite-dimensional state space. In particular, value functions in match qual-
ity such as L(ε), W (ε), and H(ε) are replaced by a finite number of variables that describe the aggregate
outcomes in the model, and similarly for the distribution functions of the endogenous distribution of
match quality ε . The solution for these variables is obtained from a finite number of equations.

A.2.1 The value functions and thresholds for owner-occupiers and home-buyers

The value function H(ε) from (21) is increasing in ε . Assuming δhyh < xh for all t, by taking ε in
a neighbourhood above yh or any value below, the Bellman equation (21) reduces to the following as
H(δhε)< Bh +Uo:

rH(ε) = ε +g−D+αh(Bh +Uo −H(ε))+ρ(Uo −H(ε))+ Ḣ(ε) .

This simplifies to

(r+ρ +αh)H(ε)− Ḣ(ε) = ε +g−D+αhBh +(ρ +αh)Uo , (A.1)

and by differentiating both sides with respect to ε in the restricted range described above:

(r+ρ +αh)H ′(ε)− Ḣ ′(ε) = 1 .

For a given ε , this specifies a first-order differential equation in time t for H ′(ε). Since H ′(ε) is not
a state variable, there exists a unique stable solution H ′(ε) = 1/(r + ρ +αh), which is constant over
time (Ḣ ′(ε) = 0). As H ′(ε) is independent of ε , integration over match quality ε shows that the value
function H(ε) has the form

H(ε) =
¯
H +

ε

r+ρ +αh
, with Ḣ(ε) =

¯
Ḣ , (A.2)

where
¯
H is independent of ε , but may be time varying. This result is valid for ε in a neighbourhood

above yh and all values below. Substituting into (A.1) shows that
¯
H satisfies

(r+ρ +αh) ¯
H −

¯
Ḣ = αhBh +(ρ +αh)Uo +g−D . (A.3)

Since xh < yh, equation (22) together with (A.2) implies that

xh = (r+ρ +αh)(Bh +Uo − ¯
H) . (A.4)

The surplus in (28) and the definition of the transaction threshold (29) imply yh satisfies

H(yh) = H(xh)+Ch +(1+ τh)Co + τhUo , (A.5)

and combining (A.2) with (A.5) yields

yh = xh +(r+ρ +αh)(Ch +(1+ τh)Co + τhUo) . (A.6)

The joint surplus Σh(ε) is given in (28) and 1−ω∗
h is the share received by buyers. Equation (30) defines

the expected surplus Σh, thus the Bellman equation for a buyer (27) can be expressed as

(r+ρ)Bh − Ḃh = (1−ω
∗
h )voΣh +g−Fh . (A.7)

The joint surplus from trade with an investor is given in (38) and ω∗
i is sellers’ share. Together with the

surplus from trade with a home-buyer, the Bellman equation of a seller (25) is

rUo −U̇o = θovo (ω
∗
h (1−ψ)Σh +ω

∗
i ψΣi)−D . (A.8)

Using equations (28), (29), and (40), the expected surplus Σh in (30) can be written as

Σh =
∫

∞

yh

λhζ
λh
h ε

−(λh+1)
Σh(ε)dε =

∫
∞

yh

λhζ
λh
h ε−(λh+1)(H(ε)−H(yh))

1+ τhω∗
h

dε . (A.9)
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Defining H̄(ε) for an arbitrary level of match quality ε and noting the link with Σh:

H̄(ε) =
∫

∞

w=ε

λhε
λhw−(λh+1)(H(w)−H(ε))dw , where Σh =

ζ
λh
h y−λh

h H̄(yh)

1+ τhω∗
h

. (A.10)

Now restrict attention to ε such that δhε < xh, so (21) implies rH(ε) = ε+g−D+αh(Bh+Uo−H(ε))+
ρ(Uo −H(ε))+ Ḣ(ε). Since δhyh < xh, this limits ε to a neighbourhood above yh and all values below.
Using equation (22):

r(H(w)−H(ε)) = (w− ε)+αh (max{H(δhw),H(xh)}−H(w))−αh(H(xh)−H(ε))

−ρ(H(w)−H(ε))+ (Ḣ(w)− Ḣ(ε)) ,

which holds for any w ≥ ε . This simplifies to

(r+ρ +αh)(H(w)−H(ε))− (Ḣ(w)− Ḣ(ε)) = (w− ε)+αh max{H(δhw)−H(xh),0} ,

and multiplying both sides by λhελhw−(λh+1), integrating over w, and using (A.10):

(r+ρ +αh)H̄(ε)− ˙̄H(ε) =
∫

∞

w=ε

λhε
λhw−(λh+1) ((w− ε)+αh max{H(δhw)−H(xh),0})dw , (A.11)

where the time derivative of H̄(ε) is obtained from (A.10):

˙̄H(ε) =
∫

∞

w=ε

λhε
λhw−(λh+1)(Ḣ(w)− Ḣ(ε))dw .

In (A.11), the term in (w − ε) integrates to ε/(λh − 1) using the formula for the mean of a Pareto
distribution. The second term is zero for w < xh/δh because H(δhw) is increasing in w. Hence, equation
(A.11) becomes

(r+ρ +αh)H̄(ε)− ˙̄H(ε) =
ε

λh −1
+αhε

λh

∫
∞

w=xh/δh

λhw−(λh+1)(H(δhw)−H(xh))dw ,

and with the change of variable w′ = δhw in the second integral, this can be written as

(r+ρ +αh)H̄(ε)− ˙̄H(ε) =
ε

λh −1
+αhδ

λh
h ε

λh

∫
∞

w′=xh

λhw′−(λh+1)(H(w′)−H(xh))dw′ . (A.12)

Make the following definition of a new variable Xh:

Xh(t) =

(
(λh −1)

(
r+ρ +αh(1−δ

λp
h )
)∫ ∞

T=t
(r+ρ +αh)e−(r+ρ+αh)(T−t)

(
∫

∞

ε=xh(T )
λhε

−(λh+1)(H(ε,T )−H(xh(T ),T ))dε

)
dT

) 1
1−λh

. (A.13)

By differentiating with respect to time t, this variable must satisfy the differential equation

(r+ρ +αh)X
1−λh
h − (1−λh)ẊhX−λh

h = (λh −1)(r+ρ +αh)
(

r+ρ +αh(1−δ
λh
h )
)

x−λh
h H̄(xh)

= (λh −1)(r+ρ +αh)
(

r+ρ +αh(1−δ
λh
h )
)∫ ∞

ε=xh

λhε
−(λh+1)(H(ε)−H(xh))dε , (A.14)

which uses the definition of H̄(ε) in (A.10). Substituting into equation (A.12):

(r+ρ +αh)H̄(ε)− ˙̄H(ε) =
1

λh −1

ε +
αhδ

λh
h ελh

(
(r+ρ +αh)X

1−λh
h − (1−λh)ẊhX−λh

h

)
(r+ρ +αh)

(
r+ρ +αh(1−δ

λh
h )
)

 ,
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and by collecting terms this can be written as

(r+ρ +αh)

H̄(ε)−
αhδ

λh
h ελh

(λh −1)(r+ρ +αh)
(

r+ρ +αh(1−δ
λh
h )
)X1−λh

h


−

 ˙̄H(ε)−
αhδ

λh
h ελh

(λh −1)(r+ρ +αh)
(

r+ρ +αh(1−δ
λh
h )
)(1−λh)ẊhX−λh

h

=
ε

λh −1
.

Noting that dXh(t)1−λh/dt = (1−λh)ẊhX−λh
h and observing the right-hand side of the equation above is

time invariant and none of the variables is predetermined, it follows for each fixed ε there is a unique
stable solution for H̄(ε)−αhδ

λh
h ελhX1−λh

h /((λh −1)(r+ρ +αh)(r+ρ +αh(1− δ
λh
h ))) that is time in-

variant and equal to ε/((λh−1)(r+ρ+αh)). This demonstrates that for any given ε in a neighbourhood
above yh or any value below it, the function H̄(ε) is given by

H̄(ε) =
1

(λh −1)(r+ρ +αh)

(
ε +

αhδ
λh
h ελh

r+ρ +αh(1−δ
λh
h )

X1−λh
h

)
. (A.15)

Evaluating (A.15) at ε = xh and multiplying by (λh −1)(r+ρ +αh)(r+ρ +αh(1−δ
λh
h ))x−λh

h :

(λh−1)(r+ρ+αh)
(

r+ρ +αh(1−δ
λh
h )
)

x−λh
h H̄(xh) =

(
r+ρ +ah(1−δ

λh
h )
)

x1−λh
h +αhδ

λh
h X1−λh

h ,

and then by substituting into (A.14) shows that Xh is related to the moving threshold xh as follows:

Ẋh

Xh
=

(
r+ρ +αh(1−δ

λh
h )

λh −1

)((
xh

Xh

)1−λh

−1

)
. (A.16)

Finally, evaluating (A.15) at ε = yh and substituting into (A.10) yields an equation for the joint surplus:

Σh =
ζ

λh
h

(1+ τhω∗
h )(λh −1)(r+ρ +αh)

(
y1−λh

h +
αhδ

λh
h

r+ρ +αh(1−δ
λh
h )

X1−λh
h

)
. (A.17)

In summary, (A.3), (A.4), (A.6), (A.7), (A.8), (A.16), and (A.17) form a system of differential
equations in yh, xh, Xh, Σh,

¯
H, Bh, and Uo, taking as given Σk, vo, ψ , and g.

A.2.2 The moving rate of owner-occupiers

The flow of owner-occupiers who move within the city is Mh and the moving rate is mh = Mh/qh. The
group of existing owner-occupiers qh is made up of matches that formed at various points in the past and
that have survived to the present. Given a sufficiently large inconvenience cost of moving in the absence
of a shock, moving occurs only if owner-occupiers receive an idiosyncratic shock with arrival rate αh
independent of history. A measure αhqh of households might therefore decide to move.

All matches began as a viewing with some initial match quality ε . Using (23), the flow of viewings
νh done by home-buyers in the ownership market at a point in time is

νh = vobh = (1−ψ)θovouo . (A.18)

Initial match quality drawn in viewings is from a Pareto(ζh,λh) distribution (see 40). This match quality
distribution has been truncated when transaction decisions were made and possibly when subsequent
idiosyncratic shocks have occurred. Consider a group of surviving owner-occupiers where initial match
quality has been previously truncated at

¯
ε . This group constitutes a fraction ζ

λh
h ¯

ε−λh of the initial mea-
sure of viewings, and the distribution of ε conditional on survival is Pareto(

¯
ε,λh). Among this group,

denote current match quality as a multiple Ξ of original match quality ε , where Ξ is equal to δh raised
to the power of the number of past shocks received.

Now consider a new idiosyncratic shock. Current match quality becomes ε ′ = δhΞε in terms of
initial match quality ε . Moving is optimal if ε ′ < xh, so only those with initial match quality ε ≥
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xh/(δhΞ) remain. Since δh < 1 and δhyh < xh, there is a range of variation in thresholds yh and xh that
ensures xh/(δhΞ) >

¯
ε . Given the Pareto distribution, the proportion of the surviving group that does

not move after the new shock is
¯
ελh(xh/(δhΞ))−λh = x−λh

h δ
λh
h Ξ λh

¯
ελh . Since that surviving group is a

fraction ζ
λh
h ¯

ε−λh of the original set of viewings, those that do not move after the new shock are a fraction
x−λh

h δ
λh
h Ξ λh

¯
ελh ×ζ

λh
h ¯

ε−λh = (ζ λh
h x−λh

h δ
λh
h )×Ξ λh of that set of viewings. This is independent of any past

truncation thresholds
¯
ε owing to the properties of the Pareto distribution.

The measure of the group choosing not to move after a new shock does depend on the total accu-
mulated size Ξ of past idiosyncratic shocks. Let Θh be the integral of Ξ λh over the measure of current
and past viewings done by home-buyers who have not yet exited the city. Since the size of the group
choosing not to move is a common multiple ζ

λh
h x−λh

h δ
λh
h of Ξ λh , the measure of those choosing not to

move after a new shock is αhζ
λh
h x−λh

h δ
λh
h Θh. Therefore, the size of the group of movers is

Mh = αhqh −αhζ
λh
h x−λh

h δ
λh
h Θh . (A.19)

Since the arrival of idiosyncratic shocks is independent of history, a fraction αh of the group used to
define Θh have Ξ λh reduced to δ

λh
h Ξ λh . Exit from the group occurs at rate ρ , and new viewings occur

that start from Ξ λh = 1 with measure νh from (A.18). The equation for Θh is therefore

Θ̇h = νh +αh(δ
λh
h Θh −Θh)−ρΘh . (A.20)

Define the following weighted average of current and past levels of home-buyer viewings νh:

ν̄h(t) =
∫ t

T→−∞

(ρ +αh(1−δ
λh
h ))e−(ρ+αh(1−δ

λh
h ))(t−T )

νh(T )dT , (A.21)

and note that it satisfies the differential equation

˙̄νh +(ρ +αh(1−δ
λh
h ))ν̄h = (ρ +αh(1−δ

λh
h ))νh . (A.22)

A comparison of (A.20) and (A.22) shows that Θh = ν̄h/(ρ +αh(1− δ
λh
h )), and substituting this into

(A.19) yields an equation for the moving rate mh = Mh/qh:

mh = αh −
αhζ

λh
h δ

λh
h x−λh

h ν̄h

(ρ +αh(1−δ
λh
h ))qh

. (A.23)

Using the definition of ν̄h(t) in (A.21) and (A.18), this confirms equation (41) for the moving rate mh.

A.2.3 The transaction threshold and value functions in the rental market

By adding the Bellman equations (9) and (10) for the tenant and landlord value functions:

r(L(ε)+W (ε)) = ε +g−D−Dl +(αl +ρ)(Ul −L(ε))+ρl(Uo −L(ε))

+ml (ξ κ(Bh − K̄)+(1−ξ κ)Bl −W (ε))−ρW (ε)+ L̇(ε)+Ẇ (ε) .

Letting J(ε) = L(ε)+W (ε) denote the joint value, this can be rearranged and simplified, noting that
Bh −Bl = Z from (3) and ml = αl +ρl from (8):

(r+ρ +ml)J(ε) = ε +g−D−Dl +(ρ +αl)Ul +ρlUo +mlBl +ξ mlκ(Z − K̄)+ J̇(ε) . (A.24)

Differentiating with respect to ε leads to the differential equation

(r+ρ +ml)J′(ε) = 1+ J̇′(ε) ,

and this equation has a unique non-explosive solution for J′(ε) for any given value of ε:

J′(ε) =
1

r+ρ +ml
.
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This time-invariant solution (J̇′(ε) = 0) implies the solution for J(ε) takes the following form:

J(ε) =
¯
J+

ε

r+ρ +ml
, (A.25)

where
¯
J can be time varying in general. Substituting back into (A.24) and noting J̇(ε) =

¯
J̇ shows that

¯
J

satisfies the differential equation

(r+ρ +ml)¯
J = mlBl +(ρ +αl)Ul +ρlUo +g−D−Dl +ξ mlκ(Z − K̄)+

¯
J̇ . (A.26)

The joint rental surplus from (14) prior to a tenant moving in is linked to J(ε) by

Σl(ε) = J(ε)−Cl −Cw −Bl −Ul , (A.27)

and together with (A.25), the definition of the rental transaction threshold yl in (15) implies

yl = (r+ρ +ml)(Bl +Ul − ¯
J+Cl +Cw) . (A.28)

Using (15), (A.25), and (A.27), it follows that the surplus Σl(ε) is

Σl(ε) =
ε − yl

r+ρ +ml
, and Σl =

∫
yl

Σl(ε)dΓl(ε) =
ζ

λl
l y1−λl

l
(λl −1)(r+ρ +ml)

, (A.29)

where the second equation uses the Pareto distribution in (40) to derive the expected rental surplus Σl .
Landlords’ share of the joint surplus is ωl , so Σll(ε) = L(ε)+A(ε)−Cl −Ul = ωlΣl(ε). Together with
(A.29), equation (12) for Ul becomes

(r+ρl)Ul −U̇l = ωlθlvlΣl −D+ρlUo . (A.30)

Similarly, with Σlw(ε) =W (ε)−A(ε)−Cw −Bl = (1−ωl)Σl , equation (13) for Bl becomes

(r+ρ)Bl − Ḃl = (1−ωl)vlΣl +g−Fl . (A.31)

In summary, equations (A.26), (A.28), (A.29), (A.30), and (A.31) determine yl , Σl , ¯
J, Bl , and Ul , taking

as given Z, K̄, κ , and g.

A.2.4 Rents

With ml = αl +ρl from (8), the Bellman equation (10) can be written as follows:

(r+ρ +ml)(L(ε)−Ul) = R(ε)−D−Dl − (r+ρl)Ul +ρlUo + L̇(ε) ,

and substituting from (A.30) implies that the rent R(ε) for a property with match quality ε is

R(ε) = Dl +ωlθlvlΣl +(r+ρ +ml)(L(ε)−Ul)− (L̇(ε)−U̇l) .

Using the landlord’s surplus Σwl(ε) = L(ε)−Ul after a tenant has moved in, and its derivative with
respect to time Σ̇wl(ε) = L̇(ε)−U̇l , the surplus division Σwl(ε) = ωlΣw(ε) implies

R(ε) = Dl +ωlθlvlΣl +ωl
(
(r+ρ +ml)Σw(ε)− Σ̇w(ε)

)
.

Noting that Σl(ε) = Σw(ε)− (Cl +Cw) from (7) and (14) and substituting for Σw(ε) in the above:

R(ε) = Dl +ωl(r+ρ +ml)(Cl +Cw)+ωlθlvlΣl +ωl
(
(r+ρ +ml)Σl(ε)− Σ̇l(ε)

)
.

Using the first equation in (A.29), it follows that Σ̇l(ε) =−ẏl/(r+ρ +ml) for all ε , and hence:

R(ε) = Dl +ωl(r+ρ +ml)(Cl +Cw)+ωlθlvlΣl +ωl(ε − yl)+
ωl

r+ρ +ml
ẏl . (A.32)

With expected surplus Σl from (A.29), average new rents R from (16) are given by

R = Dl +ωl(r+ρ +ml)(Cl +Cw)+ωl(r+ρ +ml +θlvlπl)
Σl

πl
+

ωl

r+ρ +ml
ẏl . (A.33)
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Since (A.32) implies R′(ε) = ωl for all ε , rents are linear in match quality, so the average R̄ of all rents
on current tenancies is

R̄ = R+ωl

(
Vl −

λl

λl −1
yl

)
, (A.34)

where Vl is the average ε over all current tenancies (see 46), and λlyl/(λl − 1) is the average of ε over
new tenancies using (40).

A.2.5 The relationship between market tightnesses across the two markets

Subtracting the total measures of properties in (1) from the total measure of households in (2), and using
the definitions market tightnesses θl and θo from (11) and (23), and the fraction ψ of investors among
all buyers from (24) leads to the following equation:

((1−ψ)θo −1)uo +(θl −1)ul = n−1 . (A.35)

A.2.6 Average match quality and value functions averaged over surviving match quality

Let Eh denote the integral of ε over all current owner-occupiers. There is a flow Sh of new owner-
occupier matches. Since the transaction threshold is yh, the Pareto distribution (40) implies the average
value of ε in these new matches is λhyh/(λh−1), so these new matches add to Eh at rate Shλhyh/(λh−1)
over time.

Owner-occupier matches are destroyed (sending the contribution to Eh to zero) if households exit
the city or match-quality shocks arrive and households choose to move. Households exit the city at rate
ρ , reducing Eh by ρEh. Match-quality shocks arrive randomly at rate αh for the measure qh of owner-
occupiers, leading to a flow Mh of movers out of the group αhqh receiving a shock, which reduces the
contribution to Eh of those Mh to zero. For the group of size αhqh −Mh that receives a shock but does
not move, the conditional distribution of surviving match quality ε is truncated at xh, which is a Pareto
distribution with shape parameter λh across all cohorts within that group, which has mean λhxh/(λh−1).
Putting together all these effects on Eh, the following differential equation must hold:

Ėh = Sh
λhyh

λh −1
+

(
Mh ×0+(αhqh −Mh)×

λhxh

λh −1
−αhEh

)
−ρEh .

Average match quality among owner-occupiers is Vh = Eh/qh, thus V̇h = Ėh/qh − (q̇h/qh)Vh = Ėh/qh −
((Sh/qh)−(mh+ρ))Vh, where the second equation uses the differential equation for qh in (32). Together
with the equation for Ėh above and the definition of the moving rate mh = Mh/qh, average match quality
Vh must satisfy the differential equation in (45).

Let El denote the equivalent summation of surviving match quality for tenants. There is a flow
slul of new rental matches. Since the transaction threshold is yl , these new matches add to El at rate
slulλlyl/(λl − 1). Matches are destroyed if households exit the city (rate ρ), if landlords must sell up
(rate ρl), or if match quality falls to zero owing to an idiosyncratic shock (rate αl). The differential
equation for El is thus Ėl = slul(λlyl/(λl − 1))− (αl +ρl +ρ)El . Average match quality for tenants is
Vl = El/ql , hence V̇l = (Ėl/ql)− (q̇l/ql)Vl , and by substituting q̇l/ql = (slul/ql)− (ml +ρ) from (18),
the differential equation for Vl is (46), which uses ml = αl +ρl from (8).

Let Γε(ε) denote the distribution function of current match quality ε for owner-occupiers. The
average value of H(ε) across all qh matches and the integral of these values are denoted by H̄ and Q:

H̄ =
∫

ε

H(ε)dΓε(ε) , and Q = qhH̄ =
∫

ε

H(ε)ς(ε)dε , where ς(ε) = qhΓ
′

ε (ε) . (A.36)

The function ς(ε) is the density function Γ ′
ε (ε) of the distribution of surviving match quality ε multiplied

by qh. Differentiating Q with respect to time implies Q̇ =
∫

ε

(
Ḣ(ε)ς(ε)+H(ε)ς̇(ε)

)
dε and hence

rQ− Q̇ =
∫

ε

(
rH(ε)− Ḣ(ε)

)
ς(ε)dε −

∫
ε

H(ε)ς̇(ε)dε . (A.37)
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Shocks scaling down match quality ε to δhε occur with arrival rate αh, which triggers moving if match
quality falls below xh. There is also exogenous exit from the city at rate ρ . New matches form at rate Sh
and begin with ε having distribution function Γh(ε)/πh for ε ≥ yh, where πh = 1−Γh(yh). The dynamics
of ς(ε) = qhΓ ′

ε (ε) describing the distribution of ε across all surviving owner-occupier matches are thus:

ς̇(ε) =


−(αh +ρ)ς(ε) if ε < xh

αhδ
−1
h ς(δ−1

h ε)− (αh +ρ)ς(ε) if xh ≤ ε < yh

(Sh/πh)Γ
′

h (ε)+αhδ
−1
h ς(δ−1

h ε)− (αh +ρ)ς(ε) if yh ≤ ε

.

It follows that∫
ε

H(ε)ς̇(ε)dε =
Sh

πh

∫
ε=yh

H(ε)dΓh(ε)+
αh

δh

∫
ε=xh

H(ε)ς

(
ε

δh

)
dε − (αh +ρ)qhH̄

= vobh

∫
ε=yh

H(ε)dΓh(ε)+αh

∫
ε=xh/δh

H(δhε)ς(ε)dε − (αh +ρ)qhH̄ , (A.38)

which uses Sh = voπhbh from (32) and a change of variable ε ′ = ε/δh in the second term on the second
line. Using the Bellman equation (21) for H(ε) and the definitions of Vh and H̄ from (A.36):∫

ε

(
rH(ε)− Ḣ(ε)

)
ς(ε)dε =

∫
ε

(ε +g−D)dς(ε)+αh(Bh+Uo)
∫ xh

δh

ε=0
ς(ε)dε −αh

∫
ε

H(ε)ς(ε)dε

+αh

∫
∞

ε=
xh
δh

H(δhε)ς(ε)dε +ρ

∫
ε

(Uo −H(ε))ς(ε)dε = (Vh +g−D)qh +αh

∫
∞

ε=
xh
δh

H(δhε)ς(ε)dε

+mh(Bh +Uo)qh −αhH̄qh +ρ(Uo − H̄)qh , where
∫ xh

δh

ε=0
αhς(ε) = mhqh . (A.39)

where ς(ε) integrates to qh over all ε , and to the number of moves mhqh within the city over the range
up to ε = xh/δh. Substituting equations (A.38) and (A.39) into (A.37) yields:

rQ− Q̇ = (Vh +g−D)qh +mh(Bh +Uo)qh +ρUoqh − vobh

∫
ε=yh

H(ε)dΓh(ε) .

Since H̄ = Q/qh implies ˙̄H = Q̇/qh − H̄q̇h/qh, the equation above and (32) for q̇h imply H̄ satisfies:

rH̄ =Vh +g−D+mh(Bh +Uo − H̄)+ρ(Uo − H̄)+
voπhbh

qh
(H̄ −H)+ ˙̄H . (A.40)

where H is defined as the average of H(ε) over ε for new owner-occupier matches:

H =
1
πh

∫
ε=yh

H(ε)dΓh(ε) , L =
1
πl

∫
ε=yl

L(ε)dΓl(ε) and W =
1
πl

∫
ε=yl

W (ε)dΓl(ε) , (A.41)

with L and W defined similarly as the averages of L(ε) and W (ε) over new rental-market matches.
Analogous to the definition of H̄, let L̄ and W̄ be the average values of L(ε) and W (ε) across the
distribution of match quality ε for all surviving matches in the rental market. The same method used to
derive (A.40) can be applied to show the equivalent for W̄ of the Bellman equation (9) for W (ε) is

rW̄ =Vl − R̄+g+ml (ξ κ(Bh − K̄)+(1−ξ κ)Bl −W̄ )−ρW̄ +
vlπlbl

ql
(W̄ −W )+ ˙̄W , (A.42)

where Vl and R̄ are averages of ε and R(ε) for surviving rental-market matches, and the equivalent of
the Bellman equation (10) for L(ε) in terms of L̄ is

rL̄ = R̄−D−Dl +(αl +ρ)(Ul − L̄)+ρl(Uo − L̄)+
vlπlbl

ql
(L̄−L)+ ˙̄L . (A.43)
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A.2.7 Welfare

With H̄, L̄, and W̄ denoting the average values of H(ε), L(ε), and W (ε) over the distributions of surviv-
ing owner-occupier and rental-market matches, total welfare Ω is defined as follows:

Ω = qhH̄ +ql(L̄+W̄ )+bhBh +blBl +biI +uoUo +ulUl +Ωa , (A.44)

where Ωa is the expected present values N of new entrants to the city, which by using (5) satisfies:

rΩa = a(κ(Bh − K̄)+(1−κ)Bl −E)+ Ω̇a . (A.45)

Differentiating total welfare Ω from (A.44) with respect to t and subtracting from rΩ :

rΩ = qh(rH̄ − ˙̄H)− H̄q̇h +ql(rL̄− ˙̄L)+ql(rW̄ − ˙̄W )− (L̄+W̄ )q̇l +bh(rBh − Ḃh)−Bhḃh + Ω̇

+bl(rBl−Ḃl)−Bl ḃl+bi(rI− İ)−Iḃi+uo(rUo−U̇o)−Uou̇o+ul(rUl−U̇l)−Ul u̇l+(rΩa−Ω̇a) .

Substituting Bellman equations (12), (13), (25), (27), (33), (A.40), (A.42), (A.43), (A.45), and laws of
motion (18), (19), (20), (31), (32), and (39) into the equation above:

rΩ = qh

(
Vh +g−D+mh(Bh +Uo − H̄)+ρ(Uo − H̄)+

voπhbh

qh
(H̄ −H)

)
− H̄ (voπhbh − (mh +ρ)qh)+ql

(
R̄−D−Dl +(αl +ρ)(Ul − L̄)+ρl(Uo − L̄)+

vlπlbl

ql
(L̄−L)

)
+ql

(
Vl − R̄+g+ml (ξ κ(Bh − K̄)+(1−ξ κ)Bl −W̄ )−ρW̄ +

vlπlbl

ql
(W̄ −W )

)
− (L̄+W̄ )(slul − (ml +ρ)ql)+bh (g−Fh + voπh(H −Ch − (1+ τh)Ph −Bh)−ρBh)

−Bh (mhqh + γ − (voπh +ρ)bh)+bl (g−Fl + vlπl(W −A−Cw −Bl)−ρBl)

−Bl ((1−ξ κ)mlql +(1−κ)a− (vlπl +ρ)bl)+bi (−Fi + vo(Ul − (1+ τi)Pi −Ci − I))− Iḃi

+uo (−D+θovo(1−ψ)πh(Ph −Co −Uo)+θovoψ(Pi −Co −Uo))

−Uo ((mh +ρ)qh +ρl(ql +ul)− souo)+ul (−D+θlvlπl(L+A−Cl −Ul)+ρl(Uo −Ul))

−Ul ((αl +ρ)ql +Si − (sl +ρl)ul)+a(κ(Bh − K̄)+(1−κ)Bl −E)+ Ω̇ , (A.46)

which also uses the transactions probabilities π j = 1−Γj(y j) for j ∈ {h, l}, the constant value of A from
(16), the average price Ph paid by home-buyers from (30), and the definitions of the average values H,
L, and W for new matches from (A.41). This expression for welfare can be simplified in a number of
ways. First, observe that by collecting terms multiplying the values H̄, H, L̄, L, W̄ , W , Bh, and Bl , all of
the coefficients of these values are zero, reflecting transitions of particular individuals between different
states. This can be seen directly for H̄, H, W , and Bl . Noting vlπlbl = θlvlπlul using (11) gives a zero
coefficient on L, and vlπlbl = slul from (17) a zero coefficient on W̄ . These observations together with
ml = αl +ρl from (8) yield a zero coefficient on L̄. A zero coefficient on Bh follows from the expression
for first-time buyers γ in (4), a zero coefficient on Ul from sl = θlvlπl in (17) and Si = vobi in (35), and
a zero coefficient on Uo from so = θovo(ψ +(1−ψ)πh) in (36). Using investors’ free-entry condition
(37), the terms that are multiplied by I are also zero.51

Next, note that rent payments R̄ and tenancy agreement fees A cancel out, the latter using the defini-
tion of market tightness θl = bl/ul from (11). This is because such payments are simply transfers among
individuals that net out from total welfare. The terms in average prices Ph and Pi simplify to −τhPhSh
and −τiPiSi respectively using (32), (35), and (36), where net payments equal the tax revenue trans-
ferred to the government. Collecting all terms in g from (A.46) yields (ql +qh +bl +bh)g = ng = G =
τhPhSh + τiPiSi using (2) and (26). Hence, these terms and those in prices cancel out overall, reflecting
the assumption that tax revenue is used to provide public goods of an equivalent value.

The only terms that remain on the right-hand side of (A.46) are Ω̇ are those involving average match
qualities Vh and Vl and costs D, Dl , Fh, Fi, Fl , Ch, Ci, Co, Cl , Cw, K̄, and E. The coefficient of D is

51This holds even at points in time where ḃi is not well defined owing to jumps in bi.
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−1 using ql + qh + ul + uo = 1 from (1) and the coefficient of K̄ is −γ using (4). The coefficients
on transaction costs Ch, Ci, Co, Cl , and Cw can be expressed in terms of the flows of various types of
transactions Sh, Si, So, and Sl by using equations (17), (32), (35), and (36). This completes the derivation
of the expression for total welfare given in (44).

A.3 Solving for the steady state
The solution method is based on a numerical search over the fraction ψ of investors among buyers
and ownership-market tightness θo that satisfy two equations representing equilibrium in the ownership
and rental markets. Within this search, given a (ψ,θo), the ownership-market thresholds (yh,xh) and
rental-market and credit-cost thresholds (yl,Z) are found by solving two equations numerically.

A.3.1 Ownership-market thresholds

This part of the solution method derives an equation satisfied by the ownership-market transaction
threshold yh, which can be solved taking as given (ψ,θo). Once yh is known, the moving threshold
xh is determined, along with other variables related to the ownership market.

With Ḃh = 0 and U̇o = 0 in the steady state, the Bellman equations (A.7) and (A.8) become

(r+ρ)Bh = g−Fh +(1−ω
∗
h )voΣh , and (A.47)

rUo = θovo((1−ψ)ω∗
h Σh +ψω

∗
i Σi)−D . (A.48)

Substituting from (A.48) into equation (A.6) that links yh and xh:

yh = xh +(r+ρ +αh)

(
Ch +Co + τh

(
Co −

D
r
+

θovo((1−ψ)ω∗
h Σh +ψω∗

i Σi)

r

))
. (A.49)

With
¯
Ḣ = 0 in the steady state, equation (A.3) becomes (r+ρ +αh) ¯

H = αhBh +(ρ +αh)Uo + g−D.
Substituting into (A.4) implies xh = (r+ρ +αh)(Bh +Uo)−αhBh − (ρ +αh)Uo +D−g and hence

xh = D−g+(r+ρ)Bh + rUo .

Then substituting for Bh and Uo from (A.47) and (A.48) yields

xh +Fh = (1−ω
∗
h +(1−ψ)ω∗

h θo)voΣh +θovoψω
∗
i Σi . (A.50)

Equation (A.16) implies that the steady state must have Xh = xh since Ẋh = 0. Substituting into (A.17):

Σh =
ζ

λh
h

(r+ρ +αh)(λh −1)(1+ τhω∗
h )

y1−λh
h +

αhδ
λh
h x1−λh

h

r+ρ +αh

(
1−δ

λh
h

)
 . (A.51)

The next step is to reduce these equations to a single equation that can be solved numerically for
yh. Equation (A.50) implies voΣh = (xh +Fh −ψθhvoω∗

i Σi)/(1−ω∗
h +(1−ψ)ω∗

h θh), and together with
voΣi = Fi/(1−ω∗

i ) from (38), it follows that:

θovo ((1−ψ)ω∗
h Σh +ψω

∗
i Σi) =

ω∗
h θo

1−ω∗
h +(1−ψ)ω∗

h θo

(
(1−ψ)(xh +Fh)+ψ

(1−ω∗
h )ω

∗
i

ω∗
h (1−ω∗

i )
Fi

)
.

Substituting the above into (A.49) yields a linear equation for xh that can be solved in terms of yh:

xh =
yh − (r+ρ +αh)

(
Ch +(1+ τh)Co − τh

D
r + τh

θoω∗
h

1−ω∗
h+(1−ψ)ω∗

h θo

(
(1−ψ)Fh

r +
ψ(1−ω∗

h )ω
∗
i Fi

ω∗
h (1−ω∗

i )r

))
1+ τh

(
(1−ψ)ω∗

h θo
1−ω∗

h+(1−ψ)ω∗
h θo

)( r+ρ+αh
r

) . (A.52)

Combining equations (38), (A.50), (A.51) and vo = υoθ
−ηo
o from (43):

xh+Fh−
(1−ω∗

h +(1−ψ)ω∗
h θo)υoθ

−ηo
o ζ

λh
h

(1+ τhω∗
h )(r+ρ +αh)(λh −1)

(
y1−λh

h +
αhδ

λh
h x1−λh

h

r+ρ +αh(1−δ
λh
h )

)
− ψθoω∗

i Fi

1−ω∗
i

= 0 . (A.53)
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Taking any yh, the implied xh is obtained from (A.52), and xh is seen to be a strictly increasing function
of yh because the denominator is positive. Substituting the relationship between xh and yh into (A.53)
yields a single equation in yh that can be evaluated given (ψ,θo). Since the left-hand side of (A.53) is
strictly increasing in both xh and yh, the single equation for yh is strictly monotonic in yh, which means
any solution for xh and yh is unique. As the left-hand side of (A.53) is sure to be positive for large
yh and xh because λh > 1, existence of a solution is confirmed by checking whether the left-hand side
is negative at yh = ζh, the minimum value of yh. Once the solution for yh is found numerically, xh is
obtained from (A.52), and it can be verified whether δhyh < xh is satisfied.

A.3.2 Other ownership-market variables

Once yh is found, πh = (ζh/yh)
λh is obtained using (40). This yields i from (35) given the value of ψ .

Moreover, given that vo = υoθ
−ηo
o is known conditional on θo, the sales rate so is found using (36). The

surplus Σh is found by substituting the thresholds into (A.51), and Σi = Fi/((1−ω∗
i )vo) comes from

(38). The average price Ph from (30) can be written as follows by using (A.48) for Uo:

Ph =

(
r+θovo(1−ψ)πh

r

)(
ω∗

h Σh

πh

)
+

θovoψω∗
i Σi

r
+Co −

D
r
, (A.54)

and the price Pi is obtained from (34) and (A.48):

Pi =Co +
θovo((1−ψ)ω∗

h Σh +ψω∗
i Σi)−D

r
+ω

∗
i Σi . (A.55)

The stock-flow accounting (32) and (39) in the steady state together with (36) require that

(1− i)souo = (mh +ρ)qh , and (A.56)

souo = (mh +ρ)qh +ρl(ql +ul) . (A.57)

Evaluating equation (41) for the moving rate in the steady state and substituting ζ
λh
h = πhyλo

h from (40):

mh = αh −
αhδ

λh
h

(
yh
xh

)λh
πh

qh

(1−ψ)θovouo

ρ +αh

(
1−δ

λh
h

) .
Equations (35) and (36) imply that (1− i)so = (1−ψ)θovoπh, and hence by using equation (A.56) it
follows that (1−ψ)θovoπhuo/qh = mh +ρ . By substituting this into the above and solving for mh:

mh = αh

 ρ +αh

(
1−δ

λh
h

)
−ρδ

λh
h

(
yh
xh

)λh

ρ +αh

(
1−δ

λh
h

)
+αhδ

λh
h

(
yh
xh

)λh

 . (A.58)

Dividing both sides of (A.57) by ρl > 0 and substituting for ql + ul = 1− qh − uo from (1) implies
uo + qh − ((mh +ρ)/ρl)qh +(so/ρl)uo = 1. Equation (A.56) shows that qh = ((1− i)so/(mh +ρ))uo,
and substituting this into the previous equation and solving for uo yields:

uo =
1

1+ (1−i)so
mh+ρ

+ iso
ρl

, and qh =
(1− i)so

mh +ρ
uo . (A.59)

With bh = (1−ψ)θouo and bi = ψθouo by using (23) and (24), equations (32) and (35) give Sh and Si

because vo and πh are known. Together with prices Ph and Pi from (A.54) and (A.55), total tax revenue
G = τhPhSh + τiPiSi is determined.

A.3.3 The rental-market and credit-cost thresholds, and the city population

The next part of the solution method derives an equation to solve numerically for the rental-market
transaction threshold yl , taking as given (ψ,θo) and the solution for ownership-market variables, which
are also found conditional on (ψ,θo). Solving for yl depends on finding the credit-cost threshold Z and
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the city population n. Given yl , there is a single equation that can be solved numerically for the fraction
κ of households choosing to pay the credit cost, which directly determines Z and n.

The moving rate ml = αl +ρl is given by parameters according to (8). With Ḃl = 0 and U̇l = 0 in
the steady state, the Bellman equations (A.30) and (A.31) become

(r+ρ)Bl = g−Fl +(1−ωl)vlΣl , and (A.60)

(r+ρl)Ul = ωlθlvlΣl −D+ρlUo . (A.61)

In steady state,
¯
J̇ = 0, which using (A.26) yields the equation (r + ρ +ml)¯

J = mlBl + (ρ +αl)Ul +
ρlUo +g−D−Dl +ξ mlκ(Z − K̄) . Substituting this into (A.28) with ml = αl +ρl implies

yl = D+Dl −g+(r+ρ)Bl +(r+ρl)Ul −ρlUo +(r+ρ +ml)(Cl +Cw)−ξ mlκ(Z − K̄) ,

and by using (A.60) and (A.61), the equation becomes

yl −Dl +Fl − (r+ml +ρ)(Cl +Cw)+ξ mlκ(Z − K̄)− (1−ωl +ωlθl)vlΣl = 0 . (A.62)

This equation links the transaction threshold yl to the surplus Σl and the credit-cost threshold Z (and
hence κ and K̄). A further equation involving Σl is obtained by multiplying both sides of the first
equation in (38) by r+ρl and substituting for (r+ρl)Ul from (A.61):

ωlθlqlΣl = D−ρlUo +(r+ρl)(1+ τi)Uo +(r+ρl)((1+ τi)Co +Ci +(1+ τiω
∗
i )Σi) .

Using (r+ρl)(1+ τi)Uo −ρlUo = (1+ τi(1+(ρl/r))rUo and substituting from (A.48) leads to:

ωlθlvlΣl =
(

1+ τi

(
1+

ρl

r

))
θovo ((1−ψ)ω∗

h Σh +ψω
∗
i Σi)

+(r+ρl)((1+ τi)Co +Ci +(1+ τiω
∗
i )Σi)− τi

(
1+

ρl

r

)
D . (A.63)

Rental-market variables conditional on the transactions threshold The numerical proce-
dure to solve for yl depends on checking whether one equation holds. Taking a particular value of the
threshold yl , the implied transaction probability from (40) is πl = (ζl/yl)

λl . Using the formula (A.29)
for the surplus Σl to state it in terms of yl and πl:

Σl =
πlyl

(λl −1)(r+ρ +ml)
.

Observe that this implies ωlθlvlΣl = ωlylsl/((λl −1)(r+ρ +ml)), where sl = θlvlπl is the letting rate
from (17). As another equation for the left-hand side is given by (A.63), the rate sl implied by yl is

sl =
(λl −1)(r+ρ +ml)

ωlyl

((
1+ τi

(
1+

ρl

r

))
θovo ((1−ψ)ω∗

h Σh +ψω
∗
i Σi)

+(r+ρl)((1+ τi)Co +Ci +(1+ τiω
∗
i )Σi)− τi

(
1+

ρl

r

)
D
)
, (A.64)

which can be evaluated conditional on (ψ,θo), from which the ownership-market variables vo, Σh, and Σi

are also known. Equation (43) gives the meeting rate vl = υlθ
−ηl
l , and hence the letting rate sl = θlvlπl

satisfies sl = υlπlθ
1−ηl
l . The implied market tightness in the rental market is

θl =

(
sl

υlπl

) 1
1−ηl

, (A.65)

and this also determines vl = υlθ
−ηl
l .
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Solving for the credit-cost threshold and city population With q̇l = 0 and u̇l = 0 in the steady
state, equations (18), (20), and (36) require

slul = (ml +ρ)ql , and (A.66)

(sl +ρl)ul = (αl +ρ)ql + isouo . (A.67)

Equations (1) and (A.66) imply ql + ul = 1− qh − uo and ql = (sl/(ml +ρ))ul . Combining these and
using the known values of qh and uo to solve for ul and ql:

ul =
1−qh −uo

1+ sl
ml+ρ

, and ql =
sl

ml +ρ
ul . (A.68)

Since the stock-flow accounting equations are consistent with (1), and as the solution already satisfies
(A.56), (A.57), and (A.66), this means equation (A.67) holds automatically. The steady state also has
ṅ = 0, ḃh = 0, and ḃl = 0. Using (4), (6), (19), and (31), this means that a = ρn and the following
equations must hold:

(voπh +ρ)bh = mhqh +(ξ mlql +ρn)κ , and (A.69)

(vlπl +ρ)bl = (1−ξ )mlql +(ξ mlql +ρn)(1−κ) . (A.70)

Since bh = (1−ψ)θouo, vo, πh, mh, qh, and ql are known at this point, equation (A.69) can be rearranged
to solve for the city population n as a function of κ:

n =
1
ρ

(
(voπh +ρ)(1−ψ)θouo −mhqh

κ
−ξ mlql

)
. (A.71)

Note that since the stock-flow accounting equations are consistent with (2), and as the solution already
satisfies (A.56), (A.66), and (A.69) given equation (A.71), it follows that (A.70) automatically holds. To
have ṅ = 0 in (6), it is necessary that a = ρn > 0, which requires N = 0 since χ > 0. Using (5) and (3),
this requires Bl +κ(Z− K̄)−E = 0. Substituting for Bl from (A.60) and noting g = G/n from (26), this
equation is equivalent to:

(G/n)−Fl +(1−ωl)vlΣl

r+ρ
+κ (Z − K̄)−E = 0 . (A.72)

Now consider the numerical search over the fraction κ conditional on yl . Equation (A.69) shows
that (voπh +ρ)(1−ψ)θouo > mhqh is necessary to have a positive κ . After checking this condition for
the given value of yl , equation (A.71) is used to obtain n as a function of κ , and it can be seen that n is
decreasing in κ . The credit-cost threshold Z is obtained by inverting equation (42) using the given κ:

Z = eµ+σΦ−1(κ) , (A.73)

which is an increasing function of κ . The average credit cost K̄ follows immediately from (42) using the
Z obtained from (A.73). Since κ(Z − K̄) =

∫ Z
K=0(Z −K)dΓk(K), the left-hand side of equation (A.72) is

increasing in κ after taking account of the effects on Z and K̄. Moreover, since n falls as κ rises, and as
G > 0, higher κ has an unambiguously positive effect on the left-hand side of (A.72). A solution for κ is
therefore unique, and existence is verified by checking (A.72) changes sign over the interval κ ∈ [0,1].

Solving for the transaction threshold The method described above finds the unique solution for
κ , Z, K̄, and n conditional on the rental-market transaction threshold yl (and ψ , θo, and other ownership-
market variables). The value of yl itself is found numerically as the solution of equation (A.62), taking
account of the effect of yl on Σl , vl , θl , and the term κ(Z − K̄). From (A.29) and λl > 1, it follows that
higher yl reduces Σl . Equation (A.64) shows that sl is proportional to 1/yl , and since πl = ζ

λl
l y−λl

l , the
ratio sl/πl and hence θl from (A.65) are increasing in yl because λl > 1. This means that vl is decreasing
in yl , and from (A.68), ql is decreasing in yl because sl is negatively related to yl .

Higher yl directly increases the left-hand side of (A.62), and indirectly increases it through lower Σl .
Moreover, since higher yl lowers vlΣl , and reduces G/n because of higher n from falling ql in (A.71),
the required value of κ(Z − K̄) consistent with (A.72) increases (as does κ and Z, because κ(Z − K̄) is
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increasing in Z). This implies another positive effect on the left-hand side of (A.62). The only term that
is not unambiguously increasing in yl is (1−ωl +ωlθl)vl because θl rises, while vl = υlθ

−ηl
l falls.52

Equation (A.62) is solved numerically for the transaction threshold yl , verifying uniqueness if nec-
essary. Since the left-hand side becomes arbitrarily large as yl increases, existence is confirmed by
checking whether the left-hand side is negative at yl = ζl . Given the solution for yl , the associated
solutions for Z, κ , and n are obtained as explained earlier.

A.3.4 Solving for the fraction of investors and market tightnesses

The steps above are used to derive values of all the variables in the model conditional on a given pair of
values for (ψ,θo). The fraction ψ of investors and the tightness θo of the ownership market are found
by a numerical solution of the two remaining equations of the model.

The first equation is (A.35), which links the fraction of investors ψ , market tightnesses θo and θl ,
properties on the market uo and ul , and the city population n. All of these variables are known conditional
on (ψ,θo). The second equation is the marginal home-buyer indifference condition (3) in steady state.
Substituting the expressions for Bh and Bl from (A.47) and (A.60) into (3):

(1−ω
∗
h )voΣh − (1−ωl)vlΣl = (r+ρ)Z +Fh −Fl , (A.74)

where vo, vl , Σh, Σl , and Z are determined above for given ψ and θo.
Searching over ψ and θo to find values satisfying (A.35) and (A.74), the steady-state equilibrium

of the model is found. Since the search is only over two dimensions, existence and uniqueness can be
confirmed numerically. Once (ψ,θo) is known, all other variables are derived using the earlier methods.

A.3.5 Steady-state values of other variables

This section shows how to compute steady-state values of other variables of interest, including those used
as part of the calibration strategy. With ẏl = 0 in steady state, the new rent equation (A.33) becomes

R = Dl +ωl(r+ρ +ml)(Cl +Cw)+ωl(r+ρ +ml +θlvlπl)
Σl

πl
. (A.75)

Steady-state match qualities in the two markets (V̇h = 0 and V̇l = 0) are derived from (45) and (46):

Vh =
λh

λh −1

(
mh +ρ

αh +ρ
yh +

αh −mh

αh +ρ
xh

)
, and Vl =

λl

λl −1
yl , (A.76)

where the first equation also makes use of (32) with q̇h = 0. As steady-state match quality Vl is the same
as average match quality λlyl/(λl −1) for new leases, steady-state new rents R are equal to average rents
R̄ for existing tenants (see equation A.34).

Viewings and time-on-the-market If home-buyers have a constant probability πh of making a
purchase conditional on a viewing, the expected number of viewings per home-buyer purchase is Λh =
1/πh. Similarly, those searching for property to rent have constant probability πl of transacting, so their
expected number of viewings is Λl = 1/πl , which is also the expected viewings required for a landlord
to lease a property. If properties on the rental market are leased at a constant rate sl , the expected
time-on-the-market for properties in the rental market is Tsl = 1/sl . In the ownership market, properties
are sold at a constant rate so in steady state, implying an expected time-on-the-market for sellers of
Tso = 1/so. Home-buyers complete a purchase at rate voπh over time, so their expected time-on-the-
market is Tbh = 1/(voπh), and similarly Tbl = 1/(vlπl) for renters. In summary:

Λh =
1
πh

, Λl =
1
πl

, Tso =
1
so

, Tsl =
1
sl
, Tbh =

1
voπh

, and Tbl =
1

vlπl
. (A.77)

52If the Hosios condition ωl = ηl holds, (1−ωl +ωlθl)υlθ
−ηl
l is decreasing in θl (and hence yl) if θl < 1, as is

the case given the calibration in Table 3.
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The moving hazard rate and expected time between moves Tenants move house within the
city at an constant exogenous rate ml = al + ρl . The expected time a tenant remains in a property is
therefore Tml = 1/(ml +ρ) after accounting for moves outside the city (exit rate ρ). For homeowners,
moving is endogenous, so even in steady state where the moving threshold xh and transaction threshold
yh remain constant, the hazard rate of moving depends on how long a household lived in a property.
Let Ψ(T ) denote the steady-state survival function of matches in the ownership market. This gives the
fraction of matches that remain in existence T years after households first moved into their properties.

In order for a match to survive for T years, first, a household must not leave the city during that
time. With constant exit rate ρ , this has probability e−ρT . Second, the household must choose to
remain in a property after any shocks to idiosyncratic match quality have occurred. These shocks arrive
independently at rate αh, so the number of shocks j that occur over a period of time T has a Poisson(αhT )
distribution. The probability of receiving exactly j shocks is e−αhT (αhT ) j/ j! for j = 0,1,2, . . ..

If initial match quality is ε , match quality becomes ε ′ = δ
j

h ε after j shocks. The household chooses
not to move if ε ′ ≥ xh, which is equivalent to ε ≥ xh/δ

j
h in terms of initial match quality ε (and if this

condition holds for some j then it also holds for any smaller j because δh < 1 and xh remains constant in
the steady state). New match quality has a Pareto(yh,λh) distribution, so the probability that ε ≥ xh/δ

j
h

is ((xh/δ
j

h )/yh)
−λh . This is well defined if xh/δ

j
h > yh, which is true for all j ≥ 1 because δhyh < xh.

With zero shocks ( j = 0), households remain in the same property unless they leave the city.
The fraction of households who remain in the same property for T years is therefore

Ψ(T ) = e−ρT

e−αhT +
∞

∑
j=1

e−αhT (αhT ) j

j!

(
xh/δ

j
h

yh

)−λh


= e−(αh+ρ)T

(
1+
(

yh

xh

)λh ∞

∑
j=1

(αhδ
λh
h T ) j

j!

)
= e−(αh+ρ)T

(
1+
(

yh

xh

)λh
(

eαhδ
λh
h T −1

))

=

(
yh

xh

)λh

e−
(

αh(1−δ
λh
h )+ρ

)
T −

((
yh

xh

)λh

−1

)
e−(αh+ρ)T .

The moving hazard ℏ(T ) as a function of match duration T is defined by the percentage decline in
the proportion of surviving matches, that is, ℏ(T ) = −dlogΨ(T )/dT = −Ψ ′(T )/Ψ(T ). This follows
immediately from the expression for Ψ(T ) above:

ℏ(T ) =

(
αh(1−δ

λh
h )+ρ

)(
yh
xh

)λo
e−
(

αh(1−δ
λh
h )+ρ

)
T − (αh +ρ)

((
yh
xh

)λh
−1
)

e−(αh+ρ)T

(
yh
xh

)λh
e−
(

αh(1−δ
λh
h )+ρ

)
T −

((
yh
xh

)λh
−1
)

e−(αh+ρ)T
.

The density function of the probability distribution of moving times T is ℏ(T )Ψ(T ) = −Ψ ′(T ), and
hence the expected time until moving is Tmh =

∫
∞

T=0−TΨ ′(T )dT =
∫

∞

T=0Ψ(T )dT , where the second
expression for Tmh, the area under the survival function, is derived from integration by parts (and
limT→∞ TΨ(T )= 0). In the cross-section of households at a point in time, the steady-state distribution of
time spent in the same property has density function Ψ(T )/Tmh, and the hazard rate ℏ(T ) averaged over
the cross-section of homeowners is

∫
∞

T=0ℏ(T )(Ψ(T )/Tmh)dT = 1/Tmh because ℏ(T )Ψ(T ) = −Ψ ′(T ),
Ψ(0) = 1, and limT→∞Ψ(T ) = 0. Since the within-city moving rate averaged over the cross-section of
homeowners is mh from (41), it follows that Tmh = 1/(mh +ρ). In summary:

Tmh =
1

mh +ρ
, and Tml =

1
ml +ρ

. (A.78)

The demographics of owners versus renters As can be seen from (4) and the law of motion
(31) for home-buyers, there is a flow of first-time buyers (ξ mlql + a)κ coming from the rental market
or outside the city, and a flow mhqh of existing homeowners returning to the market when they decide
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the move house. Since these two groups of home-buyers subsequently transact at the same rate voπh, or
leave the city at the same rate ρ , the steady-state fraction φ of first-time buyers can be calculated as the
ratio of the inflow of first-time buyers to the inflow of all buyers entering bh:

φ =
(ξ mlql +a)κ

mhqh +(ξ mlql +a)κ
=

(voπh +ρ)bh −mhqh

(voπh +ρ)bh
,

where the second expression for φ follows from (A.69) because bh is a steady state. In steady state,
(A.57) implies (mh +ρ)qh = (1− i)souo, and (32) and (36) imply (1− i)souo = voπhbh. Dividing nu-
merator and denominator of the expression for φ by qh and substituting voπhbh/qh = mh +ρ:

φ =

(
1+ ρ

voπh

)
(mh +ρ)−mh(

1+ ρ

voπh

)
(mh +ρ)

. (A.79)

Now consider the steady-state demographics of homeowners compared to renters. Let 𭟋qh, 𭟋ql ,
𭟋bh, and 𭟋bl be the average ages of the household heads of those in qh, ql , bh, and bl , and 𭟋h and 𭟋l the
average ages of those in qh +bh and ql +bl . Furthermore, let 𭟋a and 𭟋γ denote the average age of new
entrants to the city a and first-time buyers γ respectively, and the difference between the average ages of
homeowners and renters is denoted by ℵ =𭟋h −𭟋l .

Taking the group in qh+bh, the laws of motion (31) and (32) imply q̇h+ ḃh = (ξ mlql +a)κ−ρ(qh+
bh), noting γ = (ξ mlql + a)κ and (1− i)souo = voπhbh. Exit occurs at rate ρ , with first-time buyers
ρ(qh+bh) arriving in steady state to ensure q̇h+ ḃh = 0. The differential equation for the average age in
this group is thus 𭟋̇h = 1−ρ𭟋h+ρ𭟋γ , and a steady-state age distribution therefore has 𭟋h =𭟋γ +ρ−1.
It is convenient to consider all average ages relative to the average age at first entry to the city, which
are denoted by ℵh = 𭟋h −𭟋a, ℵl = 𭟋l −𭟋a, and similarly for the other groups. In terms of these
variables, the definition of the average owner-renter age difference ℵ and the equation for the steady-
state homeowner versus first-time-buyer age difference are:

ℵ = ℵh −ℵl , and ℵh = ℵγ +ρ
−1 . (A.80)

Now consider the group ql . There is exit at rate ml + ρ and entry vlπlbl/ql = ml + ρ from bl as a
proportion of the group ql in steady state (see 18 with vlπlbl = slul from 11 and 17), and the average age
of entrants is 𭟋bl . Thus, in steady state, 1 = (ml +ρ)(𭟋ql −𭟋bl) and hence:

ℵql = ℵbl +(ml +ρ)−1 . (A.81)

Since 𭟋l = (ql/(ql + bl))𭟋ql +(bl/(ql + bl))𭟋bl by definition of the average age of the whole group
ql+bl , it follows that ℵql−ℵl =(bl/(ql+bl))(ℵql−ℵbl). With bl/(ql+bl)= (ml+ρ)/(ml+ρ+vlπl)
from vlπlbl/ql = ml +ρ in steady state, this can be used together with (A.81) to deduce:

ℵql = ℵl +(ρ +ml + vlπl)
−1 . (A.82)

For the group bl , given the law of motion (19), there are outflows at rate vlπl +ρ , and as a proportion of
bl , inflows a(1−κ)/bl from outside the city with average age 𭟋a and (1− ξ κ)mlql/bl from ql where
the average age is 𭟋ql . Thus, at the steady-state age distribution:

1+
a(1−κ)

bl
𭟋a +

ml(1−ξ κ)ql

bl
𭟋ql = (vlπl +ρ)𭟋bl .

Using a(1− κ) = (vlπl + ρ)bl − (1− ξ κ)mlql in steady state from (A.70) with a = ρn, the equation
above can be written as bl +(1− ξ κ)mlqlℵql = (vlπl +ρ)blℵbl . Substituting from (A.81) and using
(A.70) again implies that a(1−κ)ℵql = bl +(vlπl +ρ)bl(ml +ρ)−1. With slul = vlπlbl using (11) and
(17), it follows that vlπlbl(ml +ρ)−1 = ql , and hence ℵql is given by:

ℵql =
(ql +bl)+ρbl(ml +ρ)−1

a(1−κ)
. (A.83)

Finally, consider the average age 𭟋γ of first-time buyers. Using (4), a fraction ξ mlqlκ/((ξ mlql +a)κ)
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come from ql where the average age is 𭟋ql , and a fraction aκ/((ξ mlql + a)κ) are new entrants to the
city with average age 𭟋a. Therefore, 𭟋γ = (ξ mlql/(ξ mlql +a))𭟋ql +(a/(ξ mlql +a))𭟋a, and hence:

ℵγ =

(
1− a

ξ mlql +a

)
ℵql = ℵql −

(ql +bl)+ρbl(ml +ρ)−1

(ξ mlql +a)(1−κ)
, (A.84)

where the second expression substitutes from (A.83). Using vlπlbl = slul = mlql + ρql from (A.66)
together with (A.70) implies (ξ mlql +a)(1−κ) = ρ(ql +bl)+ξ mlql and substituting into (A.84):

ℵγ = ℵql −
(ql +bl)+ρbl(ml +ρ)−1

ρ(ql +bl)+ξ mlql
= ℵql −

1+ρ(ρ +ml + vlπl)
−1

ρ +ξ vlπlml(ρ +ml + vlπl)−1 , (A.85)

where bl = (ml +ρ)(ρ +ml +vlπl)
−1(ql +bl) and ql = vlπl(ρ +ml +vlπl)

−1(ql +bl) are used to derive
the second expression. Combining (A.80), (A.82), and (A.85) and factorizing leads to the following
expression for the average age difference between owners and renters:

ℵ =

(
1+

ρ

ρ +ml + vlπl

) 1
ρ
− 1

ρ + ξ mlvlπl
ρ+ml+vlπl

 . (A.86)

A.4 Solving for the transitional dynamics
This section describes how the transitional path to the new steady state in a perfect-foresight equilibrium
is found numerically. There is an unanticipated change to the tax rates τh and τi at a point in time, t = 0,
without loss of generality. No further changes are anticipated. For state variables such as qh, the measure
of owner-occupiers, the left-derivative of qh(t) with respect to time t must exist at all points along the
transitional path — the variable cannot ‘jump’. For non-predetermined variables such as Bh, the value of
being a home-buyer, the left derivative may not be well defined at t = 0, but the right-derivative of Bh(t)
with respect to time t must exist at all points along the transitional path to satisfy Bellman equations
such as (27). The size of any jumps in values such as Bh is determined by the requirement that values
cannot grow faster than the discount rate r, and hence these

An approximate solution of the differential equations of the model is obtained by discretization.
Dividing continuous time into a small discrete periods of length ℓ, the time derivative of state variables
such as qh is approximated by (qh(t)− qh(t − ℓ))/ℓ, which converges to q̇h as ℓ → 0 because the left-
derivative of qh(t) exists. This means differential equations such as the law of motion (32) are replaced
by difference equations of the form:

qh(t)−qh(t − ℓ)

ℓ
= vo(t)πh(t)bh(t)− (mh(t)+ρ)qh(t) ,

where continuity of the time path of qh(t) means the right-hand side can be evaluated at t. For non-
predetermined variables such as Bh, the time derivative is approximated by (Bh(t + ℓ)−Bh(t))/ℓ, which
converges to Ḃh because the right-derivative of Bh(t) exists. This means that differential equations such
as the Bellman equation (27) are replaced by difference equations of the form:

Bh(t + ℓ)−Bh(t)
ℓ

= (r+ρ)Bh(t)−g(t)+Fh − (1−ω
∗
h )vo(t)Σh(t) ,

which is based on the equation in (A.7) that is equivalent to (27).
With the differential equations of the model replaced by difference equations, the transitional dy-

namics of the non-linear system of difference equations can be found using the perfect-foresight solver
in the Dynare MATLAB package, together with knowledge of the original and new steady states com-
puted using the procedure described in appendix A.3. The discretization is based on a time period of
one day, so ℓ= 1/365 when the model is calibrated in annual time units.
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A.5 Calibration targets
The parameters of the model are chosen to match the City of Toronto housing market in the pre-policy
period (January 2006–January 2008). The average sales price P taken from Table A.3 is $402,000 during
that period. The initial effective LTT rate is 1.5%, so τh = τi = 0.015.

Housing tenure and entry of investors Based on the 2006 City of Toronto Profile Report, the
homeownership rate is h = 54%, the average age of homeowners is 53.3, and the average age of tenants
is 45.0. Hence the target for the difference between the average ages of homeowners and renters is
ℵ = 8.3. There is no survey that specifically captures the proportion of first-time buyers φ in Toronto.
The Canadian Association of Accredited Mortgage Professionals (now called Mortgage Professionals
Canada) undertook a survey in 2015 finding that the fraction is as high as 45% of purchases, which is
consistent with the 44% found in the 2018 Canadian Household Survey for the Greater Toronto Area.
On the other hand, data from the Canada Mortgage and Housing Corporation suggests the fraction of
first-time buyers is about a third. Based on this information, the calibration target is φ = 0.4.

Using Toronto MLS data on sales and rental transactions, the fraction of purchases by buy-to-rent
investors is 5.4% during the pre-policy period, so i= 0.054. The price-to-rent ratio for the same property
is 14.5 in 2007, and the ratio of average prices paid by investors to prices paid by home-buyers is 0.99.
Hence, Pi/R = 14.5 and Pi/Ph = 0.99 are used as targets.

Credit costs The credit cost K of becoming an owner-occupier is computed from a comparison of the
mortgage interest rate rk the household would face relative to the risk-free interest rate rg on government
bonds. The interest rates rk and rg are real interest rates. There is a spread between them due to
unmodelled financial frictions. The risk-free real rate rg used to discount future cashflows need not be
the same as the discount rate r applied to future utility flows from owning property, allowing for an
unmodelled housing risk premium between r and rg. It is assumed all these interest rates are expected
to remain constant over the mortgage term.

Suppose a household buys a property at price Ph at date t = 0 by taking out a mortgage with loan-to-
value ratio l. Assume the mortgage has term Tk and a constant real repayment ι until maturity. Let D(t)
denote the outstanding mortgage balance at date t, which has initial condition D(0) = lPh and terminal
condition D(Tk) = 0. The mortgage balance evolves over time according to the differential equation:

Ḋ(t) = rkD(t)− ι and hence
d(e−rktD(t))

dt
=−ιe−rkt .

Solving this differential equation using the initial condition D(0) = lPh implies:

D(t) = erkt lPh −
ι

rk
(erkt −1) . (A.87)

The terminal condition D(Tk) = 0 requires that the constant real repayment ι satisfies:

ι =
rklPh

1− e−rkTk
. (A.88)

In the model, owner-occupiers exit at rate ρ , in which case it is assumed they repay their mortgage in
full (using the proceeds from selling their property). Hence, there is a probability e−ρt that the date-t
repayment ι will be made, and a probability ρe−ρt that the whole balance D(t) is repaid at date t. The
credit cost K is defined as the present value of the expected stream of repayments discounted at rate rg

minus the amount borrowed (which would equal the present value of the repayments if rk = rg in the
absence of an interest-rate spread):

K =
∫ Tk

t=0
e−rgte−ρt

ιdt +
∫ Tk

t=0
e−rgte−ρt

ρD(t)dt − lPh .
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To derive an explicit formula for K, first observe that∫ Tk

t=0
e−rgte−ρtdt =

1− e−(rg+ρ)Tk

rg +ρ
and

∫ Tk

t=0
e−rgte−ρterktdt =

1− e−(rg+ρ−rk)Tk

rg +ρ − rk
.

Together with equations (A.87) and (A.88) for D(t) and ι , the credit cost can be expressed as follows:

K =

(
ι + ρι

rk

)
(rg +ρ)

(1− e−(rg+ρ)Tk)+
ρ

(
lPh − ι

rk

)
(rg +ρ − rk)

(1− e−(rg+ρ−rk)Tk)− lPh

=

(rk +ρ)(1− e−(rg+ρ)Tk)

(rg +ρ)(1− e−rkTk)
+

ρ

(
1− 1

1−e−rkTk

)
(1− e−(rg+ρ−rk)Tk)

(rg +ρ − rk)
−1

 lPh

=

(
(rk +ρ)(1− e−(rg+ρ)Tk)− ρ(rg+ρ)

rg+ρ−rk
(e−rkTk − e−(rg+ρ)Tk)− (rg +ρ)(1− e−rkTk)

)
lPh

(rg +ρ)(1− e−rkTk)

=

(
(rk − rg)+

ρ(rg+ρ)−(rg+ρ)(rg+ρ−rk)
rg+ρ−rk

e−(rg+ρ)Tk − (rg+ρ)(rg+ρ−rk)−ρ(rg+ρ)
rg+ρ−rk

e−rkTk

)
lPh

(rg +ρ)(1− e−rkTk)
,

and dividing both sides by price Ph and simplifying leads to the equation given in (51). That equation
is used to determine calibration targets for the credit cost Z of a marginal home-buyer relative to the
average price Ph, and for the marginal credit cost Z relative to the average credit cost K̄ conditional on
becoming an owner-occupier.

A mortgage term of 25 years (Tk = 25) and an average loan-to-value ratio of 80% (l = 0.8) are
assumed. Focusing on interest rates fixed for five years as a typical mortgage product, the 5-year con-
ventional mortgage rate from Statistics Canada was 7.07% in 2007. Given an inflation rate of 2.14%,
the implied real mortgage rate r̄k is 4.93% for an average homeowner. Since the average mortgage cost
is based on 5-year fixed rates, the equivalent risk-free rate comes from 5-year government bonds. These
had a yield of 4% in 2007, so the real risk-free rate rg is 1.86%.

Information on different mortgage rates is then used to compute credit costs for a marginal home-
buyer. Based on micro-level mortgage data from the Bank of Canada, the average contract mortgage rate
during 2017–2018 was around 3.11%. Borrowers with low credit scores who did not qualify for loans
from major banks could obtain mortgages from trust companies or private lenders at mortgage rates of
around 6.15%, suggesting an interest rate gap of 3% between the marginal and average home-buyer.

But households faced with a high mortgage rate when they first buy a property do not necessarily
continue with that rate for the whole time they have a mortgage. They can build up equity and improve
their credit score, and thus obtain a mortgage rate closer to the average when they refinance. The baseline
calibration assumes that a marginal home-buyer is able to close half of the initial gap with the average
home-buyer over the whole term of the mortgage loan. This translates into an interest rate gap of 1.5%,
implying the real mortgage rate rz for a marginal buyer is 6.43%.

In summary, Z/Ph is derived from (51) using Tk = 25, l = 0.8, rg = 1.86%, and rk = rz = 6.43%,
together with the value of ρ obtained from the calibration method. The value of Z/K̄ is derived by taking
the ratio of Z/Ph and K̄/Ph from (51) with rk = r̄k = 4.93% and the other terms being the same.

Non-tax transaction costs in the ownership market Apart from the land transfer tax, the only
other cost buyers may pay is a home inspection cost of about $500, but this is very small relative to
average house prices. Hence, buyer non-tax transaction costs Ch and Ci are set to zero in the calibration.

From the side of sellers of a property, the primary cost is the real-estate agent commission. Using
Multiple Listing Service sales data, the average commission rate is about 4.5% of price. There are some
other costs such as legal fees of around $1,000, but these are negligible in comparison. Sellers may
sometimes spend approximately $2,500 on staging, but the seller’s agent might cover this expense as
part of their commission, so not all sellers pay for staging out of their own pocket. Thus, Co is set to be
4.5% of the average house price P.
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Maintenance costs The maintenance cost D paid by owners of a property is set so that it is 2.6% of
the average price P. This cost is made up of a 2% physical maintenance cost and a 0.6% property tax
in Toronto. The additional maintenance cost Dl for properties that are rented out is set to be 8% of the
average rent R. There are two parts to this cost: approximately 5–7% that a landlord spends on hiring
a property manager, and approximately 1% paying for services such as taking out garbage, shovelling
snow, and salting walkways.

Transaction costs in the rental market In Toronto, landlords typically pay one month’s rent to
real-estate agents to lease their properties. Hence, Cl is set to be 1/12 of average annual rent R. Tenants
in Toronto do not typically pay a fee when arranging to rent a property, so the calibration targets a zero
tenancy agreement fee A.

Flows within ownership and rental markets Flows within the two housing markets are related
to the average time between moves, times on the market, and viewings per sale and lease. Information
on time-to-move, time-to-sell, and time-to-lease is derived from Toronto MLS data on sales and rental
transactions during the pre-policy period. Estimates of the moving hazard function imply that owner-
occupiers move after Tmh = 9.25 years on average The average duration of stay for a tenant is 1,109
days, so Tml = 3.04 years. The average time-to-sell for property owners is 30.5 days and the average
time-to-lease is 18.7 days. During this period, the fraction of withdrawals from for-sale listings is 48%
and from for-lease listings is 22%. In light of these withdrawals, the targets are Tso = (30.5/365)/(1−
0.48) = 0.161 and Tsl = (18.7/365)/(1−0.22) = 0.066. Adjustments for withdrawals are made because
measures of time-on-the-market are calculated from the final successful listing without accounting for
earlier unsuccessful attempts, so true time-on-the-market is longer.

Data on buyers’ time-on-the-market and viewings per sale and per lease are not available for Toronto.
Using the ‘Profile of Buyers and Sellers’ survey collected by NAR in the United States, Genesove and
Han (2012) report that for the period 2006–2009 the ratio of average time-to-buy to average time-to-sell
is 1.28, and the average number of homes viewed by home-buyers is 10.7. Using this information, the
targets used are Tbh = 1.28× Tso = 0.206 and Λh = 10.7/(1− 0.48) = 20.6, where the latter adjusts
the number of viewings to account for the withdrawal rate seen in Toronto. The idea is that viewings
of properties that have been withdrawn from the market are not counted, so actual viewings are larger
than reported viewings in the final successful listing. There is no data on the number of properties that
renters view on average. According to an industry expert, renters view fewer properties than buyers, so
the target adopted is half the number of viewings per sale (Λl/Λh = 1/2).

Flow search costs The estimated search costs are based on the opportunity cost of time spent search-
ing. This approach requires data on the ratio of house prices to income. Taking the median household-
level income from Statistics Canada implies a price-to-income ratio of Ph/Y = 5.6 in Toronto in 2007.

A.6 Calibration method
The calibration targets in Table 3 identify the parameters in Table 4. The logic behind the exact iden-
tification of the parameters is explained here, along with a method for computing the parameter values
from the targets.

Parameters implied directly by the targets Some parameters can be deduced directly from the
calibration targets. A value of χ is set directly. Given P and targets for D/P and Co/P, the values
of D = (D/P)×P and Co = (Co/P)×P follow immediately. The average transactions price is P =
iPi +(1− i)Ph, so Ph = P/(1− i+ iPi/Ph). Hence, Ch and Ci are obtained directly from the targets:

Ch =

Ch
Ph

P

1− i+ i Pi
Ph

, and Ci =

Ci
Pi

Pi
Ph

P

1− i+ i Pi
Ph

. (A.89)
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Since R = (Pi/Ph)×P/((Pi/R)×(1− i+ iPi/Ph), the cost parameters Dl and Cl also follow directly from
the targets:

Dl =

Dl
R

Pi
Ph

P
Pi
R

(
1− i+ i Pi

Ph

) , and Cl =

Cl
R

Pi
Ph

P
Pi
R

(
1− i+ i Pi

Ph

) . (A.90)

Ratios and quantities implied by the targets The targets also provide some direct information
about market tightness, the fraction of investors, transaction probabilities and selling/leasing rates, and
the quantities of properties and households in different states. The fraction i of purchases made by buy-
to-rent investors is given in (35). Using πh = Λ

−1
h from (A.77), it follows that i = ψΛh/(1−ψ +ψΛh),

with which the fraction ψ of investors among all buyers is obtained from the targets for i and average
viewings Λh per home-buyer:

ψ =
i

i+(1− i)Λh
. (A.91)

Using (A.56) with (1− i)souo = voπhbh from (32) and (36), it follows that uo = (Tso/Tmh)qh/(1− i) and
bh = (Tbh/Tmh)qh with reference to (A.77) and (A.78). Hence, using the definition of the homeownership
rate h from (2):

qh =
nhTmh

Tmh +Tbh
, and uo =

nhTso

(1− i)(Tmh +Tbh)
. (A.92)

Equation (A.67) together with (A.77) and (A.78) implies ul = (Tsl/Tml)ql , and combining this with the
total measure of properties from (1) leads to:

ql =
(1−qh −uo)Tml

Tml +Tsl
, and ul =

(1−qh −uo)Tsl

Tml +Tsl
. (A.93)

Using (17), (36), and (A.77), it follows that Tbl/Tsl = θl and Tbh/Tso = θo(1−ψ +ψπ
−1
h ), where the

latter is solved for ownership-market tightness θo. Combining the definitions from (23) and (24), bh =
(1−ψ)θouo, and hence (2) provides an equation for rental-market tightness θl:

θo =
1

1−ψ +ψΛh

Tbh

Tso
, θl =

n−qh −ql − (1−ψ)θouo

ul
, and Tbl = θlTsl , (A.94)

where ψ , qh, uo, ql , and ul are taken from (A.91), (A.92), and (A.93), and the other terms are known
targets. Note that the value of Tbl cannot be chosen freely given the other targets.

Exit rate of investors Substituting (mh +ρ)qh = (1− i)souo from (A.56) into souo = (mh +ρ)qh +
ρl(ql +ul) from (A.57) implies ρl = isouo/(ql +ul). Using the formulas from (A.77), (A.92), and (A.93),
this can be expressed as follows in terms of the targets:

ρl =
i/(1− i)

(1−nh)/nh
1

Tmh

 1

1+ Tbh−nhTso/(1−i)
(1−nh)Tmh

 . (A.95)

Intuitively, this is identified from a comparison of the flow of investor transactions i relative to the stock
of properties in the rental market.

Demographics and transitions to homeownership The target for the fraction φ of first-time
buyers among all home-buyers provides information about the turnover rate ρ of households in the city.
Equation (A.79) for the steady-state fraction φ can be written in terms of ρ and home-buyers’ time-on-
the-market Tbh and owner-occupiers’ expected time between moves Tmh from (A.77) and (A.78):

φ =
ρ

(
1+ mh+ρ

voπh

)
mh +ρ

(
1+ mh+ρ

voπh

) =
ρ

(
1+ Tbh

Tmh

)
1

Tmh
+ρ

Tbh
Tmh

.

34



Intuitively, φ identifies ρ because being an owner-occupier is an absorbing state for households that
remain in the city, so a flow of first-time buyers depends on new arrivals to the city. The equation above
can be solved explicitly for ρ , and once ρ is known, mh is inferred from mh = (1/Tmh)−ρ with (A.78):

ρ =
φ

Tmh +(1−φ)Tbh
, and mh =

(1−φ)(Tmh +Tbh)

Tmh(Tmh +(1−φ)Tbh)
. (A.96)

Taking ρ from (A.96) and using the formula for Tml in (A.78) yields ml = T−1
ml −ρ , and it can be checked

whether this is positive. With equation (8) and ρl from (A.95), the parameter αl = ml −ρl is obtained.
The target ℵ for the difference between the average ages of owners and renters provides information

about the probability ξ that renters draw a new credit cost when moving. Intuitively, if credit costs were
drawn once and for all when households entered the city, there would be no reason in the model why
the average ages of the two groups would differ. Using equation (A.86), the value of ℵ is therefore
informative about how long it is expected to take for a renter to make the transition to being an owner-
occupier. This equation is rearranged to show ξ mlvlπl(ρ +(1−ρℵ)(ρ +ml + vlπl)) = ρ2ℵ(ρ +ml +
vlπl), which can be solved explicitly for ξ with reference to (A.77) and (A.78):

ξ =
ρ2ℵ(ρ +ml + vlπl)

mlvlπl (ρ +(1−ρℵ)(ρ +ml + vlπl))
=

ρ2ℵ

(
1+ Tml

Tbl

)2

Tml
Tbl

(
1

Tml
−ρ

)(
ρTml +(1−ρℵ)

(
1+ Tml

Tbl

)) , (A.97)

and this is known given the targets and the values of Tbl and ρ from (A.94) and (A.96).
By substituting vlπlbl = slul into (A.70) and using slul = (ml + ρ)ql from (A.67), it follows that

(ξ mlql +ρn)κ = ρ(n−ql −bl). Together with (2) and ql from (A.93), the value of κ is:

κ =
ρnh

ξ mlql +ρn
. (A.98)

Distribution of credit costs The calibration targets related to the mortgage interest rates and other
aspects of mortgage contracts determine the present-discounted value of total credit costs K relative to
house prices Ph for an average and a marginal home-buyer. The implied values of K̄/Ph and Z/Ph are
given by the formula in (51), which determine K̄ and Z using Ph = P/(1− i+ iPi/Ph). These provide
information about the mean and standard-deviation parameters µ and σ of the log-Normal credit-cost
distribution from (42). Since κ = Γk(Z), the marginal credit cost Z is at a known percentile κ of the
distribution from (A.98), and K̄ = E[K|K ≤ Z] is the mean credit cost K conditional on being below the
threshold Z.

Using (42), the marginal credit cost Z and the parameters µ and σ satisfy logZ = µ +σΦ−1(κ),
where Φ(·) is the standard Normal cumulative distribution function, and the conditional mean satisfies
log K̄ = µ + σ2/2 + logΦ((logZ − µ − σ2)/σ)− logΦ((logZ − µ)/σ). Subtracting the first equa-
tion from the second, noting that µ cancels out and using κ = Φ((logZ − µ)/σ) and (logZ − µ)/σ =
Φ−1(κ):

log
(

Z
K̄

)
− logκ −σΦ

−1(κ)+
σ2

2
+ logΦ

(
Φ

−1(κ)−σ
)
= 0 . (A.99)

Evaluating at σ = 0 shows that the left-hand side is log(Z/K̄), which is strictly positive because Z > K̄.
The derivative with respect to σ is −(Φ′(Φ−1(κ)−σ)/Φ(Φ−1(κ)−σ)+(Φ−1(κ)−σ)). This is strictly
negative because the Normal CDF satisfies Φ′(w)/Φ(w) > −w for any w, hence the left-hand side
of (A.99) is strictly decreasing in σ . Moreover, by L’Hôpital’s rule, the left-hand side behaves like
log(Z/K̄)− logκ −(σ/2)Φ−1(κ)−(σ/2)(Φ′(Φ−1(κ)−σ)/Φ(Φ−1(κ)−σ)−(Φ−1(κ)−σ)) for very
large σ . The first two terms are constants, the final term is strictly negative, and the third term is negative
and linear in σ . It follows that the left-hand side of (A.99) becomes negative for sufficiently large σ ,
hence there always exists a unique solution of the equation for σ , which can be found numerically.
Given this solution, the other parameter of the credit-cost distribution is µ = logZ −σΦ−1(κ).
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Search costs and entry costs The steady-state value of N in (5) is zero, hence E = κ(Bh − K̄)+
(1−κ)Bl . Using the equation for Z from (3), the entry cost parameter is E = Bl +κ(Z − K̄), which is
identified by the target for Bl , the known values of Z and K̄, and κ from (A.98).

The flow search-cost parameters Fh, Fi, Fl are obtained from the following:

Fh =
P

365(1− i+ iPi/Ph)(Ph/Y )
Λh

Tbh

Fh/vo

Y/365
, Fi =

Fi

Fh
Fh , and Fl =

Λl

Λh

Tbh

Tbl

Fl/vl

Fh/vo
Fh , (A.100)

which are stated in terms of the calibration targets (and Tbl from A.94) by using (A.77).

Discount rate and bargaining powers Information on prices, rents, costs, and time-on-the-market
is used to identify the discount rate r for future housing payoffs and the bargaining-power parameters
ωh, ωi, and ωl . Taking the equations (A.54) and (A.55) and dividing both sides of the first by Ph, and
similarly for the difference between the two equations:

1 =
r+θovo(1−ψ)πh

r
ω∗

h Σh

πhPh
+

θovoψ

r
ω∗

i Σi

Ph
+

Co − (D/r)
Ph

, and 1− Pi

Ph
=

ω∗
h Σh

πhPh
− ω∗

i Σi

Ph
.

Solving these simultaneous equations for the surpluses yields an expression for Σh:

ω∗
h Σh

πhPh
=

(
1− Co

Ph

)
r+ D

Ph
+θoψ

Λh
Tbh

(
1− Pi

Ph

)
r+T−1

so
, (A.101)

which uses formulas for Tso, Tbh, and Λh from (A.77), and an expression for Σi:

ω∗
i Σi

Ph
=

(
1− Co

Ph

)
r+ D

Ph
−
(
r+θo(1−ψ)T−1

bh

)(
1− Pi

Ph

)
r+T−1

so
. (A.102)

Using equation (16) for the equilibrium tenancy agreement fee A, the sum of the total transaction costs
incurred by landlords and tenants is

Cl +Cw =
1
ωl

(
1− A

Cl

)
Cl . (A.103)

Dividing both sides of the steady-state average rent equation (A.75) by R, substituting for ωl(Cl +Cw)
using (A.103), and rearranging to write an equation for the rental-market surplus Σl:

ωlΣl

πlR
=

1− Dl
R − (r+ml +ρ)ωl

(Cl+Cw)
R

r+ml +ρ +θlvlπl
=

1− Dl
R −

(
r+T−1

ml

)(
1− A

Cl

)
Cl
R

r+T−1
ml +T−1

sl

, (A.104)

which makes use of the formulas for Tsl and Tml from (A.77) and (A.78).
Investors’ surplus Σi satisfies (38), and this equation can be written as follows:

ω∗
i

1−ω∗
i
=

Λh
Tbh

ω∗
i Σi
Ph

Fi
Fh

Fh
Ph

. (A.105)

Dividing both sides of the free-entry condition (A.63) by Pi and using the investor price equation (A.55)
to substitute θovo((1−ψ)ω∗

h Σh +ψω∗
i Σi)/Pi = (D/Pi)+ r(1− (Co/Pi)− (ω∗

i Σi/Pi)):

θlvlπl

(
ωlΣl

πlPi

)
=
(

1+ τi

(
1+

ρl

r

))(
D+ r

(
1− Co

Pi
− ω∗

i Σi

Pi

))
+(r+ρl)

(
(1+ τi)

Co

Pi
+

Ci

Pi
+(1+ τiω

∗
i )

Σi

Pi

)
− τi

(
1+

ρl

r

) D
Pi
,

which simplifies to the following by noting that r+ρl −rω∗
i =(r+ρl)(1−ω∗

i )+ρlω
∗
i and θlvlπl = T−1

sl :

1
Tsl

R
Pi

ωlΣl

πlR
=

D
Pi
+ r+ τi(r+ρl)+ρl

Co

Pi
+(r+ρl)

Ci

Pi
+(r+ρl)

(1−ω∗
i )

ω∗
i

ω∗
i Σi

Ph

Ph

Pi
+ρl

Ph

Pi

ω∗
i Σi

Ph
.

36



Substituting from (A.102), (A.104), and (A.105) leaves an equation in just one unknown r:

D
Pi
+ r+ρl

Co

Pi
+(r+ρl)

(
τi +

Ci +Fi
Tbh
Λh

Pi

)
+ρl


(

1− Co
Pi

)
r+ D

Pi
−θo(1−ψ)T−1

bh

(
Ph
Pi
−1
)

r+T−1
so


=

1
Tsl

R
Pi

1− Dl
R −

(
r+T−1

ml

)(
1− A

Cl

)
Cl
R

r+T−1
ml +T−1

sl

 . (A.106)

The right-hand side is strictly decreasing in r, while the second and fourth terms on the left-hand side
are linear in r with positive coefficients. Under a weak restriction that time-to-sell Tso is not too long,
specifically Tso < (1− (Co/Pi))/((D/Pi)−θo(1−ψ)T−1

bh ((Ph/Pi)− 1)), the final term on the left-hand
side is also increasing in r, and hence any solution of (A.106) is unique and r is identified.53 The left-
hand side exceeds the right-hand side for large r, so existence of a solution is verified by checking the
left-hand side is below the right-hand side at r = 0, which is true for sufficiently high rental yields R/Pi.
The value of r consistent with the calibration targets is then found by solving (A.106) numerically.

Dividing both sides of the steady-state Bellman equations (A.47) and (A.60) by Ph, using Bh =Bl +Z
from (3), and rearranging to solve for ω∗

h/(1−ω∗
h ) and ωl/(1−ωl):

ω∗
h

1−ω∗
h
=

1
Tbh

ω∗
h Σh

πhPh
Fh
Ph
− g

Ph
+(r+ρ)Bl

Ph
+(r+ρ) Z

Ph

, and
ωl

1−ωl
=

1
Tbl

R
Pi

Pi
Ph

ωlΣl
πlR

Fl
Fh

Fh
Ph
− g

Ph
+(r+ρ)Bl

Ph

, (A.107)

which use Tbl = 1/(vlπl) and Tbh = 1/(voπh) from (A.77). Tax revenue is given in (26), and by using
(36) and (A.77), per-person expenditure on public services g = G/n relative to house prices Ph is

g
Ph

=

(
τh(1− i)+ τii Pi

Ph

)
uo

nTso
, (A.108)

which can be calculated from the targets and the value of uo given in (A.92). Note that (28) and (34)
imply ω∗

h/(1−ω∗
h ) = (ωh/(1−ωh))/(1+ τh) and ω∗

i /(1−ω∗
i ) = (ωi/(1−ωi))/(1+ τi). Hence, by

combining equations (A.101), (A.102), and (A.104) with (A.105) and (A.107), the bargaining powers
ωh, ωl , and ωl are determined by the following equations after knowing r by solving equation (A.106):

ωh

1−ωh
=

(1+ τh)
1

Tbh

((
1− Co

Ph

)
r+ D

Ph
+θoψ

Λh
Tbh

(
1− Pi

Ph

))
(

Fh
Ph
− g

Ph
+(r+ρ)Bl

Ph
+(r+ρ) Z

Ph

)(
r+ 1

Tso

) , (A.109)

ωl

1−ωl
=

1
Tbl

R
Pi

Pi
Ph

(
1− Dl

R −
(
r+T−1

ml

)(
1− A

Cl

)
Cl
R

)
(

Fl
Fh

Fh
Ph
− g

Ph
+(r+ρ)Bl

Ph

)(
r+ 1

Tml
+ 1

Tsl

) , (A.110)

ωi

1−ωi
=

(1+ τi)
Λh
Tbh

((
1− Co

Ph

)
r+ D

Ph
−
(

1− Pi
Ph

)(
r+θo(1−ψ) 1

Tbh

))
Fi
Fh

Fh
Ph

(
r+ 1

Tso

) . (A.111)

Hence, ωh = (ωh/(1−ωh))/(1+ωh/(1−ωh))) and similarly for the other parameters ωl and ωi using
(A.109)–(A.111). Once ωl is known, the implied tenant moving cost Cw is deduced from (A.103):

Cw =

(
1
ωl

(
1− A

Cl

)
−1
)

Cl , (A.112)

and it can be verified whether Cw is positive.

Meeting functions With ωh, ωl , and ωi known, the meeting-function elasticities ηo and ηl are de-
rived from the calibration targets for ωo/ηo and ωl/ηl , where ωo = (1−ψ)ωh +ψωi is the average

53This condition is satisfied for the calibration targets in Table 3.
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bargaining power of sellers in the ownership market. Since market tightnesses θo and θl are known from
(A.94) and the viewing rates vo and vl can be deduced from the targets (and Tbl from A.94) using (A.77),
the meeting-function productivity parameters υo and υl are set to be consistent with (43):

υo = θ
ηo
o

Λh

Tbh
, and υl = θ

ηl
l

Λl

Λh

Λh

Tbl
. (A.113)

Rental-market parameters Using (40) and (A.77), equation (A.29) for the rental-market surplus
can rearranged as follows:

λl = 1+
ωl

yl
R(

r+ 1
Tml

)
ωlΣl
πlR

.

By using (A.62) to obtain an expression for yl/R and substituting for ωlΣl/(πlR) from (A.104):

λl = 1+
ωl

(
Dl−Fl

R +
(

r+ 1
Tml

)
Cl+Cw

R −ξ mlκ
(Z−K̄)

R

)(
r+ 1

Tml
+ 1

Tsl

)
(

1− Dl
R −

(
r+ 1

Tml

)(
1− A

Cl

)
Cl
R

)(
r+ 1

Tml

) +
(1−ωl +ωlθl)

1
Tbl

r+ 1
Tml

. (A.114)

Knowing λl , ζl is found using ζl = ylπ
1/λl
l implied by (40) along with (A.62), (A.77), and (A.104):

ζl =
Dl −Fl +

(
r+ 1

Tml

)
(Cl +Cw)−ξ mlκ(Z − K̄)+ 1

Tbl

(
1−ωl+ωlθl

ωl

)(
ωlΣl
πlR

)
R

Λ

1
λl

l

. (A.115)

Moving decisions and the size of idiosyncratic shocks The response βmh of the log moving
hazard rate to the increase in the transaction tax in the subsequent four years is one of the calibration
targets. In the model, this hazard rate is the combined moving rate within and outside the city, namely
mh +ρ , so the model prediction to match to the econometric estimate of βmh is the average response of
log(mh +ρ) in the four years after the tax change. The response must be computed using the numerical
solution of the model’s dynamics for given parameters. The endogenous response of the moving rate is
most closely connected to the parameter δh that governs the size of the idiosyncratic shocks to match
quality (if δh = 0 then the moving rate would be exogenous and not respond to the tax change, as can be
seen from 41). The value of δh is set to match βmh, but it is convenient to search numerically over the
following transformation κ of the parameter δh:

κ =
αhδ

λh
h

(
yh
xh

)λh

ρ +αh

(
1−δ

λh
h

) . (A.116)

The remaining parameters of the model can be found conditional on κ in what follows, and once these
are known, δh is inferred from (A.116):

δh =

 (ρ +αh)κ

αh

(
κ+(yh/xh)

λh
)
 1

λh

, (A.117)

where yh/xh can also be calculated from the calibration targets as explained below. Identification is
confirmed by verifying numerically that there is a unique κ matching the moving hazard response.

Ownership-market match quality and the arrival of idiosyncratic shocks Using the defini-
tion of κ in (A.116) and equation (A.58) for mh:

αh = (1+κ)mh +ρκ , (A.118)
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and hence αh is determined conditional on κ and the known values of mh and ρ from (A.96). The steady-
state value of xh is found given the calibration targets by using (A.50), (A.77), (A.101), and (A.102):

xh =

(
1

Tbh

(
1−ω∗

h +(1−ψ)ω∗
h θo

ω∗
h

)(
ω∗

h Σh

πhPh

)
+ψθo

Λh

Tbh

(
ω∗

i Σi

Ph

))
Ph −Fh , (A.119)

and the value of yh is then computed using (A.49) together with (A.101), (A.102), (A.118), and (A.119):

yh = xh+(r+ρ +αh)

(
Ch +Co + τh

(
Co −

D
r
+

θo

r
Ph

Tbh

(
(1−ψ)

ω∗
h Σh

πhPh
+ψΛh

ω∗
i Σi

Ph

)))
. (A.120)

Equation (A.51) for owner-occupiers’ expected surplus can be rearranged as follows using (40):

λh = 1+
ω∗

h
yh
Ph

(r+ρ +αh)(1+ τhω∗
h )

ω∗
h Σh

πhPh

1+
xh

yh

αhδ
λh
h

(
yh
xh

)λh

r+ρ +αh(1−δ
λh
h )

 .

Since the procedure is to search over κ rather δh, equation (A.117) is used to write αhδ
λh
h (yh/xh)

λh =

(ρ +αh)κ(yh/xh)
λh/(κ+(yh/xh)

λh) and αh(1− δ
λh
h ) = (αh(yh/xh)

λh −ρκ)/(κ+(yh/xh)
λh). Substi-

tuting into the equation above and making use of (A.101) yields an equation for λh:

λh = 1+
ω∗

h
yh
Ph

(
r+ 1

Tso

)(
1+ xh

yh

κ(ρ+αh)

(r+ρ+αh)+κr(yh/xh)
−λh

)
(r+ρ +αh)(1+ τhω∗

h )
((

1− Co
Ph

)
r+ D

Ph
+θoψ

Λh
Tbh

(
1− Pi

Ph

)) . (A.121)

Apart from λh, all terms in the above equation are known given the calibration targets (including κ,
chosen to target the moving hazard response), so the equation can be solved numerically for λh. As the
left-hand side is below the right-hand side at λh = 1, but rises above the right-hand side as λh becomes
large (the right-hand side is bounded, but the left-hand side increases linearly with λh), there exists a
solution with λh > 1. While 1/((r + ρ +αh)+κr(yh/xh)

−λh) is increasing in λh along with the left-
hand side of (A.121), for κ < 1+(ρ +αh)/r, the right-hand side is a strictly concave function of λh, in
which case the solution is unique.54 Once λh is found, the parameter δh is obtained from (A.117) for a
given value of κ, and it can be checked whether δhyh < xh. Finally, using (40), (A.77), and (A.120) the
parameter ζh is given by ζh = yhπ

1/λh
h = yh/Λ

1/λh
h .

A.7 Additional quantitative results

54The condition that κ or r is sufficiently low is satisfied for the calibration targets in Table 3.
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Table A.13: Tax effects with 3% mortgage interest rate gap and no mobility across regions

Model predictions average over 4 years
Variable Baseline 3% gap No mobility

Owners’ moving rate (T−1
mh ) −12% (matched) −12% (matched) −12% (matched)

Buy-to-own (BTO) sales (Sh) −14% −13% −14%
Buy-to-rent (BTR) sales (Si) 35% 13% 35%
Total sales (S) −12% −11% −12%
Time-to-sell (Tso) 6.0% 7.7% 6.4%
Leases-to-sales ratio (Sl/So) 15% 13% 14%
Price-to-rent ratio (Pi/R) −1.6% −1.6% −1.6%
Average sales price (P) −1.6% −1.5% −1.9%
Homeownership rate (h) −0.23 p.p. −0.089 p.p. −0.23 p.p.
City population (n) 0.0% 0.0% 0.0%
Transaction tax revenue (G) 61% 62% 61%

Effective LTT tax rate (τh = τi) Increased from 1.5% to 2.8% (1.3 p.p.)

Notes: The responses of variables are reported as percentage changes.
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