
JOURNAL OF ECONOMIC THEORY 4, 154-173 (1972) 

The Optimal Size of Market Areas 

NICHOLAS STERN 

St Catherine’s College, Oxford, England 

Received January 22, 1971 

1. INTR~OUCTI~N 

We begin with a brief resume1 of the theory of the determination of the 
size of market areas given by LSsch in his pioneering book [6]. The theory 
considers a uniform plane of consumers (density 0) with the same demand 
function f() for the good under consideration. Transportation costs are 
constant per unit product per unit distance t, and there are decreasing 
average costs of production CO. Suppose the producer sets a price p at the 
production point and consumers bear transport costs, so that the price at 
a distance u is p + ut (known as mill pricing). The isolated producer 
observes a demand curve at the mill 

H(p) = D I”= [‘(*)f(p + ut) ud ud. 
0 0 

where f(~ + tr(p)) = 0. We suppose CO, HO are such that the curves 
p = H-l(x) and p = C(X) (where x is output) intersect (Fig. 1.). The 
producer chooses p = p* to maximise his profits which are positive. We 
now let other producers into the picture, each with market area radius 
r(p*), and pack the maximum number of circles onto the plane (i.e., 
their centres are at the points of a regular triangular lattice). Profits are 
still positive, and L(isch’s claim was that new producers would spring up 
at the interstices, reduce the size of market areas below r(p*), push the 
demand curve H-l(p) down, and that this process would continue until 
profits were eliminated and the demand curves were tangential to the 
average cost curves, and the producers were charging the same price and 
situated at the centre of similar regular hexagons. Beckmann [l] has 
pointed out that this story cannot be taken too literally as a dynamic 
process since, e.g., it is possible to have a hexagonal system with positive 
profits but where it is not possible for new producers to come in with 

1 An excellent review of location theory has recently been given by Beckmann [I]. 
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FIG. 1. Cost and demand curves observed by isolated producer. 

market areas big enough to make positive profits. It also requires a non- 
invasion pricing policy by neighbors. However, we are used to this kind 
of tangency solution in imperfect competition theory. Indeed both Lijsch 
and Chamberlin recognised location as a form of product discrimination 
(see, e.g., Losch [6], p. 109n]). The interpretation of location as an index 
of differences can be very flexible. Let us therefore take the mill-pricing, 
hexagonal-market-area, zero-profit situation as one possible result from 
the planar competitive, free-market process. It seems to capture enough of 
some aspects of the problem to be worth study.2 

It was recognised by Liischs (but not by some others3 that the situation 
described above (called hereinafter the Loschian solution) is not optimal 
for reasons similar to the nonoptimality of the imperfect competition 
solution. We should like to know just how the Loschian solution differs 
from a socially optimum solution. We should also like to know how a 
socially optimal solution changes with variations in (a) objective function 
(b) allowable tools and (c) parameters. The optimal solution for a 
particular set of conditions is a distribution of producers over the plane, 
and the allocation of consumers to producers. Traditionally, it has been 
assumed, with LGsch, that the shape of market areas will be regular 
hexagons; and attention has been focused on the size of the hexagon. 
It is illegitimate, however, to divorce shape and size until the optimality 
of hexagons has been rigorously established (the arguments offered by 

2 Other pricing mechanisms can lead to solutions of the same type - see Beckmann 
[l, Chap. 31. 

S Reference [6, p. 1121. 
*See. e.g., Berry [3, p. 721. 
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Losch and subsequent writers have been suggestive rather than conclusive). 
That hexagons are optimal for the cases considered here is demonstrated 
in Bollobas and Stern [4]. Attention in this paper is focused on the 
appropriate size of the hexagon. 

The easiest way to examine the issue of the appropriate size of the 
hexagon was to work out sizes of market area and levels of benefit under 
various particular assumptions about demand curves, tools, and objectives. 
A further simplification is to work with a market of one dimension, since 
once the appropriate shape has been established we are only interested in 
the size of market area. It is not surprising that results in one and two 
dimensions are very similar, since the question at issue is just the appro- 
priate number of consumers in a producer’s market area. The calculations 
presented in the text are, therefore, for one dimension. Many of the 
two-dimensional versions of these results are presented in the Appendix 
and it is easy to check that the conclusions we draw from the one- 
dimensional results carry over to two dimensions. Some of the calculations 
involved are fairly tedious and thus, occasionally, details have been 
omitted where the method of calculation has already been fully described. 

2. LINEAR DEMAND CURVES 

It has become customary in location theory, since LGsch, to work with 
linear demand curves whenever we become specific (see, e.g.,.[l] or [7]). 
Liisch,5 interestingly, claimed that it is an “average” demand curve! Let 
us begin with such curves. Suppose we have demand functions x = a - bp, 
D people per unit length along an infinite line, total production costs 
A + kx for output X, and transport costs t per unit product per unit 
distance. Our first maximand is total producer plus consumer surplus per 
unit distance along the line. We choose prices and the number of producers. 
We are free to choose the best price at each point; and the appropriate 
pricing tool is, with the maximand under consideration, price equal 
marginal cost,6 i.e., price at distance r from a producers is (k + rt). 
Throughout this paper, we assume that u/b > k so that there is a positive 
demand at price equal to marginal production cost. It is clear that each 
consumer should be served by the nearest producer and that each market 
should be the same size. We therefore calculate the net benefit in a market 
radius R, S(R). We divide by the size of market area 2R and choose R to 
maximise. 

s Reference [6, p. 11 In]. 
dSee Hotelling [S]. 
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The area under the demand curve for a price p (and demand a - bp) 
is 1/2b(a2 - b2p2). Producer plus consumer surplus is just the area under 
the demand curve less total costs. Thus 

S(R) = 20 j,” & (a” - b2(k + tr)3 dr 

- [A + 20 1: (a - b(k + tr))(k + tr) dr] 

for k + Rt < a/b (see below) which gives 

S(R) = $f (a - bk)2 R - D(a - bk) tR2 + $ bt2R3 - A. (1) 

We now make the transformation R = (c,/c,)R’, where’ 

cl = i (a - bk)2, c2 = t(a - bk), c, = bt2, 

and we divide by 2R to obtain 

2pB(R’) = 1 -R’++$, 

where 

s B=z, P’1, 
( 1 CID 

A’ = (&) A. 

For nonnegativity of demand we require k + Rt < a/b or R’ < 1. For 
R’ > 1, 2pB = (4 - A’)/R’, since demand is zero beyond R’ = 1. Thus 
the largest relevant A’ is l/3, which corresponds to the largest relevant R’, 
which is one, and to zero net benefits. (Since S increases as R’ increases 
from zero to one and reaches its maximum at R’ = 1, and we do not 
wish to have production if net benefits are negative.) 

The first-order conditions for a maximum with respect to R’ are (R’ < 1) 

We can now sketch R’ as a function of A’. We require the smalle? positive 
root of (2), and this increases from zero to one as A’ increases from zero 
to l/3. 

’ Compare [7, p. 2801. 
8 It is easy to check the second order conditions, require the smaller root for given A’. 
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We wish to compare (2) with Loschian solution. The profit a producer 
can make in a market area radius R when he charges a mill price p is 

II(p, R) = 2D(p - k) JR (a - b(p + tr)) dr - A 
0 

= 2D(p - k)[(a - bp) R - QbtR2] - A. 

Maximisation with respect to p gives 

and maximised profits II*(R) 

n*(R) = y R3 - 7 (a - bk) R2 + D (a 1,““” R - A. 

The LSschian solution has R such that n*(R) = 0. This gives 

A’ = 9R’3 _ &R’s + $R’ (3) 

where R’, A’ are as beforeg. We require the smaller root, for similar 
reasons to (2). The largest relevant A’ is such that maximum possible 
profits are zero (max A’ = 0.1482) and, again demand is zero at the edge 
(since R’ = 5 in this case.) 

Similar calculations to those that gave (2) and (3) were performed for 
the case of uniform pricing. The socially optimal uniform price was 
found to be p = k + Rt/2 for a market area radius R. The optimum R as 
a function of A was found to be given by 

A’ = R’2 _ #‘3 (4) 

where A’ and R’ are as before and we need the smaller root. Again this 
is only relevant, for A’ small enough, that positive net benefits are possible 
(max A’ = 0.2963 when R’ = 2/3-see (9)-and at the edge consumer 
surplus equals transport cost plus marginal production cost.) The Liischian 
solution with uniform pricing (i.e., firms choose the profit maximising 
uniform price in their given area which is then reduced until profits are 

o Equations (2) and (3) are given by Beckmann in [2]. The two-dimensional versions 
of Eqs. (2)-(S) and (7~(10) were first calculated by the author in June 1969 and presented 
to a seminar in Cambridge in November 1969 (see Appendix). 
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zero) gave a profit maximising uniform price of k/2 + a/2b + Rt/4 for a 
market radius R. The zero profit condition gave 

A’ = $A’3 - 4R’2 f ;R’. (5) 

This is just the same as (3). That (3) and (5) are identical is a consequence 
of the linearity assumptions (the profit maximising uniform price is the 
average price in the profit maximising mill price situation.) The largest 
relevant A’ is again 0.1482 when R’ = 213 and price equals cost of 
supplying the most distant point. 

We are now in a position to compare the size of market areas arising 
from LSschian and optimal solutions for the case of mill pricing and 
uniform pricing as functions of A’. These are illustrated in Fig. 2 where 
Graphs II( give A’ as a function of R’ for the 4 curves where (i)-(iv) 

FIG. 2. The size of market areas against levels of fixed costs for linear demand 
curves. 

Legend: 
Graph II(i) Unconstrained maximisation of consumer plus producer surplus. 
Graph II Liischian mill-pricing free-entry solution. 
Graph II@) Maximisation of consumer plus producer surplus using uniform pricing. 
Graph II Uniform pricing free-entry solution. 
GraphII(v) Maximisation of consumer plus producer surplus when profits are 

constrained to be nonnegative. 

(Definitions of R’ and A’ and methods of calculation are given in Section 2.) 
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correspond to Eqs. (2)--(5) in correct order. When interpreting them we 
should note that 

b2t 
A’ = D(a - bQ3 A 

and R’ = (a ftbk) R. 

We can therfore interpret movements to the right along the horizontal axis 
as increases in A or decreases in D. Some conclusions from these graphs 
are given in Section 6. 

In both the socially optimal solutions (mill and uniform pricing) the 
firm makes a loss equal to A. We should like to know how much of the 
difference between socially optimal and Liischian solutions is a result of 
allowing the firm to make losses. We therefore calculated the optimal size 
of market area under the constraint that the producer should make zero 
profit. We allow the best price at each point, i.e., we maximise 

S(p, , R) = 20 /,” & (a” - b2p,2) dr 

by choice of pr subject to the constraint 

A + 20 c: (a - bp,)(k + rt) dr = 20 j,” p&z - bp,) dr. 

We take a Lagrange multiplier h for the constraint, and differentiating 
with respect to pr we find that 

Pr = (1:2x) 2: (- + k + rt). 

Substitutingp, in S(p, , R) and dividing by 2R and choosing R to maximise 
(remembering h is a function of R), we obtain 

where 

A’ = sR’(3 - 3R’ + R’2)(L - L2) (6) 

L = 4Rf2 - 9R’ + 6 
2Rt2 - 6R’ + 6 ’ 

We find that h > 1 (L = (h/(2X - 1)) and we discover 4 < L < 1) for all 
relevant A’; so we see that we have in fact maximised producer plus 
consumer surplus subject to the constraint of making nonnegative profit; 
it is always optimal to have precisely zero profit. We plotted (6) as Graph II 
(v) in Fig. 2. It is only relevant for A’ such that the constraint can be 
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satisfied, (the maximum such A’ is &) and it is again simple to check that 
just one root of (6) is relevant. The graphs of equations (6), (ll), (14), (15), 
(16) were plotted using the Oxford University KDF 9 computer. 

3. THE LEVEL OF BENEFITS FOR LINEAR DEMAND CURVES 

Apart from comparing the size of market areas in the various cases, we 
wish to compare the level of net benefits. We should like to know how 
much is lost by, e.g., constraining producers to make nonnegative profits 
or constraining ourselves to uniform pricing. These results are discussed 
in Section 6. Meanwhile, we briefly describe how benefits are calculated as 
a function of A’. Suppose we charge a mill price p; the consumer plus 
producer surplus in a market-area radius R is 

S(p, R) = 20 j,” & (a” - b2(p + tr)“) dr 

- [A + 2D j: (a - b(p + tr))(p + tr) dr]. 

If we putp = k, we obtain the S(R) expression for the mill pricing case given 
previously (1). If we then divide it by 2R and let R be given as a function 
of A by (2), we have the level of benefits B (consumer plus producer 
surplus per unit length) as a function of A. Simplifying this gives 

B’ = $(R’ - I)” (7) 

where R’ is given as a function of A’ by (2) and B’ = [b/(u - bk)*D]B. 
Similarly for given R we can put in the profit maximising mill price 

p = (k/2) + (u/2b) - (Rt/4) in S(p, R) and divide by 2R and let R be 
given as a function of A by (3) to obtain the level of benefits B as a function 
of A for the Lijschian mill price solution. This operation gives 

Bf+!$- R’ + l), (8) 

where R’ is given as a function of A’ by (3), and B’ is as above. 
The equivalent equations to (7) and (8) for the case of uniform pricing 

are 

B’ = -&($R’2 - 2R’ + I), (9) 
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where R' is given by (4) (the optimal uniform pricing solution), and 

(10) 

where R' is given by (5) (the Loschian uniform pricing solution). 
The level of benefits as a function of A are given for the “optimal 

subject to nonnegative profits” case by 

B = +L2(1 - R' + 613'3, (11) 

where L and R' are as in (6). 
We are now in a position to graph the level of benefits as a function A' 

for the five cases examined for Fig. 2. These are given as Fig. 3 where 
Graphs III(i)-(v) are Eqs. (7)-(11) in correct order. These graphs are 
discussed in Section 6. 

FIG. 3. The level of benefits against fixed costs for linear demand curves. 

Legend: 
Graph III(i) Unconstrained maximisation of consumer plus producer surplus. 
Graph III(ii) Liischian mill-pricing free-entry solution 
Graph III(iii) Maximisation of consumer plus producer surplus using uniform pricing. 
Graph III(iv) Uniform pricing free-entry solution. 
GraphIII(v) Maximisation of consumer plus producer surplus when profits are 

constrained to be nonnegative. 

(Methods of calculation are given in Section 3.) 
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4. SIZE OF MARKET AREAS FOR THE DEMAND FUNCTION x = (l/p) 

We examine a different demand curve for three reasons. First, we should 
like to know whether some of the more striking results of Fig. 2 carry 
over to different demand curves. Second, results from a different demand 
curve can help us interpret the results we obtained for the linear demand 
curve. Third, we should like to know whether the use of consumer surplus 
as a criterion is misleading. The criterion which we find more attractive 
is maximisation of the integral of utilities along the line per unit length. 
In our previous socially optimal solution, consumers at the edge of a 
market area were worse off than those close in; but no account was taken 
of this (i.e., no different weighting of welfare) when adding their consumer 
surplus to that of consumers closer to a producer. There is no simple 
utility function which gives linear demand curves. 

To obtain specific results we have to work with a specific utility function 
and the first one I took was u(x, m) = 01 log x + p log m where 01 + /3 = 1. 
This is the utility function of each consumer, and consumers are distributed 
along an infinite line with unit density and have a stock of the second 
good E. We are thinking of either a two-good economy where the two 
goods are X, m, respectively, or (rather crudely) x as the good in question 
and m as money. Production requires A + kx units of good 2 to produce x 
units of good 1 (or if we think of m as money we just interpret these as 
production costs.) The second good is not produced and is perfectly 
mobile. Transportation costs are t units of good 2 per unit of good 1 per 
unit distance. A consumer facing a pricep for 1 in units of 2, has a demand 
(cGi/p) whith is derived from his maximisation of utility subject to the 
constraint px + m = Ei. When he faces a price p, (indirect) utility 
u(p) = F- culogp, where F= ollogol +/?logp + logm, and v is 
obtained by substituting the demand functions x(p) and m(p) in U(X, m) = 
alogx + /3logm. 

As before, we choose pr to maximise 

s 

R 

v(P,) dr 
0 

for a given R, and then divide this maximised value (now just a function 
of R) by 2R and find the R which maximises net benefit per unit length as 
a function of fixed costs. The constraint is now that we have enough of 
the good 2 to produce the demand for good 1 (or under the second inter- 
pretation, a cost-covering constraint.) The constraint is thus 

JR px(p) dr = A + 1” (k + rt) x(p) dr. (12) 
0 0 
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We have now, for convenience, taken the fixed cost to be 2A. The first- 
order condition for maximisation with respect to pr , if we take a Lagrange 
multiplier h for the constraint, is 

V’(P) + X(&(P) + x - WP) - rfx’(p>> = 0 (13) 

This gives p as a function of A, and r, and we substitute back in (12) to 
eliminate h and obtain thep, function (for given R)l”. In the particular case 
under discussion, we havell from (13), pr = XE(k + rt) and from (12) 
A = aR/(aFiR - A). We must have GiiR > A to cover our fixed costs. 
We substitute the expression for p back in the maximand, divide by R, 
maximise with respect to R, and we finally obtain 

A = [R2 - R log (1 + R)]/[2R - log (1 + R)] (14) 

after putting Gii = 1 and k = t (which we can do by choice of units.) 

R 

50- 

4 8 12 16 20 24 
A 

FIG. 4. Size of market areas against levels of fixed costs for the demand curve 
x = (p)-1. 

Legend: 
Graph IV(i) Utility integral maximisation using utility function u = w log x + 

j3 log m. 
Graph IV(ii) Utility integral maximlsation using utility function = -e(-lOou/cr). 
Graph IV(C) Liischian free-entry solution. 

(Methods of calculation are given in Section 4.) 

lop = 0 is not a possible solution since revenue is fixed but costs increase as l/p; 
thus the constraint could not be met with p = 0. 

I* It is easy to check the second-order conditions. 
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This expression is valid for all A as it is always possible to choose a pricing 
system such that costs are covered (viz., the one given) and has a unique 
solution R for given A since the r.h.s. of (14) is monotonic. This curve is 
plotted in Fig. 4 as Graph IV (i). 

Part of the object of this exercise was to check on the accuracy of 
consumer surplus as an approximation to utility changes. It is easy to 
check that for the precise utility function chosen consumer surplus is, in 
fact, equal to a constant less oi logp for a pricep. In other words, consumer 
surplus is not an approximation here; it is exact12. However, for a non- 
trivial monotonic transformation of the utility function, consumer surplus 
will cease to be exact and the demand function will remain the same. The 
monotonic transformation taken was u,() = -c(~/~)(). The price derived 
from (13) was 

P n+1 = f (6 - l)W-1) (k + rt). 

The curve corresponding to (14) was found to be 

A=R- 
&$[(I + R)(2n+l)l(n+l) - 11 

(2n + 1) R(l + R)n/(n+l) - (1 + R)(2n+1)l(n+1) + 1 I (15) 

after a similar process of calculation. n = 0 corresponds to the case given 
in (14). This curve was calculated for the following values of n: 0.01, 0.1, 
1.0, 10.0, 100.0. In each case, the value of R required for a given A 
was smaller than that derived from Eq. (14) and the value of R required 
for a given A decreased as R increased. However, the differences were 
extremely small and only the n = 100.0 case is graphed (as Graph IV(ii) 
in Fig. 4). Equation (15) is valid for all A. 

We wish to compare these values of R as a function of A with the 
Liischian solution. In this case the profit maximising price is infinite since 
each person spends a5z on the x good regardless of price. The revenue from 
a market radius R is just 2aER, and costs are 2A at the profit maximising 
output of zero. The Liischian zero profit solution is therefore just R = A 
(when we put, as previously, olfi = 1). It is valid for all A. We can now 
compare the curves for three cases: (i) consumer surplus maximising (ii) 
utility integral maximising, and (iii) the Lijschian solution. This is discussed 
in Section 6. The Loschian solution is a little bizarre here but can be 
instructive. 

I2 This is one of the cases noted by Samuelson [S]. 
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5. SIZE OF MARKET AREAS FOR THE DEMAND FUNCTION x = (11~~) 

Since the Liischian solution for Section 4 was a little odd, and since we 
require further insights into the structure of the problem, the Lijschian 
solution and a utility integral maximising solution for a utility function 
which gives a demand function x = (l/p2) were calculated. The utility 
function used was u(x, m) = 2x1i3 + m. We again assume individuals are 
distributed along the line with unit density and they maximise utility 
subject to the constraint px + m = m. The indirect utility function is 
now v(p) = Ci + l/p. Production and transport costs are as in Section 4, 
and we wish to maximise an integral of utilities per unit length subject to 
a production constraint as before. The pricing system13 found from Eq. (13) 
wasp = [2h/(h + l)](k + rt). The size of the market area was found by a 
process similar to that used for Eq. (14) and was given by 

tA = ‘4 log(1 + R)[l - (-- 
R 2 

2( 1 + R) log(1 + R) - R 11 (16) 

after putting k = t (choice of units). This is valid for all levels of tA, 
since it is always possible to price so as to cover costs. The mark-up 
(2X/X + 1) increases from one to two as tA increases from zero to infinity. 
R is unique, given tA, since the r.h.s. is monotonic. 

We also derived the Lijschian solution. The profit a millpricing producer 
makes from a market radius R is 

-24 + Z(P - k) /ff (p ,! rtj2 dr. 

Maximisation with respect to p 
tuting this back into the profit 
profit is 

-2A+; 

gives p = k + (k(1 + Rt/k)‘l”. Substi- 
expression we find that his maximised 

[ 
(1 + R)1’2 - 1 
(1 + R)1/2 + 1 1 

after putting k = r. The Lbschian solution is thus 

tA = (1 + RF2 - 1 
(1 + R)lj2 + 1 ’ 

This equation is valid14 for tA < 1. Equations (16) and (17) are plotted 

13p = 0 is not a possible solution since revenue increases as l/p but costs increase 
as l/p”; thus the constraint could not be met with p = 0. 

I4 As ?A + 1 the market area needed to make nonnegative profit tends to infinity 
(the pricing system is less flexible than that allowed in the optimal solution). 
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as Graphs V(i) and (ii) in Fig. 5. Conclusions are drawn in Section 6. 
It should be noted that in this case also consumer surplus reflects utility 

changes precisely. Indeed this is the second case given in Samuelson [8]. 
It was very difficult to calculate further utility integral maximising curves 
for demand functions other than x = I/p and x = (l/~)~. The reason for 
this difficulty can be seen by examination of Eq. (13). 

501 

40- 

30- 

20- 

10- 

tA 

FIG. 5. Size of market areas against levels of fixed costs for the demand curve 
x = (p)-“. 

Legend: 

Graph V(i) Utility integral maximisation using utility function u = 2x* + m. 
Graph V(ii) Laschian free-entry solution. 

(Methods of Calculation are given in Section 5.) 

6. CONCLUSJONS 

Our first conclusion from an examination of the graphs is that the 
Lijschian size of market area is not unambiguously smaller than an optimal 
size market area. This is perhaps in contradiction to the conclusion we 
might expect from imperfect competition theory. In fairness it should be 
stressed that the correct conclusion from imperfect competition theory 
is that firms are too small in relation to output (i.e., firms produce at an 
average cost above the minimum) rather than in relation to the size of 
market area. However, it is sometimes claimed that because of an imperfect 
competition type of process we have too much variety at output levels 
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that are too low. We can, of course, use distribution along a line as an 
index of, e.g., tastes, political conviction, or size of feet (although an 
infinite line is not always appropriate.) The number of firms is then the 
number of products made, and transport costs can be viewed as conversion 
costs, special ordering costs, or just consumer discomfort (in the case 
of shoes.) If we use this interpretation we can see that the first part of the 
claim just mentioned would not always be justified; the answer will 
frequently depend on the level of fixed costs. In some cases the claim will 
only be true for fixed costs below a certain level. 

The possibility of the crossing of the Loschian solution curve and the 
optimal solution curve does not depend on the allowance of negative 
profits in the optimal solution; it also occurs when profits are constrained 
to zero (see Figs. 2 and 5). Neither does it depend on the free choice of 
pricing systems allowed for an optimal solution in most cases; it occurs 
also with the constraint to uniform pricing (see Fig. 2). The reason it 
occurs is that, for high levels of fixed cost, firms need a large market 
area to break even and this can cause a Liischian solution to have larger 
market areas than optimum. We should note, however, that if we allow 
firms to charge a profit maximising price at each point, then the Loschian 
solution will result in smaller market areas than the socially optimum 
solution with profits constrained to be nonnegative. The proof is simple. 
Consider a Lijschian solution in this case with fixed cost A and market 
area radius R. The firm is using a pricing system which maximises profit 
from this area and profit is zero. Any other pricing mechanism yields 
negative profit with this R and A. Therefore, the constrained socially 
optimal solution must have a larger market area in order to satisfy the 
nonnegative profit constraint. We can tentatively say that curve crossing 
is less likely, the less elastic the demand. Curve crossing occurred for the 
x = (l/pz) case, but not the x = l/p case; and it occurred towards the 
higher levels of A (and so higher average prices) for the linear demand 
curve case (the elasticity increases with price.) The reason is that for more 
inelastic demand curves producers have a higher degree of monopoly 
and can make higher profits from smaller areas (e.g., Graph IV (iii)) and 
so the Loschian process results in smaller areas for a given fixed cost A. 
Thus there is a greater tendency for the Lijschian solution to be syste- 
matically smaller than the optimal one and curve crossing is less likely. 

The Lijschian Graphs of R against A are convex; see Figs. 4 and 5. 
The reason is that the value of R shown is that needed to give a profit 
level A, before fixed costs. Since the extra consumers are added at the 
edge where potential profit is smaller, we need proportionately more of 
them to achieve the same increment in profits. Formally, let n(R) be the 
profit before fixed cost obtainable from a market size R. The Liischian 
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solution gives R(A) from n(R) = A. R(A) is convex if m(R) is concave. 
n’(R) = z(R) where z(R) is the profit to be made from a consumer at a 
distance R (unit density of consumers, say) z'(R) is negative; so R(A) is 
convex. The graphs tend to be “more convex”, the greater the elasticity 
(compare IV(iii) and V(ii)) since the greater the elasticity, the smaller 
z’(R). That is, with more elastic demand curves the profit to be obtained 
from a consumer falls off more rapidly with distance. We see this effect 
also with the R against A curves for the socially optimal case; they tend 
to be “more convex” when demand is more elastic and increments to 
consumer surplus are lower and we need “proportionately more consumers 
at the edges” to achieve given increments of net benefits at the edges. 
Formally, let the net benefit (before fixed cost) obtainable from a market 
size R be b(R). Then for the optimal solution curve, R maximises 
B(R) = (b(R) - A)/R; thus A = b(R) - R&(R) and (&t/&Z) = -Rb"(R). 
This last expression helps us understand the R(A) curve for the optimal 
solution. For very low R we have very high (dR/dA). For R near the point 
where demand falls to zero, b"(R) is very small (in absolute magnitude), 
since b'(R) is just y(R), the net benefit to be obtained from a consumer 
distance R. Again y(R) falls more rapidly, the more elastic is demand 
and R(A) is more convex. 

In the case studied here (see Section 4 and Fig. 4) the consumer surplus 
result was very close to the utility integral result. The consumer surplus 
criterion gave bigger market areas for a given A than the areas from the 
other utility functions used in Section 4. The reason is that the monotonic 
transformations used were concave, and so gave greater weighting to the 
utility increments to those consumers furthest away from producers who 
have least welfare and thus made for smaller optimal market areas than 
consumer surplus. As the “concavity” (n) increases (i.e., egalitarianism 
increases) R decreases for these reasons. Presumably if a convex monotonic 
transformation had been used, we should have had larger optimal 
market areas than those found from consumer surplus. Similar considera- 
tions lead us to suppose that the introduction of lump sum taxation as a 
tool would lead to larger market areas for a given A, since we should 
then have less reason to worry about consumers at the edges being 
worse off. 

The last set of conclusions concerns the level of benefits (Fig. 3). Mill 
pricing is superior to uniform pricing for both the Loschian and optimal 
cases, but the differences seen small. The welfare loss from constraining 
our firms to make nonnegative profits seems small for small levels of fixed 
costs but larger for larger fixed costs (compare Graphs III(i) and III(v).) 
The large welfare loss from the Lijschian solution (compared with the 
optimal one Graph III(i)) is neither due to the constraint to make non- 



negative profits nor, probably, to the wrong size of market area, but is 
due to overall levels of price that are too high (compare Graphs III(i) (ii), 
and (v)). The loss from the Liischian solution (compared with the optimal) 
decreases with levels of fixed cost. There are large areas of fixed cost 
which would not give production at all under the Lijschian solution but 
where it is possible to have positive net benefits. 

It is interesting to try to think of example of industries where market 
areas are either too big or too small. Perhaps an example of one with 
market areas too big might be the automobile industry; because fixed 
costs are so high we have too few genuinely different types of motor 
car on offer. An example of one where market areas are too small might 
be plumbing-the fixed cost of setting up as a local plumber is small. 
From inspection of Fig. 2 it seems that fixed costs need to be very large 
for Liischian solutions to yield market areas bigger than optimum. 

Finally, it should be noted that most of these conclusions are drawn 
from calculations based on particular examples. They do seem reasonable 
from intuitive economic arguments but it would be pleasant to obtain 
more general demonstrations. For some of these conclusions, however, 
it seems that this will be fairly difficult, e.g., those concerning relative 
benefit levels and the occurence of curve crossing. 

APPENDIX 

For the two-dimensional situation we must decide on the appropriate 
shape of market areas. The application of the theorems of [4] to the case 
of constant marginal cost is immediate 15. For a given specification of the 
density of producers the maximum benefit or profit at a point is a non- 
increasing function of its distance from the nearest producer with all the 
maximands used here. We know therefore that regular hexagons are 
correct for our given density. We therefore calculate the net benefit per 
unit area for a given hexagon and maximise with respect to the radius of 
the hexagon to obtain the socially optimal solution curves. For the 
Loschian solution curves we calculate the profit inside a given hexagon 
and find the size of hexagon by equating this to zero16. The results of these 
calculations were as follows: we number the cases with an asterisk and 
they have just the same assumptions as those used for the unstarred 
equations in the main body of the text. The accuracy is to 3 s.f. 

I6 That hexagons are always optimal with marginal costs diminishing with output 
is less clear. See [4]. 

I8 For the linear demand curve case this had already been calculated by Mills and 
Lav [7]. 
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-4’ = -0.963U4 + 1.216Uf3 m* 
A’ = 0.427U4 - 1.216U’ + 0.866U” (3)* 
A' = -0.815OU’~ + 1.216U3 (4)* 
A' = 0.427U4 - 1.216U3 + 0.866U” m* 
B' = 1.926U2 - 3.648U' + 1.732 (7)* 
B’ = 0.3231Y2 - 0.607U' + 0.433 @I* 
B' = 1.707W- 3.648U'+ 1.732 (9)* 
B' = 0.213Uf2 - 0.607U'f 0.433 (lo)* 

We have the same demand, production and transportation of functions 
as in Sections 2 and 3, and B’ = pB where B is benefits per unit area and 

3.4646 Ab3t2 
’ = (a - bk)2 D ’ 

A’ = 
D(a - bk)4 ’ ” = (a -bfbk) ‘3 

and the values of U' as functions of A' in (7)*, (8)*, (9)*, (lo)* are as in 
(2)*, (3)*, (4)*, (5)*, respectively. By comparing the starred and unstarred 
equations we see that the qualitative results for one and two dimensions 
are really very similar. 

One difference between working in one and two dimensions is that, for 
a small range of values of A’, “ edge” effects arise with hexagons which 
do not arise in one dimension. In the discussion of Eqs. (2)-(5) it was 
noted that the largest relevant value of R’ was where the benefit (respec- 
tively, profit) maximising choice of price gave zero net increment to 
benefit (profit) at the furthest point of the market. For hexagons, however, 
the net increment to benefits (profits) does not vanish at all points of the 
boundary simultaneously. Thus, when A’ is so large that it is only possible 
to provide positive benefits (profits) with a large market area it is possible 
that demand will be zero at the “corners” of the hexagon (in the case of 
uniform pricing). The market area is then a hexagon with the corners 
“cut off” by a circle with radius given by zero demand (mill pricing) or 
zero benefit (profit) increment (uniform pricing). (This is contrary to the 
speculation of Mills and Lav [7] who speculated that dodecagons might be 
appropriate in certain circumstance+‘). The largest relevant A’ is such that 
the maximum benefit (profit) that can be provided, with no limitation on 
area, is equal to zero. In this case the market areas are circular. The above 
equations (2)*-(lo)* cease to be valid when A’ is such that demand, or 
benefit (profit) increments, fall to zero at the farthest point of the edge 

I7 It should also be noted that Mills and Lav did not observe the non-negativity 
conditions in drawing their graphs. Their curve for the hexagon (given by (3)* above) 
is therefore not valid for values of U, A larger than the U,’ and Aa’ given below. 
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(call this A,‘). The largest A’ for which production will take place (when 
market area is unconstrained and circular) is slightly larger. These two 
values of A’ for Eqs. (2)*-(5)* (and consequently for (7)*-(lo)*) are as 
follows (where the corresponding U’ are U*‘, the inscribed radius of the 
hexagon, Vi, the radius of the circle)ls : 

w* 
A,' = 0.248 A',, = 0.262 

U,' = 0.866 U$* = 1.000 

(3)* 
A,' = 0.106 A',, = 0.111 

U,' = 0.622 U;, = 0.750 

(4)* 
A,' = 0.166 A'.+, = 0.221 

U,' = 0.622 U!+., = 0.750 

(5)* 
A,' = 0.106 A',, = 0.111 

U,' = 0.622 U;, = 0.750 

The other important difference between one and two dimensions is 
that the Liischian solution curve is no longer convex (the proof of the 
convexity of Graphs II and (iv) was given in Section (6)). The reason is 
that we are using linear dimension (U') as a measure of market area 
whereas R' in one dimension also gives, directly, the number of consumers 
in the market area. The graph of (3)* is initially concave and then convex 
(the eventual convexity arising for the reasons discussed in Section 6). 
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