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The “optimality of hexagons” has been asserted in economics since at 
least the 1930’s and the classic work of Christaller [4] and Losch [7]. 
L&h demonstrated, for linear demand curves of consumers uniformly 
distributed over the plane, and constant transport costs per unit product 
per unit distance, and with a given mill price (where consumers bear 
transport costs), that the hexagon realises a given total demand with 
minimum area amongst regular plane-covering polygons (triangle, 
square, hexagon). He then said [6, pp. llO-1141: “The honeycomb is 
therefore the most advantageous shape for economic regions . . . it 
makes possible the largest number of independent enterprises.” More 
recently, Beckmann [l, p. 461 justified his use of hexagons in the following 
way: “Of all systems of regular market areas that will cover a plane 
completely, the hexagonal one is most efficient in the sense of minimising 
the distance to be covered between supplier and demander per unit area 
when demand is given.” Other writers appeal to packing theorems, e.g., 
Berry [2], who justifies his use of the system with producers at the points of 
a regular triangular lattice with the theorem that the densest packing 
of circles with given radius places their centres at the points of such a 
lattice. These arguments provide grounds for guessing that regular 
hexagons yield optimal structure with respect to most sensible objective 
functions but are neither conclusive nor general. 

For a rigorous justification we must start with a specific, well-formulated 
problem. Suppose a large domain S of the plane is covered with uniform 

* We are grateful to Andrew Cornford for introducing us. 
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density by identical consumers,l and we have a given numbernof producers 
at isolated points Pi of S. Let the area of S which the i-th producer supplies 
be Ci and suppose the Ci together cover S and their interiors are disjoint. 
The benefit at any point supplied by producer i is a nonincreasing function, 
4(r), say, of the distance r between the point and Pi . Our interpretation 
of 4 depends on the circumstances. If we are interested in profit maxi- 
misation, then the greatest profit (with given marginal production cost) 
we can make from a consumer, with a given demand curve, is a non- 
increasing function of our distance from him, under most sensible pricing 
assumptions; likewise, the contribution to net social benefit under 
various reasonable criteria, e.g., cost minimisation, consumer plus 
producer surplus, etc. The problem is to maximise zi (jJc, c$(PPJ dP) 
where the integral runs over the points of Ci and is with respect to the usual 
plane measure, and the argument of 4 is the distance r just described. 
We must take Ci , since 4 is a nonincreasing function, as those points 
which are closer to Pi than to any other producer, i.e., Cj is to be the 
Dirichlet cell of Pi . That the regular hexagonal arrangement of market 
areas is optimal has been shown in a certain sense by Fejes Toth [5] 
in 1953. His basic theorem states the following: 

THEOREM 1 (Fejes T&h). Let PI, P2 ,..., P, be n points in a convex 
hexagon S and let 4: Rf -+ R+ be a nonincreasing function. For a point P 
put m(P) = min(PP, , PP, ... PP,). Then 

ss &W) dp < n W’O) dP (1) ,~ ss h 

where h is a regular hexagon with area h = S/n and centre 0 and the 
integral is with respect to the ordinary plane measure. 

Naturally if r$ is strictly decreasing and there are at least two points Pi , 
equality cannot be attained. 

The worth of this theorem to us is that (loosely) as n + cx (or, equiv- 
alently, the size of S tends to infinity with constant density2 of points 
Pi in S), an “approximate” cover of S by regular hexagons has edge effects 
of decreasing importance so that we can say for an infinite plane that the 
best cover is hexagons. (It is possible to make this limiting notion precise.) 

1 Precisely, there is a positive number d such that there are Ad consumers in any 
subdomain of area A. 

2 We define the notion of density of points over the plane as follows. Suppose we 
are Riven a countable number of points in the plane PI , P2 ,... P,, ,.... We say that this 
system of points has density p > 0 if there are two functions p’(n) and p”(n) (n = 1, 
2,...) such that p’(n> and p”(n) + p, and in every square side n there are at least p’(n) . n2 
points and at most p”(n) . n2 points. 
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A “uniqueness-in-the-limit” sort of result is the consequence of a proof 
by Bollobas of Theorem 1.3 

Consequence of proof of Theorem 1 (Bollob6s). 

Suppose the points Pi have positive density p (see footnote 2 for precise 
definition). Let h be a regular hexagon area h = l/p. Let C(n, q) be the 
proportion of q-gons amongst the Dirichlet cells of the Pi in S,:. Suppose 
linbrn C(n, q) exists Vq 2 3 and = c, . (Naturally, C, c, = 1.) Let R, be 
regular q-gons (where, for convenience, we denote the area by the same 
letter) such that the average integral of 4(r) over the perimeter of R, is 
independent of q and that C, c,R, = h. Denote JJRl $(PO) dP by pa , 
where 0 is the centre of R, . Let 

a 
n 

= JJsi 4@@‘)) dp 
E Pn2 I 

where m(P) is the minimum, for Pi E S, , of PP, . 
Then, 

liy+yP a, < 2 C,P, < SI +(PO) dP 
rl h 

We have strictness in the right hand inequality (if 4 is not constant on the 
perimeter of h) unless cs = 1 and c, = 0 for q # 6. 

In other words, for maximum average profit over the plane the limit 
of the proportion of hexagons (in the above sense) must be unity. An 
examination of the outline of the proof of Theorem 1 given in the appendix 
will reveal that this is a consequence of the proof. The left-hand inequality 
follows from lemmas 1 and 2 of the appendix, the strictness of the second 
inequality is a consequence of lemma 4 and a proposition similar to 
lemma 3, stating that C, c,(q - 6) < 0. 

Now if the domain S of Theorem 1 is the union of n hexagons of a 
regular hexagonal tessalation, by choosing the P, as centres of the 
hexagons, we have JJs &z(P)) dP = IZ JJh $(PO) dP. One solution to 
the problem, as opposed to the limiting nature of the above result, 
would be to prove that the left hand side is bounded above by the right 
hand side for any point system, and if 4 is “not too constant”, then 
equality holds only when the Pi are as we have just described. This result 
is rather more difficult to prove than Theorem 1 and, as Theorem 2 here, 
was obtained by Imre [6] in 1964. It is also a corollary of a result by 
Bollobas [3]. 

s Bollobh independently proved Theorem 1 for S any convex polygon with not 
more than six sides. 

4 Sn is a square with side n. 
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THEOREM 2 (Imre). Let S be the union of n hexagons of a regular 
hexagonal tessalation consisting of hexagons congruent with a regular 
hexagon h (area h). Let P, , Pz ,..., P, be arbitrary points in S. Then 

IS s KW’N dp < n 1s W@ dp. 
h 

Furthermore, if +(( d3/2)r - E) > &r + l ) for any E > 0 where r is the 
radius of the circumcircle of h, equality holds tf and only tf the Pi are in the 
centres of the hexagons of S. In other words, tf the area in which we want 
to place n producers can be dissected into n regular hexagons area h, then 
the unique best possible arrangement is when the producers are at the centres 
of the regular hexagons into which the area has been dissected (provided 
it costs more to transport r than ( d3/2)r)5. 

This theorem seems the best we can hope for if the number of producers 
to be arranged in the domain is given. At an easier level the reader can 
amuse himself by constructing simple geometrical arguments to show 
that (i) a system with producers at the points of a plane lattice cannot be 
optimal unless the producers are at the centres of regular hexagonal 
market areas, or (ii) square or triangular market areas are not optimal. 
In both cases we can find a hexagonal figure of appropriate area (plane- 
covering when replicated) whose points are uniformly closer to the 
producer than in the market area under consideration. 

The application of this theorem is as follows. Suppose we have fixed 
costs of production (the same for each producer) so that production takes 
place at discrete points. Suppose we also have the same constant marginal 
costs for every producer, and transportation costs which increase with 
distance but which do not depend on direction. If we then stipulate a 
density of producers, we know from the above theorems that we must 
place them in regular hexagonal market areas (since we shall usually 
have a maximand in the class covered by these theorems). We can then 
find the size of regular hexagon that maximises net benefit per unit area 
under the benefit criterion that interests us (see, e.g., Stern [9]). In other 
words, we separate structure and size. 

This separation is not always possible with marginal production costs 
which decrease with output. It is easy to provide a counterexample to the 

6 In the case where net benefits (4) are constant between (2/T/2) r and r we should not 
expect a uniqueness result. In this case small variations in the boundary may not 
decrease the maximand. However, the hexagonal structure will still be one of the 
solutions. Thus the Mills and Lav [8) speculation on dodecagons, etc., is misplaced. 
If  demand is zero at some points of the edge, we have market areas which are hexagons 
but the corners are not served (the unserved area is given by a circular “cut-off” with 
radius given by zero demand). See Appendix to Stem [9]. 
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optimality of hexagons if we a priori fix the density of producers. We just 
consider a structure of regular hexagons with fixed density. Transfer a 
small area at the boundary of two hexagons A and B from service by A 
to B. There will be a production cost saving in the case of diminishing 
marginal costs of production. It is then possible to choose transport 
costs so small that this production cost saving is not offset by the increase 
in transport costs. This indicates that the inclusion of non-constant 
marginal production costs complicates the problem considerably. 

In a subsequent paper we shall show that increasing marginal production 
costs are sufficient to ensure the optimality of the regular hexagonal 
arrangement, when optimisation includes the choice of the number of 
producers (and the criterion is the minimisation of total costs). We shall 
also show that if the production cost function is non-convex, there exists 
a transportation cost function for which the regular hexagonal arrangement 
is not optimum (see also Bollobas [3]). 

APPENDIX 

We give a brief sketch of the proof (by Bollobas) of Theorem 1. We give 
this version of the proof (slightly different from that of Fejes T&h) in 
order to justify “the consequence” given in the text. The proof proceeds 
by way of four lemmas (we use the same notation as that of the text). 

LEMMA 1. Let X be a point of Y, , a k-gon. Let Kil be the regular k-gon 
of the same area and let 0 be its centre. 

Then6 

SI ye 4W) df’ < j”J’ +(OP) dp. 
4 

LEMMA 2. Let Ki and Ki be regular polygons centre 0. Denote the 
average integral of q%(OP) when P goes over the perimeter of Ki by $Ki). 
If 9(KJ < ?)(K,), then, by increasing Ki and decreasing Kj (so that Ki + Ki 
isfixed), we increase sKi + sKf where the integrand is &OP) and the integral 
runs over the area indicated. 

LEMMA 3. Suppose S is a convex polygon with q sides, and s(p) of the 
polygons Ci have p sides (Ci are the Dirichlet cells of the Pi, which 
are points of S.) Then q - 6 < Cz=‘=, (6 - p) s(p). 

By considering degenerate polygons we can take equality. 

8 By choosing Y, equal to K,-, (a degenerate k-gon) we have SK, G SK, if p < q and 
K, and Kc have equal area. 
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LEMMA 4. Let Kt (t = p, q, s) denote a regular t-gon with centre 0. 
Denote the radii of the inscribed and circumscribed circles by pt and rt r 
respectively. Suppose p < q < s, pz, < pS and r, < rs . If 

(s - q) K, + (4 - P) Ks = (s - P) K, > 

then (s - q) JKP + (q - p) JK, < (s - p) JKg , where the integrals are as 
in Lemma 2. 

The proof now goes as follows. Remember, we are looking for a bound 
on the sum of integrals for the structure we are given. We proceed by 
steps, each step increasing the sum of integrals. Step 1: Replace an 
irregular polygon by a regular one of the same area (Lemma 1). Step 2: 
Expand and contract the regular polygons until the $KJ are all equal 
(Lemma 1). The polygons now satisfy the conditions for Lemma 4. 
Lemma 3 ensures that we can apply the convexity conditions of Lemma 4 
to replace all the polygons by hexagons by considering pairs of polygons 
with numbers of sides r, s where r > 6 and s -=I 6. This is Step 3. 
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