The Optimal Timing of Unemployment Benefits: Theory and Evidence from Sweden

J Kolsrud (Uppsala), C Landais (LSE), P Nilsson (IIES) and J Spinnewijn (LSE)

March 17, 2016

1 / 56

KLNS (LSE) Optimal Timing of UI March 17, 2016

Motivation

- Social insurance programs are inherently dynamic
 - specify a full time profile of benefits
 - affect dynamics of household behavior
- How should we design optimal time profile of benefits?
 - UI policy debate: pressure for steeper benefit profiles
 - SS policy debate: pressure for increase in full retirement age
 - debate lacks evidence-based welfare framework
- Sufficient statistics literature on "average" generosity of SI
 - \Rightarrow empirical implementation, but silent about optimal timing
- Theoretical literature on optimal timing of UI in particular
 - ⇒ insights are model-dependent and hard to connect to data

This Paper:

We revisit the **optimal timing of UI** and provide:

- (1) a **simple** characterization
- (2) in a **general** framework
- (3) that connects to **data**.

We then implement this characterization:

- use Swedish data from **UI registers** linked to **consumption surveys** and **admin data on income and wealth**
- estimate all relevant statistics to provide an evidence-based evaluation of the benefit profile.

Theory: Robust Characterization, Simple Implementation

- Consider dynamic model of unemployment (with search, heterogeneity, duration dependence, assets, ...)
- **Key Result**: Baily ['78] intuition generalizes for UI benefit b_t paid at any unemployment duration t:
 - insurance gain depends on drop in consumption at t
 - $oldsymbol{0}$ incentive cost depends on response of (full) survival function to b_t
- Implication: Simple to evaluate welfare of a benefit profile. Identifying model's primitives is not necessary (Chetty '06, '09)

Empirics Preview I: Unemployment Responses

- Extensive literature on unemployment responses to UI
 - limited attention for timing of benefits
- We implement a Regression Kink design using Swedish UI registers
 - exploit variation in the time profile of benefits
 - consider the impact on the relevant moments of the survival function
- Incentive cost of UI decreases over the spell
 - ullet estimated cost of increasing benefits is high overall (arepsilon pprox 1.5)
 - incentive cost for ST benefits > LT benefits. (LT > 20 wks)

Empirics Preview II: Consumption Profile

- Limited evidence on impact of labor shocks on consumption
 - Gruber ('97) studies consumption drop when unemployed
 - consumption survey data: limited ability to observe unemployment status and duration
- We link consumption surveys to unemployment registers in Sweden.
 We also obtain residual measure of yearly expenditures using unique admin data on income and wealth
- Insurance gain of UI increases over the spell
 - household consumption drops: 6% for ST and 13% for LT unemployed
 - limited ability to smooth consumption, but generous LT benefits

Empirics Preview II: Consumption Profile

- Limited evidence on impact of labor shocks on consumption
 - Gruber ('97) studies consumption drop when unemployed
 - consumption survey data: limited ability to observe unemployment status and duration
- We link consumption surveys to unemployment registers in Sweden.
 We also obtain residual measure of yearly expenditures using unique admin data on income and wealth
- Insurance gain of UI increases over the spell
 - household consumption drops: 6% for ST and 13% for LT unemployed
 - limited ability to smooth consumption, but generous LT benefits

 \Rightarrow Evaluated at a flat profile in Sweden, our evidence indicates that benefits are too high overall, but inclining profile increases welfare!

 KLNS (LSE)
 Optimal Timing of UI
 March 17, 2016
 6 / 56

Outline

- Introduction
- 2 Theory: Identifying Sufficient Statistics in Dynamic Setting
- Context & Data
- 4 Empirics I: Duration Responses
- 5 Empirics II: Consumption Profiles
- 6 Welfare Calibrations

Setup: Workers' Behavior

- Dynamic model of unemployment: focus on worker's behavior
- Each individual i optimizes her job search strategy
 - results in an exit rate out of unemployment $h_{i,t}$ at each duration t
 - observed survival function equals

$$S(t) = \sum_{i=1}^{N} \left[\prod_{s=0}^{t} \left(1 - h_{i,s} \right) \right] / N$$

- Each individual i optimizes intertemporal consumption
 - results in contingent consumption plan c_{i}^{e} and $c_{i,t}^{u}$
 - observed unemployment consumption at duration t

$$C^{u}(t) = \sum_{i=1}^{N} \left[\frac{S_{i}(t)}{S(t)} \times c_{i,t}^{u} \right] / N$$

Setup: Unemployment Policy

- We consider policies of the form $(b_1, b_2, ...)$ providing UI benefit b_1 for the first B_1 periods of unemployment, b_2 for the next $B_2 B_1$ periods etc.
- ullet The benefits are funded by a uniform tax au on the employed.
- The average unemployment duration equals sum of survival rates at each duration:

$$D = \Sigma_{t}S\left(t\right) = \underbrace{\Sigma_{0}^{B_{1}}S\left(t\right)}_{=D_{1}} + \underbrace{\Sigma_{B_{1}}^{B_{2}}S\left(t\right)}_{=D_{2}} + .. + \underbrace{\Sigma_{B_{n-1}}^{T}S\left(t\right)}_{=D_{n}},$$

where D_i is the average duration spent receiving benefit b_i .

Illustration: Two-Part Policy

Illustration: Survival Rate Function S(t)

ullet Average unemployment duration equals $D=\Sigma_{t}S\left(t
ight)$.

KLNS (LSE) Optimal Timing of UI March 17, 2016 11 / 56

Illustration: ST Benefit Duration

ullet Average duration spent receiving benefit b_1 equals $D_1 = \Sigma_0^B S(t)$.

KLNS (LSE) Optimal Timing of UI March 17, 2016 12 / 56

Illustration: LT Benefit Duration

• Average unemployment duration $D = \Sigma_t S(t) = D_1 + D_2$.

KLNS (LSE) Optimal Timing of UI March 17, 2016 13 / 56

Illustration: LT Benefit Duration

• Gvt BC:
$$\tau \cdot (T - D) = b_1 \cdot D_1 + b_2 \cdot D_2$$
.

KLNS (LSE) Optimal Timing of UI March 17, 2016 14 / 56

Optimal Unemployment Policy: Welfare

The optimal unemployment policy solves

$$\max_{\mathbf{b},\tau} \ \Sigma_i \mathcal{U}_i(\mathbf{b},\tau) \text{ for } \mathcal{U}_i(\mathbf{b},\tau) = \max_{\tilde{x}_i \in X} \mathcal{U}_i(\tilde{x}_i|\mathbf{b},\tau)$$

such that $\Sigma_k D_k \cdot b_k = [T - D] \cdot \tau$.

15 / 56

KLNS (LSE) Optimal Timing of UI March 17, 2016

Optimal Unemployment Policy: Welfare

The optimal unemployment policy solves

$$\max_{\mathbf{b},\tau} \ \Sigma_i \mathcal{U}_i(\mathbf{b},\tau) \text{ for } \mathcal{U}_i(\mathbf{b},\tau) = \max_{\tilde{x}_i \in X} \mathcal{U}_i(\tilde{x}_i|\mathbf{b},\tau)$$

such that $\Sigma_k D_k \cdot b_k = [T - D] \cdot \tau$.

Baily-Chetty benchmark: the optimal flat profile b solves

$$\underbrace{\frac{E\left[u'\left(c^{u}\right)\right]-E\left[u'\left(c^{e}\right)\right]}{E\left[u'\left(c^{e}\right)\right]}}_{=\mathsf{CS_{b}}} = \underbrace{\varepsilon_{D,b}}_{=\mathsf{MH_{b}}}.$$
 (1)

KLNS (LSE)

Optimal Unemployment Policy: Welfare

The optimal unemployment policy solves

$$\max_{\mathbf{b},\tau} \ \Sigma_i \mathcal{U}_i(\mathbf{b},\tau) \text{ for } \mathcal{U}_i(\mathbf{b},\tau) = \max_{\tilde{x}_i \in X} \mathcal{U}_i(\tilde{x}_i|\mathbf{b},\tau)$$

such that $\Sigma_k D_k \cdot b_k = [T - D] \cdot \tau$.

Baily-Chetty benchmark: the optimal flat profile b solves

$$\underbrace{\frac{E\left[u'\left(c^{u}\right)\right]-E\left[u'\left(c^{e}\right)\right]}{E\left[u'\left(c^{e}\right)\right]}}_{=\mathsf{CS}_{\mathsf{b}}} = \underbrace{\varepsilon_{D,b}}_{=\mathsf{MH}_{\mathsf{b}}}. \tag{1}$$

ullet Key insight (\sim Env. Thm): behavioral responses have first-order welfare effect through the fiscal externality only

- Baily-Chetty formula generalizes for benefit paid at any duration t
- Two-part example;

KLNS (LSE) Optimal Timing of UI March 17, 2016 16 / 56

- Baily-Chetty formula generalizes for benefit paid at any duration t
- Two-part example;

for
$$b_1: \frac{E\left[u'\left(c^u\right)|t \leq B\right] - E\left[u'\left(c^e\right)\right]}{E\left[u'\left(c^e\right)\right]} = \varepsilon_{D_1,b_1} + \frac{b_2D_2}{b_1D_1} \cdot \varepsilon_{D_2,b_1}$$

KLNS (LSE) Optimal Timing of UI March 17, 2016 16 / 56

- Baily-Chetty formula generalizes for benefit paid at any duration t
- Two-part example;

$$\text{for } b_1: \frac{E\left[u'\left(c^u\right) \middle| t \leq B\right] - E\left[u'\left(c^e\right)\right]}{E\left[u'\left(c^e\right)\right]} = \varepsilon_{D_1,b_1} + \frac{b_2D_2}{b_1D_1} \cdot \varepsilon_{D_2,b_1}$$

for
$$b_2$$
: $\frac{E[u'(c^u)|t>B]-E[u'(c^e)]}{E[u'(c^e)]} = \frac{b_1D_1}{b_2D_2} \cdot \varepsilon_{D_1,b_2} + \varepsilon_{D_2,b_2}$

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ ≡ √0⟨○⟩

KLNS (LSE) Optimal Timing of UI

16 / 56

- Baily-Chetty formula generalizes for benefit paid at any duration t
- Two-part example;

$$\text{for } b_1: \frac{E\left[u'\left(c^u\right) \middle| t \leq B\right] - E\left[u'\left(c^e\right)\right]}{E\left[u'\left(c^e\right)\right]} = \varepsilon_{D_1,b_1} + \frac{b_2D_2}{b_1D_1} \cdot \varepsilon_{D_2,b_1}$$

for
$$b_2$$
: $\frac{E[u'(c^u)|t>B]-E[u'(c^e)]}{E[u'(c^e)]} = \frac{b_1D_1}{b_2D_2} \cdot \varepsilon_{D_1,b_2} + \varepsilon_{D_2,b_2}$

KLNS (LSE) Optimal Timing of UI March 17, 2016 16 / 56

A Sufficient Statistics Approach

Generality:

- Robust to variations in underlying primitives of the model
- Allows for duration dependence, heterogeneity, assets, etc.
- ullet Externalities, equilibrium effects, internalities \Rightarrow additional terms

Sufficient for what?

- Statistics sufficient for characterizing optimal benefit profile
- Evaluate welfare effect of small deviations from actual policy

$$CS_k \geq MH_k \Rightarrow \uparrow b_k$$

• Implementation:

- MH_k cost: estimated from the benefit duration response to Δb_k
- CS_k gain: consumption implementation $CS_k \approx \gamma_k \cdot \Delta C_k / C$

$$CS_2/CS_1 \ge MH_2/MH_1 \Rightarrow \uparrow b_2/b_1$$

24 / 56

CS Gains: Consumption Implementation

Dynamic Policy Insights Revisited

If CS_{b_t} and MH_{b_t} were constant over the spell, *constant* benefits would be optimal. However,

- Forward-looking job seekers $\Rightarrow MH_{b_t}$ increasing over the spell
 - declining benefits become optimal
 - see Shavel&Weiss '79, Hopenhayn&Nicolini '97,...
- Unobservable savings $\Rightarrow CS_{b_t}$ increasing over the spell
 - inclining benefits would be optimal
 - see Werning '02, Shimer&Werning '08,...
- Non-stationarity, heterogeneity ⇒ ??
 - example: negative duration dependence of exit rates
 - ullet MH $_{b_t}$ may well be decreasing over the spell \Rightarrow inclining benefits
 - see Pavoni '09, Shimer&Werning '09

26 / 56

- 1 Introduction
- 2 Theory: Identifying Sufficient Statistics in Dynamic Setting
- Context & Data
- 4 Empirics I: Duration Responses
- Empirics II: Consumption Profiles
- 6 Welfare Calibrations

Context and Data

- Universe of unemployment spells from unemployment registers in Sweden (1999-2013)
- Sweden levied a wealth tax, up until 2007. We link unemployment registers to income and wealth registers for full Swedish population (1999-2007).
- Unemployment benefits replace 80% of pre-unemployment wage, but are capped at a threshold close to the median wage
- Unemployment benefits can be received forever. Participation into ALMP is required after 60 or 90 wks of unemployment.

- Introduction
- 2 Theory: Identifying Sufficient Statistics in Dynamic Setting
- Context & Data
- 4 Empirics I: Duration Responses
- Empirics II: Consumption Profiles
- 6 Welfare Calibrations

Flat Benefit Profile with Benefit Cap ['99-'00]

Duration-Dependent Benefit Cap ['01]

Flat Benefit Profile (with High Benefit Cap) ['02-'06]

Regression Kink Design

• General model:

$$Y = y(b_1, b_2, w, \varepsilon)$$

- Y: duration outcome of interest
- b_k : endogenous regressor of interest; deterministic, continuous function of earnings w, kinked at $w = \bar{w}_k$
- Non-parametric identification of the average marginal effect of b_k on Y:

$$\alpha_k = \frac{\lim_{w \to \bar{w}_k^+} \frac{\partial E[Y|w]}{\partial w} - \lim_{w \to \bar{w}_k^-} \frac{\partial E[Y|w]}{\partial w}}{\lim_{w \to \bar{w}_k^+} \frac{\partial b_k}{\partial w} - \lim_{w \to \bar{w}_k^-} \frac{\partial b_k}{\partial w}} = \frac{\hat{\delta}_k}{\nu_k}$$

- $\hat{\delta}_k$: estimated change in slope between Y and w at kink \bar{w}_k
- v_k : deterministic change in slope between b_k and w at kink \bar{w}_k
- Identifying assumptions:
 - direct marginal effect of w on Y is smooth
 - smooth pdf of ε at \bar{w}_k

Wage and Unemployment Duration: Kink in b_1 and b_2

34 / 56

Wage and Unemployment Duration: Kink in b_2

Wage and Unemployment Duration: No Kink

RKD: Estimated Duration Responses

KLNS (LSE) Optimal Timing of UI

Duration Responses: Takeaways

- ullet Estimates imply $MH_{b_1} > MH_{b_2}$
 - $\varepsilon_{D,b_1} = \varepsilon_{D,b} \varepsilon_{D,b_2} = .84 \ (.19) \ge \varepsilon_{D,b_2} = .69 \ (.14)$
 - ullet $MH_{b_k}=arepsilon_{D_b,b_k}rac{D}{D_k}$, for flat profile, and $D_1pprox D_2$
- Unemployed are forward-looking ($\varepsilon_{D_1,b_2} > 0$), but non-stationary more than offsets this! Hazard Rates
- Estimates can explain different findings in earlier works
 - $\varepsilon_{D,b_1} pprox$ Meyer [1990], Landais [2015] in U.S. (where b_1 for 26 weeks)
 - Schmieder&al. [2012], Rothstein [2011], Valetta&Farber [2011]: smaller effects of extensions from long baseline durations

RKD: Estimated Responses for D_1

Non-stationarity: Elasticity of Remaining Duration

- Introduction
- 2 Theory: Identifying Sufficient Statistics in Dynamic Setting
- Context & Data
- 4 Empirics I: Duration Responses
- 5 Empirics II: Consumption Profiles
- 6 Welfare Calibrations

Consumption Profile: Empirical Strategy

- Data: household consumption surveys (HUT) merged with universe of administrative UI records:
 - flow measure of consumption at time of HUT interview
 - observe full employment history of individuals surveyed in the HUT.
 - sample: individuals unemployed or who will be unemployed
- Event Study:

$$c_{it} = \sum_{t} \beta_{t} \cdot \mathbb{1}[HUT = t] + X'_{i}\gamma + \varepsilon_{it}$$
 (2)

- $\mathbb{1}[HUT = t]$: indicator for being surveyed at spell time t
- investigate role of selection on consumption levels and profiles
- Robustness: Confirm all findings with registry-based residual measure of consumption using comprehensive admin data on income and wealth

KLNS (LSE) Optimal Timing of UI March 17, 2016 42 / 56

Household Consumption Over the Spell

43 / 56

Log Household Consumption Relative To Pre-U

	(1)	(2)	(3)	(4)
$1[0 < t \le 20 \text{ wks}]$	-0.0606*	-0.0415	-0.0379	-0.0465
1[t > 20 wks]	(0.0316) -0.130***	(0.0302) -0.131***	(0.0305) -0.113***	(0.0413) -0.108***
I [t > 20 WK3]	(0.0328)	(0.0326)	(0.0379)	(0.0414)
1[L > 20 wks]			-0.0294 (0.0300)	-0.0342 (0.0378)
$1[t \le 20 \text{ wks}] \times 1[L > 20 \text{ wks}]$			(0.0300)	0.0134
				(0.0629)
Year F-E	×	×	×	×
Calendar months F-E	×	×	×	×
Marital status		×	×	×
Family size		×	×	×
Age group F-E		×	×	×
R^2	0.0493	0.139	0.139	0.0872
N	1551	1548	1548	1548

Notes: Robust standard errors in parentheses. * p<.10, ** p<.05, *** p<.01

Consumption Smoothing Means Over the Spell

- Household consumption drops significantly and quickly over the spell
 - ullet average drop in consumption after a year pprox average drop in annual household income
 - corroborated by evidence from residual measure of expenditures based on registry-data Registry consumption
- Limited means to smooth consumption (high MPC out of UI)
 - majority starts spell with no financial nor real assets
 - limited added-worker effect HH Income
 - limited use of debt over the spell Debt
 - UI transfers basically do all the smoothing for the LT unemployed
 Decomposition

From Consumption Profile To CS Gains of UI

- Consumption-Implementation approach:
 - CS gains can be approximated using consumption drops

$$CS_k \approx \gamma \cdot \Delta C_k / C$$

- Consumption $\downarrow \Rightarrow$ CS gains \uparrow over U spell
- Robustness to dynamic selection:
 - with heterogeneous preferences, selection on consumption levels or profiles would matter
 - limited evidence of selection on risk preferences Risk Preferences
- - unemployed increase home production
 - unemployed decrease durable good expenditures
 - no dynamic selection on various categories of expenditures

4□ > 4□ > 4 = > 4 = > = 90

46 / 56

Welfare: Putting Things Together

	(1)	(2)	(3)
	Moral hazard	Consumption	Value of kroner
	cost, MH _x	drop, ΔC_x	spent, CS_x/MH_x
	1.50	10	07
Ь	1.53	.10	$\gamma imes .07$
	(.13)	(.01)	
b_1	1.67	.06	$\gamma imes$.04
	(.37)	(.03)	
b_2	1.38	.13	$\gamma imes$.09
	(.27)	(.03)	

- ullet Benefits are too high throughout the spell (for "standard" $\gamma=2$)
- ullet Value of marginal kroner spent on unemployed after 20wks is twice as high as before 20wks (for constant γ)
- Flat profile in place: our local evaluation pushes towards inclining profile!
- ullet Calibration: optimal inclining tilt $b_2 \geq b_1$ survives for lower generosity

KLNS (LSE) Optimal Timing of UI March 17, 2016 47 / 56

Optimal Profile: CS vs. MH in Calibrated Model

Conclusion

- We provided a simple framework to connect theory to data in the context of dynamic UI policies:
 - focus on the timing of benefits for behavioral responses
 - use admin data to evaluate consumption smoothing effects
 - find no evidence to support the switch from flat to declining benefit profiles
- Framework can be used to think about various policy-relevant issues: role of business cycles, role of heterogeneity,...
- Framework can be used to think about any time-dependent policies: pensions (career length/age), poverty relief (child's age),...

APPENDIX SLIDES

RKD estimates on hazard rates at the SEK725 kink

RKD estimates at the SEK725 kink by year of entry

RKD: P.d.f. of Daily Wage

53 / 56

RKD: Wage and Age

RKD: Wage and Fraction Men

RKD: Wage and Fraction Foreigners

RKD: Wage and Fraction With Higher Education

RKD Estimates by Bandwidth Size

Non-parametric detection using placebo kinks

RKD estimates: Inference

	(1)	(2)	(3)		
	Unemployment	Duration D_1	Duration D_2		
	Duration D	(< 20 weeks)	$(\geq 20 \; {\sf weeks})$		
	I. 1999-2000: Kink in b_1 and b_2				
Linear - δ_k Robust s.e. Bootstrapped s.e. 95% CI - permut. test	0569 (.0047) (.0050) [0595 ;0566]	0246 (.0013) (.0012) [0319 ;0189]	0299 (.0036) (.0039) [0402 ;019]		
	II. 2001: Kink in b_2 only				
Linear - δ_k Robust s.e. Bootstrapped s.e. 95% CI - permut. test	0255 (.005) (.0049) [0325 ;0190]	0115 (.0021) (.0020) [0127 ;0103]	0105 (.0028) (.0030) [0115 ;0091]		

RKD estimates: Sensitivity to polynomial order

	(1)	(2)	(3)			
	Unemployment	Duration D_1	Duration D_2			
	Duration D	(< 20 weeks)	$(\geq 20 \text{ weeks})$			
	I. 1999-2000: Kink in b_1 and b_2					
Linear - δ_k	0569	0246	0299			
	(.0047)	(.0013)	(.0036)			
RMSE	28.285	7.049	23.972			
AIC	1785650.8	1264546	1723601.1			
Quadratic - δ_k	0474	0344	0183			
	(.0185)	(.0049)	(.0143)			
RMSE	28.285	7.048	23.971			
AIC	1785650.5	1264518.9	1723588.4			
Cubic - δ_k	0527	0291	0221			
	(.0455)	(.0122)	(.0351)			
MSE	28.284	7.046	23.971			
AIC	1785644.8	1264394.7	1723590			

Table: SUMMARY STATISTICS AT START OF U SPELL: HUT SAMPLE

	Mean	P10	P50	P90	
	I. Unemployment				
Duration of spell (wks)	26.64	2.86	13.43	65.29	
Duration on b_1 (wks) Duration on b_2 (wks)	12.87 12.22	2.86 0	13.43 0	20 45.29	
	II. Demographics				
Age Fraction men Fraction married Number of children	34.12 .49 .39 1.27	21 0 0 0	33 0 0 1	51 1 1 3	
	III. Income and Wealth, SEK 2003(K)				
Gross earnings (individual) Household disposable income Household consumption Household net wealth Household bank holdings Household real estate Household debt	202.9 354.4 343 510.1 65.6 770.7 427.2	9.8 116.9 150.3 -258.3 0	172.6 330.1 305.1 0 0 44 193.3	386.2 585.3 572.6 1691.6 149.8 1948.3 1154.3	

March 17, 2016

Household Consumption: Registry Based Measure

Yearly Income of All Other HH Members

Yearly Change in Non-Mortgage Debt

Decomposition: Earnings

Decomposition: + Transfers

Decomposition: + Other Income

Decomposition: + Changes in Assets

Log Household Consumption Relative To Pre-U

	(1) Total exp.	(2) Food	(3) Rents	(4) Purch. of new vehicles	(5) Furn. & house appl.	(6) Trans- port.	(7) Recre- ation	(8) Restau- rant
$\mathbb{1}[t \leq 20 \; weeks]$	-0.0606* (0.0316)	-0.0441 (0.0388)	-0.0404 (0.0380)	-0.418** (0.187)	-0.160 (0.102)	-0.0788 (0.0661)	-0.106 (0.0649)	-0.0807 (0.0876)
$\mathbb{1}[t>20 \text{ weeks}]$	-0.130*** (0.0328)	-0.0823* (0.0441)	0.0430 (0.0310)	-0.252 (0.176)	-0.0883 (0.0884)	-0.348*** (0.0803)	-0.189*** (0.0719)	-0.165* (0.0888)
Year fixed effects	×	×	×	×	×	×	×	×
Marital status	×	×	×	×	×	×	×	×
Family size	×	×	×	×	×	×	×	×
R^2	0.0493	0.0650	0.0365	0.0205	0.00975	0.0208	0.0252	0.0154
N	1551	1548	798	982	1548	1488	1543	1119

Pre-U characteristics of individuals with spells \geq 20 wks

	(1)	(0)	(2)	(4)	(F)	
	(1)	(2)	(3)	(4)	(5)	
	Duration of future spell ≥ 20 weeks					
Age: 30 to 39	0.129***	0.118***	0.116***	0.119***	0.120***	
	(0.00237)	(0.00250)	(0.00251)	(0.00305)	(0.00311)	
Age: 40 to 49	0.164***	0.153***	0.153***	0.162***	0.163***	
	(0.00277)	(0.00293)	(0.00295)	(0.00357)	(0.00363)	
Age: 50+	0.272***	0.261***	0.265***	0.281***	0.282***	
	(0.00288)	(0.00307)	(0.00319)	(0.00367)	(0.00371)	
Gender: Female	-0.00226	-0.00209	-0.00279	-0.0146***	-0.0135***	
	(0.00192)	(0.00193)	(0.00193)	(0.00230)	(0.00230)	
0 <net td="" wealth≤200k<=""><td></td><td></td><td>-0.0503***</td><td>-0.0116***</td><td>-0.0122***</td></net>			-0.0503***	-0.0116***	-0.0122***	
			(0.00234)	(0.00271)	(0.00315)	
200k <net td="" wealth≤500k<=""><td></td><td></td><td>-0.0466***</td><td>-0.0146***</td><td>-0.0114***</td></net>			-0.0466***	-0.0146***	-0.0114***	
			(0.00324)	(0.00350)	(0.00425)	
500k <net td="" wealth≤5m<=""><td></td><td></td><td>-0.0186***</td><td>0.00576*</td><td>0.00774*</td></net>			-0.0186***	0.00576*	0.00774*	
			(0.00300)	(0.00336)	(0.00418)	
Net wealth>5M			0.0731***	0.0852***	0.0866***	
			(0.0173)	(0.0172)	(0.0174)	
Fraction of portfolio in stocks			, ,	, ,	, ,	
3rd quartile				-0.000542		
•				(0.00787)		
4th quartile				0.0303***		
·				(0.00259)		
Leverage: debt / assets				,		
2nd quartile					0.0153***	
					(0.00390)	
3rd quartile					-0.0120** [*]	
•					(0.00322)	
4th quartile					-0.00629*	
•					(0.00361)	
R^2	0.0465	0.0490	0.0511	0.0624	0.0620	
N	269931	269931	269931	190176	190176	

Consumption Implementation: Taylor Approximations

Homogeneous preferences

$$CS_{k} \cong \frac{v'\left(\bar{c}_{k}^{u}\right) - v'\left(\bar{c}_{0}\right)}{v'\left(\bar{c}_{0}\right)} \cong -\frac{v''\left(\bar{c}_{0}\right)\bar{c}_{0}}{v'\left(\bar{c}_{0}\right)} \times \frac{\bar{c}_{0} - \bar{c}_{k}^{u}}{\bar{c}_{0}},\tag{3}$$

Heterogeneous preferences

$$CS_{k} \cong \underbrace{\frac{E_{k} \left[v'_{i} \left(c_{i,0}\right)\right] - E_{0} \left[v'_{i} \left(c_{i,0}\right)\right]}{E_{0} \left[v'_{i} \left(c_{i,0}\right)\right]} - \frac{E_{k} \left[v''_{i} \left(c_{i,0}\right) \left(c_{i,0} - c^{u}_{i,t}\right)\right]}{E_{0} \left[v'_{i} \left(c_{i,0}\right)\right]}. \tag{4}}$$
Selection

▶ Back

(ロ) (部) (差) (差) 差 り(0)