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Optimum Saving with Economies 

of Scale1'2 
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NICHOLAS STERN 
St Catherine's College, Oxford 

1. INTRODUCTION 
There are many problems in economics where it is important to think of investment taking 
place in discrete lumps rather than as a continuous flow. These are usually problems where 
fixed costs are significant or, more generally, where there are economies of scale. An 
important example is the creation of a new centre of population which requires some large 
initial capital outlay. A second is that of an individual saver who makes investments at 
discrete points in time because there is some cost to the act of making an investment. 

The model that we investigate in this paper was originally motivated by the first of 
these examples. It has some limitations as a model of timing and size of new centres, 
however, and these are discussed later. It should be viewed as a first approach to that 
problem, though we suspect that better models will be similar in flavour. It turns out, 
however, that a special case of the model does capture the problem of the individual saver. 

The plan of the paper is as follows. Previous literature is discussed in this introduction. 
Then a growth model with economies of scale in the production of output, using capital 
but no labour, is presented. Conditions necessary for optimality are obtained, and some 
simple properties of the optimal path established. In Section 3 we show that in a simple 
special case the optimal policy is readily obtained, but takes the economy to infinite output 
in finite time. We then turn to the version appropriate to individual saving behaviour, 
with fixed transaction costs and a constant interest rate, showing how to identify the 
optimum policy and computing it for the iso-elastic utility case. Finally in Section 5 we 
introduce labour, retaining economies of scale, and solve the optimum growth problem for 
the Cobb-Douglas production function and iso-elastic utility. We conclude with some 
remarks on generalizations. A general existence theorem for optimum paths is given in an 
appendix. We would like to draw attention to the particular importance and difficulty of 
establishing which of the paths satisfying the necessary conditions actually is optimal. 
It is this problem together with that of proving existence of an optimum that make rigorous 
mathematics essential at some stages of the argument. Elsewhere we have not troubled to 
show that our arguments can be made rigorous. 

1 First version received June 1973; final version accepted September 1974 (Eds.). 
2 Work on this paper was done when all three of us were, at different times, visiting the Massachusetts 

Institute of Technology. We are grateful to their Department of Economics for hospitality. Valuable 
comments were received from participants in seminars at MIT, the Cowles Foundation, and elsewhere; 
and from the referees of a previous version, and John Flemming. The research of Dixit ande Stern was 
financed by a grant from the National Science Foundation. Computing assistance was provided by Mike 
O'Neill, of the Nuffield College Research Services Unit. 

X-42/3 303 

This content downloaded from 158.143.41.7 on Mon, 9 Sep 2013 07:17:03 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


304 REVIEW OF ECONOMIC STUDIES 

The best known study of the problems in development planning that arise from increas- 
ing returns is the work by Manne et al. [4]. The examples discussed in that volume were 
concerned with the choice of the size of plants and the time-intervals between the con- 
struction of plants, to minimize the present value of costs while meeting a given time profile 
of output. We shall call such a problem a Manne-type problem. Demand can reasonably 
be taken as exogenous in these models since they are designed to discuss capacity expansion 
in individual industries. For our purposes, we need a model where demand is endogenous, 
for the choice of the optimum time paths of output and consumption is the question at issue. 

A model with increasing returns (in one sector) where output and consumption levels 
are endogenous is given in Weitzman [7]. Weitzman's model has two types of capital: 
ac-capital and overhead or fl-capital. Output can be consumed or invested, and is produced 
with a standard neo-classical production function of a-capital. This output is constrained, 
however, by the quantity of fl-capital. Overhead capital is produced from the output good 
under conditions of increasing returns. Weitzman shows that the optimum path can be 
decomposed into two types of phases. In the first type, all investment goes to add to 
a-capital, and a standard Ramsey path is followed. In the second kind, a Manne-type 
problem is solved for investment in fl-capital where the Ramsey path gives the output- 
demand profile and prices come from the marginal utility of consumption. During this 
phase, while savings accumulate for subsequent investment in fl-capital, output and con- 
sumption are constant. The phases alternate indefinitely. 

In our model we have just one sector. This sector produces output which can be con- 
sumed or saved. Investment shows increasing returns, at least for small levels, in that 
g(x), the output flow from an investment of size x measured in units of accumulated output, 
has zero derivative at the origin. We assume that investments, once made, cannot be aug- 
mented. A full treatment of the problem of new centres would allow some, possibly limited 
and certainly more costly, additions to existing centres. 

In the first version of the model, there is no labour. This is a serious drawback and 
detracts especially from the interpretation of the model in terms of new centres of popu- 
lation. More generally, it ignores the chief reason for expecting decreasing returns to 
investment in the real world, in association with lumpy investment in the manner considered 
in this paper. In a second version, we introduce labour. We had some trouble in finding 
a trick which would make a model incorporating labour manageable. Our model does not 
distinguish between ex-ante and ex-poste substitutability, but it does generate some 
interesting results, and is a useful vehicle for discussions of decentralization. 

It is easy to see, and is proved below, that the optimum policy, for an objective of 
maximizing the integral of the utility of consumption, is to save for a time until an inventory 
of appropriate size has been accumulated, and then to make an investment. In our model, 
therefore, output is constant for a time and then jumps. This contrasts with the Weitzman 
case where output rises continuously in the Ramsey phase and is constant in the Manne- 
type phase. The reason we have used a model with increasing returns in the economy as a 
whole is our interest in new centres of population. Even so, discrete jumps in output are a 
little stark. If there were decreasing returns elsewhere in the model, or we allowed for 
many commodities, we would presumably have some smoothing. 

It turns out that our model can, in a sense, be viewed as a limiting case of the Weitzman 
model. Although this helps in understanding the problem, it is of no assistance in finding 
the optimum policy. Further, we shall pay special attention to a specific example of a 
production function g(x) = -u+px where a and p are positive constants, which was not 
discussed by Weitzman. It is this example which gives us a model of the problem faced by 
the individual saver. Given a fixed cost of making an investment alp and an interest rate p 
an investment of size x yields him a stream p(x-alp) indefinitely. 

Flemming [2] has discussed the problem facing an individual who allocates his initial 
wealth to the purchase of a sequence of durable goods only one of which is held at a time 
and each of which yields a consumption stream for the time that it is held. Wealth not 
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DIXIT, MIRRLEES & STERN OPTIMUM SAVING 305 

allocated to the durable good earns interest. The individual must decide how often to 
" trade-in " his old model for a new one and how large a new model to purchase. He 
obtains a second-hand price of p (0< p < 1) times the original purchase price of a good and 
maximizes a discounted stream of the utility of consumption. Flemming obtains, for the 
iso-elastic utility function, the optimum policy of a constant time between investments and 
a constant ratio between sizes of successive models. 

A problem similar to our version of individual saving has been discussed by Baumol [1] 
and Tobin [6]. They both consider the optimum time sequence and amounts of the con- 
version of bonds into money to meet a steady flow demand for transactions. We are 
considering something like a mirror image: when and how much to invest from a flow of 
saving. They have a fixed cost of a withdrawal, while we have one for making an investment. 

The main difference between our model and the Baumol-Tobin model is that in ours 
the flow of saving is endogenous, with the result that income, consumption and marginal 
utility can change over time. Baumol and Tobin have an exogenous and constant tran- 
saction flow, so they can consider just one of a sequence of uniform withdrawals, a procedure 
which is justified if the horizon is infinite. 

2. THE MODEL WITHOUT LABOUR 

There is one commodity. An investment x at a particular date yields an output stream 
g(x) ever after. We assume g(0) = g'(0) = 0, implying that there are economies of scale 
at least for small investments, and that g increases with x and is differentiable for x such 
that g(x) >0. We start with a given output capacity yo, and no accumulated savings from 
the past. We denote by k(t) total savings since time zero (which may not all have been 
invested by time t). y(t) is output at time t, and for convenience we take y(t) to be left- 
continuous at jump points. x, is the investment done at t: except at discrete points, 
xt will be zero. A consumption path c(t) is feasible if for all t, 

0 < c(t) ? y(t) ... (1) 

y(t) = c(t)+ik(t) ... (2) 

y(t) = Yo + E g(t') ... (3) 
O _ t' t 

k(t) > E xt, ...(4) 
O < t' <t 

If the time interval between investments is not strictly positive, then the summation 
signs can be interpreted as appropriate integrals. We see below that it is never optimal 
to have continuous investment. Note that mere efficiency implies equality in (4) at each 
instant t when an investment is made; for if a plant of a particular size is to be constructed 
it may as well be constructed as early as possible, thus giving the benefit of its output for a 
longer period of time. 

We wish to find a feasible path which " maximizes " an undiscounted integral of u(c(t)) 
over all future time, " maximization " being interpreted in the overtaking sense. In other 
words, a feasible path c*(t) is optimum if, for any other feasible path co(t), there exists To 
such that 

rT rT 

{ u(c*(t))dt > u(c?(t))dt, for all T ? To. ...(5) 
o o 

It will be recollected that in infinite-horizon growth models there are, broadly speaking, 
two ways of identifying the optimum path of the economy. One is to find a path satisfying 
the intertemporal first-order conditions for a maximum (the Euler conditions), and with 
known asymptotic behaviour, which can be proved directly to be an optimum path. Notice 
that it is not enough to find a path that satisfies the Euler conditions, and seems to be better 

This content downloaded from 158.143.41.7 on Mon, 9 Sep 2013 07:17:03 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


306 REVIEW OF ECONOMIC STUDIES 

than any other Euler path, because it is possible that no optimum exists: that is why one 
needs a direct proof that the identified path is optimal. The other is to prove by an alter- 
native method that an optimum exists, and then identify the best Euler path. The first 
method relies on sufficient conditions for an optimum, the second on necessary conditions. 
The sufficiency method works quite well in optimum growth models with convex technology. 
For our models we have had to use the necessity method, essentially because first order 
conditions do not imply global maximization. 

Naturally, we must make some assumptions if we are to guarantee existence in our 
model. The chief assumptions are: 

Assumption A. u is increasing, strictly concave, satisfying u(c)-+0 (c-0oo), and 
u'(c)oo0 (c p0O). 

Assumption B. For any y0>0, there exists a feasible path with convergent utility 
integral. 

Assumption C. For all yo there exists 6>0 such that all paths starting from yo and 
making the first investment at a time sooner than 6 can be overtaken. 

Assumption A implies that the utility function is always negative, and therefore that 
for every path the utility integral either diverges to - oo or converges. Assumption B then 
assures us that the utility integral has a finite supremum for the model, so that nearly 
optimal paths exist. In an appendix we prove that these assumptions in fact ensure that 
an optimal path exists. We suspect that Assumption C holds automatically if g'(0) = 0, 
but have not been able to prove it. It clearly holds if g(x) is zero over an interval to the 
right of x = 0, which is the model of Section 4. 

Assumption B may seem to be a rather awkward one, but it is generally easy to check: 
for example, one might look at a path resulting from saving a constant proportion of output 
and investing once a year, or one obtained by keeping x constant. We shall justify it in 
particular cases below. 

To derive necessary conditions for the optimum, we look at development as a sequence 
of periods, in each of which saving is accumulated, but investment is made only at the end 
of the period. Since utility is not discounted, and is strictly concave, optimum consumption 
must be constant throughout a period. Defining 

ti = length of ith period, 

yi = output during ith period, 
xi = size of investment at the end of ith period, 

ci = consumption during ith period, 
we have 

xi = ti(yi - ci) ...(6) 

because it is clearly inefficient to carry any savings over instead of incorporating it in the 
current investment (one could otherwise have invested sooner). Also 

Yi +I -Yi = #(xi); ... (7) 

and we seek maximization of 
00 

E tiu(ci) ... (8) 
i = o 

subject to the requirement that Xtj = co or yi-+ oo. The replacement of the integral by the 
sum is justified rigorously in the appendix, in the course of the proof of the main theorem. 
The associated requirements say that either our sequence of investments stretches over the 
indefinite future or we reach infinite output in finite time. We have as yet no guarantee that 
2ti = oo and we shall have to consider this point carefully below. 

This content downloaded from 158.143.41.7 on Mon, 9 Sep 2013 07:17:03 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


DIXIT, MIRRLEES & STERN OPTIMUM SAVING 307 

Substituting from (6) for ti in (8), it can be seen that the maximand becomes 

S u(ci) (9) 
Yi-ci 

It follows at once that for each i, ci must maximize u(c)/(yi- c): 

u(ci) +u (c)(yi - ci) = 0. ... (10) 

This equation, known as the Keynes-Ramsey equation, was derived by Ramsey for the 
optimum rate of saving in an economy with continuous investment. Since it is essentially 
a rule for an economy without change other than that brought about by capital accumu- 
lation, we should not be surprised to see that it remains valid. 

Now consider the effect of varying yi, xi and xi- 1 simultaneously while leaving every- 
thing up to (i-1) and after (i +1) unchanged. This can be done in such a way that the 
feasibility conditions (7) continue to hold. The changes must satisfy 

-dyi = g'(xi)dxi, dyi = g'(xi1)dxi1- . ..(11) 

Then the effect on (9) is 

dxCi) + u(ci- i) dx.-xiu(ci) uc)dx, + 
(il dxi_-- I dyi. 

Yi-Ci Yi-1-Ci- 1 (Yi -ci)' 

Assumption C ensures that ti, and therefore xi, cannot be zero and thus the first-order 
condition holds with equality. Using (6) and (10), the condition is 

u'(ci) _ u'(Ci-1) u'(c-) = ? .. (12) 

(10) and (12) are the first-order conditions (corresponding to the Euler conditions in 
more orthodox calculus of variations). Following the example of standard optimum 
growth analysis, we expect that the optimum path will be that solution of (10) and (12) 
which has the smallest initial to (and xo), subject to being feasible for all time. It can be 
verified in particular cases that as to increases and the subsequent path satisfies (10) and (12), 
all terms in the series Ytiu(ci) become smaller (i.e. more negative), and we presume that this 
is very generally true. 

We must now clarify the possibility that Dit converges. The assumptions we have made 
are by no means sufficient to exclude the possibility of infinite output in finite time. 

The following two lemmas give a condition sufficient to exclude such explosion, and 
indicate a property one may expect to hold in many such cases. 

Lemma 1. If there exists k such that g(x)/x < k for all x>0, 0 ti can be finite only 
if yi tends to a finite limit. 

Proof. Since negative consumption is impossible, xi < tiyi. Therefore, using our 
hypothesis on g, 

Yi + 1 < (I1 kti)yi. 

Multiplying such inequalities together, 

Yi<Yo Hl (I+kti) 
i-O 

I-1 
- Yo rI ekti 

i = ) 

=yo exp (k E, ti) 
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308 REVIEW OF ECONOMIC STUDIES 

which is bounded by hypothesis. Then {yiJ is a bounded monotone sequence, and therefore 
has a finite limit. 

For the next lemma we specialize to an iso-elastic utility function and show that if 
xi tends to a finite limit as i tends to infinity, then this limit must be where average produc- 
tivity is maximum. Some reader will, we hope, show that this holds more generally.' 

The iso-elastic utility function bounded above by zero will be of the form 

u(c) = -C , n>0. 

For it, the Keynes-Ramsey equation becomes 

Ci = (1 - fYi, ..(3 

where ,B = 1/(1 +n), so 0<13<1, and (6) becomes 

xi - ftiyi. ... (14) 

These will be of much use later. 

Lemma 2. For the case u(c) = - C , n > 0, if on the optimum path xi -+, then x satisfies 
5g (x)/g(x) = 1. 

Proof. If xi+5 then (yi+?-yi), and hence yi/i, converges to g(x) by (7). By (14), 

itix/[#0g(x)]. ... (15) 

But (12) implies that 

lim [itjg'(xj)] = lim [i g(xi) u'(ci- 1) J 
i- oo i-oo 'g(xi1) U'(CV) 

With u(c) =-c" and xi-+), the right-hand side limit is lim [i(l - l/i)118 -1], which 
i-aoo 

equals 1/fl, since ci/i-+(1-f)g(x). By (15) the left hand limit is xg'(x)/[,Bg(x)], and we have 
completed the proof. 

Before turning to specific production functions, we suggest a dual approach to our 
model and its relation to the work of Weitzman [7]. It should be noted that in writing our 

maximand as 2tiu(ci), we had to be careful to ensure that it equals { udt, since otherwise 

the problem has a formal solution ti = 0 for all i. This is obviously not a solution to our 
original problem and is ruled out by Assumption C. Passing from an integral of utility 
to the sum of tiu(ci) is valid if 2ti diverges, or if c(t) can be infinite after time Iti, i.e. if 
yi-+ oo. These requirements were constraints on our maximization. 

We should presumably have a corresponding difficulty if we attempted to write the 
problem in some cost-minimization form: minimize Epixi where the pi are appropriate 
prices for plants. Formally we have a solution xi = 0 for all i, unless we rule it out through 
the constraints. Weitzman used cost-minimization to determine investment in his fl-capital 
(overhead capital the production of which shows increasing returns to scale) and derived 
the prices from marginal utilities on the target path-the Ramsey path which would be 
followed if the productivity of oc-capital were unrestricted by the necessity for fl-capital. 
The target path constrains the xi. 

Our model might be viewed as a limiting case of Weitzman's model where the produc- 
tivity of a-capital tends to infinity. This does not help, however, in the solution to our 
problem, since if we take the limit as the productivity of oc-capital tends to infinity we lose 

1 Presumably the case of asymptotic iso-elasticity is not difficult. 
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the Ramsey-type target path. It might be claimed that the target for a cost-minimization 
form of our model is simply infinite output. Two intuitive arguments in favour of such a 
view would be that the " constraint " analogous to 2ti = so is Exi = so, and that infinite 
output is the limit, as the productivity of a-capital tends to infinity, of the Ramsey path in 
Weitzman's model. 

3. THE CONSTANT ELASTICITY CASE 

From now on we specialize to the case of the iso-elastic utility function. In this section the 
production function, too, will have constant elasticity, i.e. g(x) = Kxc, C> 1. This has an 
average product which tends to infinity with output and thus we have to entertain the 
possibility of infinite output in finite time (see Lemma 1). 

Using (13), equation (12) becomes 

( ? )n+ (X )E>1 {I+(n+1),K x} ... (16) 

Since yi+ 1-yi = KxE, this can be expressed most conveniently as a recursion relation for the 
expansion coefficient 

oc = 1 ... (17) 
Yi 

Thus 
(i-1 I Yi Yi-1 ai-1 lel/ 

(xi J _Yi+_-Y_J i{l(l +ai- )} 

and (16) becomes 
aiyl(l +ai- 1)"+l+y a- y{ +(n + 1)sa}, .. .(18) 

where 
y = ( /8. 

There is a unique non-zero o satisfying ai = =a. In fact, ai<ai-l when ai-, 
is small, ac>aci. when ai-, is large, and where ci = xi-l = a, it is readily shown that 

dai 1 +(n + 1)e& > 
dai_- >+a 

The graph of ai as a function of ai-1 is shown in Figure 1. It is clear from the graph that 
for all paths other than a, = a (all i), ai0 or so as i-ooX. Both of these can, we believe, 
be rejected. The optimum policy is 

yi+i-yi = ?tYi. ... (19) 

The policy of increasing capacity by a constant fraction at each investment was found 
by Srinivasan [5] and Weitzman [7] for the same production function. 

We can now see that infinite output is reached in finite time, as follows. The policy 
ai = a implies yi = (1 +a)'yo, g(xi)/yi = a, and hence ti = D(1+ i)- Y, where D is a 
constant, using g(x5) = Kxe and xi = f3tiyi. But y = (e- 1)/e>0, so Iti converges, and of 
course yi-+ oo. This does not contradict the existence theorem: there is no problem with the 
convergence of the utility integral. 

This case is instructive, but we should perhaps be circumspect about a production 
function which yields infinite output in finite time. We turn now to a production function 
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Ot. 

450 

FIGURE 1 

with bounded average product so that Lemma 1 applies and output goes to infinity only 
asymptotically. 

4. THE FIXED COST CASE 

We retain the constant elasticity utility function u(c) = - 
n C, but turn to the case 

g(x) ={-a+px C/p < x ...(20) 

We now also have the interpretation of the model as that of the individual saver facing a 
given fixed cost a/p of making an investment, and a marginal return p on investments. 
Equation (12) becomes 

(Yijyi )"1)i I 1 pti ... (21) 

and the accumulation equation 

Yi = Yi1-C +Pfti- lyi- 1* .. .(22) 

Before discussing the solution of these equations, let us note that the optimum xi 
can be written as a function of yi: 

x= h(yilc). ...(23) 
p 

From now on we set a = p = 1 by choice of units of time and commodities. 
The character of the solutions of (21) and (22) can be best appreciated if we obtain a 

difference equation for t. Eliminating yi from (21) and (22) we obtain 

ti = {1 +flti_ I-Y- yi--11}1 18-1. ...(24) 
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Therefore ti > ti- I if and only if 

Yi- 1 _{1 +#ti_ 1-(1 +ti_ 1)fl} .. .(25) 

At the same time, the need to have xi > 1 means that 

ti- 1 _> 11/(Yi-r 1. ...(26) 

Given yo, and having chosen to, we can generate a sequence (yi, ti) satisfying (22) and 
(24). The possible sequences are shown in Figure 2. The lower curve shows the effect of 
the inequality (26); any sequence that crosses into the region below it yields an infeasible 
policy. The upper curve shows where ti would be equal to ti- 1; any sequence that crosses 
into the region above this curve would remain there for ever. 

an optimum patl 

Yi 

FIGURE 2 

In Lemma 3 we prove some more properties of these sequences, and then characterize 
the optimum policy in the theorem that follows. 

Lemma 3. (a) On any sequence that is forever feasible, yi-+oo. (b) Comparing 
sequences for any given i, yi and ti are increasing functions of yo and to. (c) If y'O > Yo, 
to >to, and the sequences (yi, ti) and (y,, t;) starting respectively from (yo, to) and (y', to) 
are both feasible, then for each i, 

t+-ti + - _ t;-ti. 

Proofs. (a) For a feasible policy, (26) and (22) show that (yi) is an increasing sequence. 
If it does not tend to infinity, it must then have a finite limit y. Then (21) shows that ti-+O, 
while (22) shows that ti-l/(f), which is a contradiction. 

(b) This is obvious by induction from (22) and (24). 
(c) From part (b) of this lemma and the feasibility condition, we conclude 

tt- l/yt _ ti-l/YOi > . 

Now consider the function f(z) = (1 +z)"fl. For non-negative z its derivative is bounded 
below by 1/fl, and therefore for z' > z > 0, we have 
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In the present case this becomes, from (24), 

ti I-ti+ t > 1 {(ftt - 1/yi)-(3t1- l/yI)} 

= (ti-ti) + (Il/Yi-l/y,). 

But, by part (b), yi > yi. This completes the proof. 
It now remains to examine the effect on total utility of the choice of to for a given yo. 

It will be seen that to should be chosen as small as possible subject to the resulting sequence 
being forever feasible. Thus the optimum path is the lowest that never hits the lower curve 
in Figure 2. We will also show that any higher choice of to yields a path that crosses the 
upper curve. Thus the optimum is the unique path channelled between the two curves. 
These results are proved in the following theorem. 

Define t*(yo) = inf {to I resulting (yi, ti) satisfy (26) for all i}. Clearly t*(yo) exists 
and is positive for each yo. Then 

Theorem 1. 
(a) t*(yo) is the optimum choice of to given yo. 
(b) Any choice to > t*(yo) will yield a sequence that crosses the upper curve in Figure 2. 

(c) t*(yo) is a decreasing function. t* tends to zero as yo tends to infinity. 

Proof. 
(a) Consider the sequence starting from to. The utility in period i is tiu(ci), which is 

proportional, in the iso-elastic case, to 

= =-(yil+1y-lfll1)yi-f by (21) 
-n_ - 1-n 

-yi yiyi-1 

- 1 -1 +flti_ y 1)y-nl1~f by (22) 

_fti_l-n,- + (y .n _y-n ) +y-1-n 

Summing from i = 1 to i = I, we can write 

Z (_tiy-n) = f l (_tiy-n)_toyn+tjyn+Y-n_y-n- E y-1-n 0 0 0 

or 
I I-1I 

(1fl) E( tiy-y)= )= -toyy_yn+t.y(n+y-n+ 1-27) 
0 0 

The series on the left-hand side consists of negative terms, therefore it is decreasing. 
Further, it is bounded below by (-fltoyJ-n_y-n). Therefore it converges, and it is a 
necessary condition of this convergence that tjyn -+O. By part (a) of Lemma 3, so long as 
the sequence is forever feasible, y1-*o and thus yI-n"O. We can then take limits in (27) 
to write 

(1 E(_tiy-n" = _toy n _y -n -l E y-~l -nt 

O', 00 

0 0 

The left-hand side is a positive multiple of total utility. The right-hand side for fixed y0 
is a decreasing function of to and of all the yi, each of which is an increasing function of to 
by part (b) of Lemma 3. This proves the result. Continuity considerations show that the 
sequence starting from t*(yo) cannot cross the upper curve (nor the lower one). Therefore, 
on the optimum sequence, ti decreases and tends to 0. 
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(b) Suppose the choice t*(yo) produces a sequence (y*, t*) while a choice to>t*(yo) 
results in (yi, ti). Then, for all i, we have by part (c) of Lemma 3, 

ti - t > ti- -ti > to-t*(Yo) 
and therefore 

ti > ti + to- t*(yO) > to -t*(yO) > O, 

which shows that ti is bounded below by a positive number. The sequence must therefore 
cross the upper curve, which is asymptotic to the horizontal axis. 

(c) Suppose y' > yo and t*(y') > t*(yo). Then, using part (c) of Lemma 3 repeatedly 
for the resulting sequences, we have 

t, -ti _ t*(yO,) -t*(Yo) > 0. 

But tti-+O, and thus ti must eventually become negative, which is impossible. The last 
part of (c) is already proved, since ti-O on any optimum path. 

Having thus identified the optimum policy, we can calculate it. We have done this 
by starting from an estimate of optimal ti when yi is very large, and using equations (21) 
and (22) to calculate t and y for successively lower values of i. By starting from slightly 
different large values of y, one can equally map out the whole optimal policy showing t or x 
as functions of y. The computation can be done by taking the " initial " ti as l/(fiyi), 
the minimum possible length of the (Ramsey) saving period. It is then clear (cf. Figure 2) 
that one can get a good approximation to the optimum. In fact we used the asymptotic 
form of the optimal policy, which allows faster computation. We now derive that asymp- 
totic form. 

Lemma 4. In the model of this section, 

i2 2 ... (28) 

and 

Xit-- 
2,B ... (29) 

Y 
as i-+ oo on the optimum path. 

Proof. We shall not work directly with t3y1, but with a new variable 

Zi = Xi(xi- l)Yi 

= fl2ty-yi_pti. 

First we establish a difference equation for zi, in which it is convenient to use the variable 

Ui= /3ti-y 'i 

which is non-negative (by (26)) and tends to zero as i-* oo (by the Corollary to Lemma 3). 
From (24) we have 

ti= (1 +i)n 1, 

and from (22), 
Yi+i= y(1+U") 

= (Zi-ui)uT 2(1 +ui), 

as can readily be checked from the definitions of z and u. Thus, 

= fl{(1 +Ui)n -1_}1[#{(1 +Ui)n -1}(zi-U,)U-2(1 +uil)-1]. 

Expanding (1 +ui)n+ , and using the definition fl(n + 1) = 1, we obtain 

Zi+1 = {Uj+1nu +o(0)j[{uj+1nu3 + O(U3)}U-2(1 +?ui)(zi-ui)-1], 
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where the " order " notation 0(uT) means a function of i that is equal to u7 times a bounded 
function of i. Multiplying out, we find that 

Zi+1= -Z Zi{Un+l)zj-2+0(uj)+ zj(ui)}. ...(30) 

In using this equation to demonstrate the asymptotic behaviour of z,, we shall need two 
auxiliary results: 

(i) zi is bounded. 
00 

(ii) EUj = m0. 
1 

The first is deduced from the inequality (25), which tells us that 

yi{1 + gt - (I ti)#l} > 1. ... (31) 

In the interval 0 _ t < 1, the second derivative of (1 +t)f is less than -/3(1 -fl)2-2+P 
(/B being less than one). Therefore, by the second-order mean value theorem, 

(I +t)$_ < I Bt-l(l -P2- 3 +Pt 

Applying this to (31), we deduce that 

tOyj _ 2 3 -I/{p(1-_fl} 

once ti ? 1 (as it must be eventually). Therefore z, = fl2t3yi-flti is bounded, as asserted. 
To prove that 2ui is a divergent series, we note that 

Ui = (Xi- l)/yi = (Yi+ 1 -Yi)l > log (Yi+ /yi)- 

Summing, 

Z ui _ log (Yi + I/Yo) 00. 
0 

Returning to the difference equation (30), we deduce first that zi tends to a finite limit. 
If zi does not tend to 2/(n + 1), there is a positive number ? such that (n + 1)zi- 2> e 
infinitely often or (n + 1)zi -2< - e infinitely often. Consider the first possibility, and 
let io be such that the terms 0(ui) +zO(ui) in (30) are less than e in absolute value for all 
i ? io. Then for some i, say i1, > io, (n + l)z,-2 > , and (30) implies that zi is then increas- 
ing, and must continue to do so for all i. A similar argument shows that zi is eventually 
decreasing if (n + 1)zi -2 < - infinitely often. Therefore the sequence zi tends to a limit. 
The fact that zi is bounded implies that the limit is finite. Therefore 7(zj+1-zj) is a con- 
vergent series. Yet, if lim{(n+l)zj-2} # 0, the divergence of Xui implies that 
72uj{(n+l)zj-2+0(uj)} diverges. It follows that only one limit for zi is possible: 

nZ+1 
2 

2f. ...(32) 

Since 
zi= fl2t3yi-flti and ti-+O, 

(32) implies (28), and also (29). 
Although we do not use it in computation, it is interesting also to derive an approxi- 

mation for the optimal policy when yi is small. 

Lemma 5. In the model of this section, on the optimum path 

Xi 1 +-P/('1 +P)Y/f(l +0) ...(33) 

t yy- -I + (IO+ 2+O)/(1.)y 
/(1+P) .O..34) 

as yi0-+. 
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Proof. Since Yi-O, 
xi- I Yiy+ I-+O 

Then (21) implies 

yj+2y-n-1 -yi+l +ti+Iyi+ 

Therefore 
(yi +X _i-)y7 (n+1)/(n+2)_>+p- 11(n+ 2) 

from which it follows that 
(X-)g(n+ l)/(n +2) _+p-11(n +2) 

This is just (33) in different notation. (34) follows directly from (33). 
The computations presented in Figure 3-which gives optimum x as a function of y 

for several values of f-show that (29) is a good approximation even for quite small values 

x 

200 C) 

100 , p. 

50 

20 

10 

5 

2 

1 3,'000 
.02 .2 1 5 20 100 300 1,000 10,000 y 

FIGURE 3 

of y.1 For example, when ,B = 05, the approximation is correct within 1 per cent for all 
y > 593, and correct within 2 per cent for all y > 124. The lower approximation (33) is 
less useful. For the same case, it is correct within 2 per cent for all y < 0 04. 

Reverting to the case of general a and p, where, it will be recollected, the optimum 
policy is 

x = -fh jY ,) ... (35) 
P a 

1 y = 100 is quite small for the problem, because it means that the minimum investment size is one 
per cent of the output that would be produced over a period such that the rate of return is 100 per cent- 
say ten years or more. 
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we note a number of properties of the optimum. First, we write the approximations, for 
large y 

x^ p-1 t>2a,y, t-p- 
I 2lap . ..(36) 

The properties of x and t suggested by (36) are confirmed by the accurate computations: 
(i) For fixed parameters, x increases as y increases, while t decreases. 

We have already proved the second of these results. The first can be proved in the same 
way, by considering difference equations in xi and yi rather than ti and yi. The interested 
reader will readily prove the proposition by means of a phase diagram. 

(ii) For fixed y, a and p, x is an increasing function of fi, and t a decreasing function. 

Thus, in an economy that wishes to save at a higher rate, the next investment is undertaken 
sooner, but not in proportion, so that the investment is bigger. 

(iii) Forfixed y and f, x and t are increasing functions of cr and decreasing functions of p. 

(iv) For fixed y and /3, x and t decrease when a antd p increase in the same proportion. 

This tells us what happens if p is greater while the minimum size of an investment is un- 
changed. 

5. INTERPRETATION AS AN INDIVIDUAL SAVING PROBLEM 
The result in the previous section that h(y) behaves like Jy5 for large y is rather striking 
since it is close to the result of Baumol [1] and Tobin [6], and the early analysis by Whitin 
[9] of inventory problems. We have used a full infinite horizon optimizing formulation 
taking into account the effects of savings on future income, and there is no a priori reason 
to expect results similar to these stationary state models. As an aid to understanding the 
similarity we give a brief description and extension of the Baumol-Tobin inventory type 
model that yields the square root results. 

Suppose we need a flow of a per day for transactions purposes, that there is a cost of 
withdrawal k, and interest opportunity cost of holding cash of r. We want to choose a 
withdrawal period to minimize costs per unit time subject to meeting the flow demand. 
The cost per withdrawal period is k, and the interest cost is arT2/2 where the period is T 
units of time long. Thus we choose T to minimize k/T+ arT/2, giving optimal T as 12k/ar 
and withdrawal quantity _2ak/r. 

We compare l2ak/r with our approximation to h(y) for large y, viz. V2ofjy/p. Now 
k corresponds to a/p, the fixed cost of investment, a to fly, the flow of savings, and r to p, 
the rate of return on investments. We thus have an exact parallel. 

One might think at first that the Baumol-Tobin model is a limiting case of our model, 
but this is not so. The formal structure remains different in the limit in our model, for 
(i) income is rising with a temporal growth rate tending to fip, (ii) the time between invest- 
ments is not constant, but is falling as y- 1/2, (iii) we have a consumption rate of discount in 
our model, for marginal uti-lity is falling as income rises, whereas there is no discounting in 
the Baumol-Tobin formulation. The lack of discounting in their model is odd since there is 
an opportunity cost of holding money. 

We incorporate discounting and growth into the Baumol-Tobin model to see if the 
square root result remains. The opportunity cost of holding money and the fixed costs of 
withdrawals are discounted at rate r and the flow demand increases at rate g. If a is flow 
demand now we withdraw a(egT- 1)/g. We then have a per-period cost of 

k +T 

k + e - rt ra(e gT - e9't)lgd t 
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i.e. 
*/~(an,T) = k + ar e {-e _r e gT_ e- rT) 

g r r-g 

Now consider the choice of T. This leads to a functional equation 

V(a) = min [f(a, T) + V(aegT)e-rT] ... (38) 
T 

in the standard dynamic programming framework and obvious notation. The optimum T 
satisfies 

lfT(a, T) + V'(aegT)age9Te-rT- W(aegT )e -rT = 0 ...(39) 

V(a) = qf(a, T) + V(aegT)e7rT ... (40) 

and differentiating (40) using the envelope theorem 

V'(a) = V'(aegT)egTe7rT + a(a, T). .. (41) 

If we substitute from (40) and (41) into (39) we obtain 

rV(a)-agV'(a) = T(a, T)+rifr(a, T)-agka(a, T). ... (42) 

Now suppose it turns out that both rTand gTare small. Then from a Taylor expansion 
of (40) we have, to first order, 

V(a) = q/(a, T) + [V(a) + V'(a)agT][l-rT] 

= fi/(a, T) + V(a) - T[rV(a) -gaV'(a)] 

and, using (42) 
TfT(a, T) = (1-rT)f(a, T)+agTq/a(a, T). ... (43) 

Now we can differentiate (37) to find fa and T, expand them and tl in Taylor series, and 
compare leading terms in (43). This leads to T = J2k/(ar). In other words, the square 
root formula carries over unchanged when we allow constant growth and discounting, as 
long as T is small. Of course g must satisfy suitable convergence conditions, but its exact 
level is immaterial. 

We cannot, however, assume directly that rT and gTare small, for Tis a choice variable 
and depends on r and g. Thus, the above method does not tell us in advance of a solution 
to the problem whether the square root results carry over to allow growth and discounting. 

We should note two things about the consumption rate of discount in our model. 
First, inside a period all marginal increments to consumption are equally valuable. Second, 
the temporal growth rate of consumption tends to a constant as time goes to infinity, and 
this implies, with an iso-elastic utility function, a constant discount rate. It is presumably 
the asymptotic constancy of the growth rate and the discount rate, and the asymptotic 
decline in the period, that is helping to give a result close to that of Baumol and Tobin. 
But even when their model is extended to allow growth and discounting as done here, one 
important difference remains, for both these are endogenous in our model and exogenous 
in the above extension of their model. 

We have emphasized the differences between our model and the Baumol-Tobin model 
that persist even asymptotically. It remains interesting, however, to see that a full specifi- 
cation of the individual saver problem yields asymptotically similar results to those of a 
simpler specification. For finite values of output, of course, the two models are quite 
different. Yet, as we have remarked above, the square root approximation is really 
extremely good, certainly within the range that seems relevant for the individual saving 
problem. 
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6. A MODEL WITH LABOUR 
We introduce labour into the model by assuming that a lump of investment of size x will 
when combined with labour I produce output g(x)l', where a< 1 and g is concave. This 
form is, of course, rather special. We allow labour used with the investment lump to be 
varied freely over time, in such a way that one would want to use all investments for ever 
(though to a diminishing extent): establishing the investment in no way restricts the possi- 
bilities of combining labour with it. We shall make assumptions aboutg (stated in Lemma 6) 
sufficient to avoid the possibility that output can explode (become infinite in finite time). 
One further assumption is needed: 

xg'(x)/g(x) > 1- a. . . (44) 

This ensures that g(Ax)(Al)' increases faster than 2 as 2 increases. It follows that lumpy 
investment is desirable, for if investment were being done very frequently, halving the 
frequency would double the lump and allow double the labour to be applied to the lump, 
thus more than doubling output per lump and increasing aggregate output.' 

The labour force is constant. If the constant is taken to be unity, output at the (i + l)th 
stage (after the ith investment lump) is 

Y = +Imax Eg(X)la E = 1}. ...(45) 

The sum is shown from j -oo so as to include all past investments. Of course Xj = 0 
for sufficiently small j. Working out the maximum, we have 

cig(x)lyj` = u, a Lagrange multiplier. 

Since YIj = 1, 

f = celig(xi)' ... (46) 

where 4 is written for 1/(1- ox). Therefore 

Yi + = Xg(x ) {Y -4aeg(xj)4} 

= (r 4a4)g(xj)4, since 1 + Xa = 

= {Yg(xj)4J}1 - by (46). ... (47) 
Thus 

Y1+I-Yie = g(xi),. ... (48) 

This is a very convenient form of production constraint to use in the maximization 
problem: it simply generalizes the case of Section 2, which corresponds to 4 = 1. We 
note first that, if g is suitably restricted, the economy cannot explode. 

Lemma 6. For the model of this section, ifg is such that there exists a positive constant K, 
and a positive number 6 not greater than one, such that 

g(x) <! Kx' (all x), ... (49) 
then yi- oo only if 2ti = co. 

Proof. By (44), d(log g(x))/dx> (1- a)/x. Integrating between x = x0 and x= x, 
we obtain 

g(x1) > g(x0)(xifx0)io f . . .(50) 

1This intuitive argument is our justification for believing that Assumption C will continue to hold. 
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Comparing (49) and (50), we see that 1 -oc < 6, i.e. 6X _ 1. Then, writing z - y,, we 
have the inequality 

(Zz + I1-Z.) <-Z 2+ 1-i 

= (xi)4 

< g(tjyj)4, since ci > 0 

< K(tjyj)"4, by (49). 
Therefore 

z, + -z' <_ Kl(Y - 
l'ti 

Zi 

< K'ti, K' a constant ... (51) 
for all large enough i, since y i- 00, 6 < 1. Summing, for large i, and using the inequality 
log (zi+1/zi) < (Zi+ 1-ZiYzi 

K'Iti > (log zi+ -log zi) 

= 00. 

This proves the lemma. 
This is a natural generalization of Lemma 1. 
The first-order conditions for the maximization of 

Ztiu(ci) = EXi u(ci) 

Yi-ci 
are obtained as before by maximizing u(c)/(y, - c) with respect to ci and considering changes 
in xj-1, xj and yj (holding other x's and y's constant) that keep (48) satisfied for all i. 
This latter change yields 

u (C ~. .i ) _ _ _ _ _ _ _ _ _ _ _ () _ _ Y__ _ _ _ _ _ x u( ) 
_________ ____ _-I u(ci) I. _- _xiu(ci) . ...(52) 

Yi- IcCi. I g(xi. 1)4) 'g'(xi_ 1) ) yi -ci g(xi) 'g'(xi) (yi- ci)2 
Maximization of u(c)/(yj - c) yields the Keynes-Ramsey equation 

u(ci)+ (yi -Ci)u (Ci) = O .. (53) 
Combining (52) and (53), we get a slightly neater equation, 

{g(xi_ 1) 9 (xi_ u' g(c-)g ~ {g Yi (Yi -ci) = xiu'(ci). ...(54) 

We shall not discuss the general problem further, but turn to the simple special case 
where 

U(C) = -C n g(x) = x. ...(55) 
(Units of measurement for commodities are so chosen that the multiplicative factor in g 
is unity.) For this case we can give a complete analysis. It turns out to be easier to use 
dynamic programming methods rather than the first-order conditions (54). 

Theorem. If (n + 1)6> 1, 6b> 1, and 6<1, the model (55) has an optimum policy, 
which is given by 

n+1 Yl; ... (56) 
n+1 i 

and 

Yi+ i = YYi, . (57) 
or, equivalently, 

xi= = yil, ti = (n+1)eyY6'1, ...(58) 
Y-4213 
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with e = (y4-1)1/(0), where y is defined by 

y((n+ 1)b- 1)/ +{(n+1)6-1}y-4=(n+1)6, y>1. ...(59) 

Proof. The condition b>1 is just (44). 3<1 means that Lemma 6 applies. If 
(n +1)3>1, the economy is valuation-finite, i.e. has a path for which the utility integral 
converges. For example, the path defined in the theorem, which we are going to prove 
optimal, gives a utility integral proportional to 

_ zy 1/-n-l = y116-n-1(1 _ ,1/-n-1 I1 

since 
1/3-n-1<0 and y>1. 

It follows that we can define V(y0), the supremum of the utility integral when initial output 
is yo, and 

V(y0) = sup {-xyn + V(y1) I yA = y +x(60) 
since the maximum utility obtainable before the first new investment is (using the Keynes- 
Ramsey rule, (56)), 

X 
u(c) = -xu'(c) =-Axy-n-, 

Yo - C 

for some positive constant A, which we absorb into the definition of V. 
Using the argument of the existence theorem in the appendix, we can show that an 

optimum policy x(y0) exists, such that 

x(y0) maximizes -xyn1 +V(y1). ...(61) 
Then, in our particular example, we can obtain the form of V explicitly. Suppose 
(c0, c1, c2, ...) and (x0, x1, x2, ...) is the optimum path starting from yo. Then 
(Ac0, Ac1, Ac2, ...) and (A1Yxo . llxl, A116x2, ...) is a feasible path starting from Ayo. The 
utility integral on this second path is i times V(y0) hence V(Ay0) _ A1/ n- 'V(y0). 
A similar argument beginning with an optimum path starting from Ayo gives the inequality 
the other way and it follows that, V is homogeneous of degree 1/3 - n-I in yo, i.e. 

V = _-Ay 11 - n-I . .. .(62) 
This means that V is differentiable, so that (61) implies 

=o -V(y)x y 1* .* (63) 
At the same time, since by (60) 

V(y0) = -xy7n-1 +V(y1) ... (64) 

V'(y0) = (n + 1)xy-n2 + V'(y1)y7 'YIy 
1 ... (65) 

Combining (63) and (65), we obtain 

(n + j)3X4y n-1 +y-n-1 = bx 4-yV( 

= A((n + 1)6 - 1)x'- lyO/afl '-, by (62). 
Thus 

(n + 1)3 +(y0/x)4 = A((n + 1)3 - 1)(yo/xb)'1/, ... (66) 
while, from (64), using (62), we obtain 

(n+1)-1 

A(yolx")6 = 1 +A(yo/x')'1{l +(x/y0)} 
_ 

... .(67) 

Eliminating A from (66) and (67), and writing s' = x'/y0, we have 
(n + )-1 

(n + 1)3 +es -(n + 1)- 1 + {(n -+ 1) +8-"4}(1 +04) 64 
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which can be rewritten in terms of y - (1 + e)'/': 

7{(n 
+ 1)6- 1)/b + {(n + 1)- 1}y-4 = (n + 1). ...(68) 

By its definition y must be greater than one, and it is readily shown that (68) has one 
and only one root greater than one: for the left-hand side is equal to (n + 1)3 when 
7 = 1, decreases at first as y increases above one, and then increases, tending to infinity for 
large y. 

It follows that 

y= (+ j y, ...(69) 
Yo Yo 

and this must hold at all subsequent stages of the optimal development too. This proves 
the theorem. 

Several features of the optimal policy and path call for comment. 

(i) As i-+oo, tr-oo. 
This is clear from (58), since yi-* co, and 3 < 1. The situation is thus quite different 

from the model discussed in Section 4. The reason is that we now have decreasing returns 
to capital alone, and thus diminishing productivity of capital over time. 

(ii) Proportional increments in output are the same from every investment. 
This feature is special to the homogeneous case we have analysed. 

(iii) The sufficient condition for existence of an optimum path, (n + 1)3 > 1, is the same 
in form as Weizsacker's sufficient condition for the Ramsey model with homogeneous 
utility and production functions [8]. It is to be presumed that no optimum policy exists 
when (n+1)3<1. 

(iv) Some values for y are given in Table I. 

TABLE I 

Optimal proportional increments in output for the case 
u = -c-n g(x, ) = x5lP 

n oc a Y 

1 0 5 0-6 1X17 
1 005 08 1-43 
1 0-75 0-6 1X60 
1 0-75 0-8 1X78 

2 0 5 0-6 1X12 
2 0-5 0X8 1X29 
2 0-75 0X6 1-43 
2) 0-75 0-8 1X55 

As is to be expected, the optimum y is quite sensitive to variations in the parameters. 
Even for n = 2-which many would think not small-and with economies of scale that are 
very moderate-cx+ 3 = 1 1-the economy is supposed to wait until it can increase output 
by 12 per cent before investing again. To fill out the picture, consider an economy where 
initial output is 100 and the labour force is 100. If g = 'xO 81075, a plant with x = 20 
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and 1 = 5 has capital-output ratio 1*63 and output per man of 2-45. Then the optimal 
policy for n = 2 requires that, at the first step 

to = 3.9 

XO = 131 

y, = 155. 

No doubt these large investments and long periods are influenced by our somewhat 
peculiar production assumptions. But we suspect they and the high savings rates arise 
more from the basic feature of the model, that all growth is credited to investment. Once 
economies of scale are incorporated into a growth model, this is not such an absurd 
assumption; but we return to results with a flavour similar to Ramsey's, where for many 
plausible utility functions high investment is optimal. The associated desirability of very 
infrequent investment is even more striking.1 

7. CONCLUDING REMARKS 
We offer a few comments and speculations concerning the possible effects of complicating 
the model. 

The effects of introducing discounting in this model are more significant than those in 
models without increasing returns. For example, we are no longer assured that we shall 
make an infinite sequence of investments on the optimum path-the proof of Lemma A.1 
leans heavily on zero discounting. We suspect that, in our models, it is optimal to stop 
investing in finite time when utility is discounted. Also, consumption will no longer be 
constant between investments-it will fall at a rate sufficient to keep u'(c)e rt constant. 
This means that the typical term in the series for the utility integral is no longer tu(c), 
but +(x, t), where f is the utility from the optimum method of accumulating x in time t. 
The k function can be derived fairly easily, at least for the iso-elastic utility case, but is 
messy, so that the first-order conditions, involving ox and /t, are difficult to work with. 

The effects of allowing installed capacity to depreciate, in the absence of discounting, 
are less marked. It will still be optimum to have constant consumption between investments, 
and if utility integrals are to converge, we shall still need output to go to infinity and 
consequently an infinite sequence of investments. There is the possibility, also, that some 
part of inventories may evaporate before installation. 

It would be interesting to introduce growing population into the model of Section 6, 
and we would hope to apply such a model to the development of new urban centres. 

The model with homogeneous utility and production, and a constant rate of population 
growth v, has many features which are quite different from the modification of the Ramsey 
model introduced by Koopmans [3], Weizsacker [8] and others. Economies of scale allow 
population growth to be amplified, and it is possible for consumption per head to grow at 
a constant rate v(a + 3- 1)/(1 -(3) for ever. In the Cobb-Douglas model with constant 
returns, consumption per head is ultimately constant. For this reason, no optimum policy 
exists unless utility (i.e. population times utility of per capita consumption) is sufficiently 
discounted. In our model, the optimum policy exists if 

1 -( 

1 We have been asked about the possibilities of decentralized investment decisions in our models. 
They do not seem good. Of course, marginal cost should be equal to prices and marginal product to wage, 
but the plant manager has an incentive to attempt to build an arbitrarily large plant, and we think only the 
central planner can tell when to build. A modified form of decentralization with cost minimization subject 
to certain targets may be possible. 
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even without any discounting of utility. In that case one can show that ti tends to a finite 
limit. It should not be difficult to identify the asymptotic behaviour of the optimum path, 
but we have not worked the case out in any detail. 

A further modification that realism requires is to allow for a multiplicity of commodities, 
with investment of one kind or another taking place frequently, but investment in the pro- 
duction of any one type of commodity taking place only at fairly large intervals. The 
problem is to formulate an appealing but manageable model. 

We do not think that any of these modifications would seriously affect the lessons of 
the models in this paper. If growth is presumed the result of capital accumulation with 
economies of scale, optimum savings rates are high for many plausible utility functions. 
If there were persistent increasing returns to capital alone, the economy could, and should, 
explode. If there are fixed investment costs, but otherwise constant returns, the optimal 
investment size is approximately the square root of output, and investment becomes almost 
continuous at high output levels. If, as seems realistic for economies, though not for the 
individual saver, there are economies of scale in production, but not when labour is fixed, 
the optimal size of plant may be very large, and the optimal period between investments 
very long. The value of waiting is high. 

APPENDIX 
The Existence of an Optimum 
We take the model of Section 2, without labour. A similar argument should work for the 
model with labour. We shall use where stated: 

Assumption A. u is increasing, strictly concave, satisfying u(c)-+0 (c- co), and 
u'(c)oo0 (c-O). 

Assumption B. For any yo>0, there exists a feasible path with convergent utility 
integral. 

Assumption C. For all yo there exists (>0 such that all paths starting from yo and 
making the first investment at a time sooner than ( can be overtaken. 

We note first that the problem can be simplified by considering only paths with constant 
consumption between investments. In fact, any path that does not have constant consump- 
tion between investments is inferior to one that does, because of the strict concavity of the 
utility function. We shall show that we may restrict our attention to paths that have an 
infinite number of periods of constant consumption. 

Lemma A.1. If there exists an xfor which g(x)>0, and u is strictly increasing then for 
any yo, the path c(t) = yo (t > 0) can be overtaken. 

Proof Consider the feasible path with consumption c(t) = c0 <yo for 0 < t <To 
where To is such that g((y0-co)TO)>0, and let Yi = y0+g((yo-co)To), c(t) = Yi >yo for 
t >To. Since u(y1) > u(y0) 

nTo %T %T 

u(co)dt + u(y1)dt overtakes u(y0)dt. To 
- To 

fT 

JO JTOO 

The lemma says that it is always worth making another investment. Note the role 
played by zero discounting. 

We are now in a position to prove that an optimum exists. Define V(y) as the supremum 
of all possible utility integrals along feasible paths given that one starts with output y 
and no accumulated savings. We know that the utility integral is bounded above by zero 
and Assumption A gives us a lower bound, so the definition of V is legitimate. We group 
together some of the assumptions already made for a formal statement of the theorem. 
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Theorem. If g is increasing and continuous, and Assumptions A, B and C hold, then an 
optimum policy exists. 

Proof. The assumptions of the theorem are sufficient for Lemma A.1, and thus justify 
the recursive relation. 

V(yo) = sup {tu(c) + V[yO +g(t(yo - c))]}, . 
C, t 

where the supremum is taken over the set 

0<c_YO ... (2') 

6(yo) < t < V(y0)/u(yo) + 1. . (3) 

The upper bound in (3') is justified because, if it is not satisfied, 

tu(c) _ tu(yo) < V(yo) + u(yo) < V(yW), 

so that such values of t can be excluded from consideration. 
An easy but long proof shows that V is a continuous function; we separate it into 

Lemma A.2 immediately following this theorem. Hence, using the continuity of g and u, 
the expression within the braces in (1') is a continuous function of c, t. Inequalities (2'), 
(3') define a compact set, so the upper bound is attained at co, to (say), and 

V(yo) = tou(co) + V[yo +g(tO(yO -co))] 

Define Yi = yo+g(to(yo-co)). Choose cl, t1 in the corresponding way. Define 
yi, ci, ti in a similar fashion for all i > 1. Add all the equations 

V(yi) = tiu(ci)+V(yi+1), i = 0, 1, 2, ... 

to obtain, since values of V are non-positive 

V(Yo) <_ E tiu(ci). ..(4) 
i = o 

Now consider the policy c(t) = ci for DT' tj < t < E> tj, where we define t-0. If E>o tj 
diverges, this is a well-defined feasible policy over the indefinite future, and 

V(yo) = E tiu(ci). .. (5) i = o 

If, on the other hand, O ti = T, a finite number, then we must specify what happens beyond 
T. Note that we must have y(t)-40 as t-*Tfrom below. For suppose not, then y(t) being 
monotonic we must have y(t)-+y, a finite limit. But then as i-+oo, we have ti-+O<6(), 
and this contradicts Assumption C. 

With infinite output we can sustain infinite consumption and thus a zero utility integral 
from T on. For the sequence (ci, ti) followed by this phase of infinite consumption, the 
utility integral is ? V(yo) from (4'). 

Thus we have shown that an optimum policy exists, and consists of the sequence 
(ci, ti) followed, if possible, by a phase of infinite consumption. 

Lemma A.2. With the assumptions of the theorem, the function V is continuous. 

Proof. As in the theorem 

V(y) = sup {tu(c) +V[y+g(t(y -C))] 

Let 6>0 and let t*, c* be such that 

t*u(c*) + V[y +g(t*(y - c*))] > V(y) - 6/3. 
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Let y' <y and y = c*/y< 1 (by Lemma A.l and the remark preceding it). Consider t', c' 
satisfying c'- yy' and 

y' +g(t'(y' - c')) = y +g(t*(y - c*)). ...(6') 
These exist and are unique if g(x) is unbounded over [0, oo] since we have assumed g 
continuous and increasing. 

Starting from y' a policy t', c' achieves, if followed up suitably, a utility integral greater 
than 

t'u(c') + {V[y' +g(t'(y' - c'))] - 3/3}. 

Thus, using earlier inequalities and (6'), we have 

V(y') > t'u(c') + V[y' + g(t'(y' - c'))] - 3/3 

= t'u(c') + V[y +g(t*(y-c*))]-6/3 

> t'u(c')- t*u(c*) + V(y)-23/3. 
Now use (6'), and remember c' = yy', c* = yy. By continuity of g and u, by taking y' 
sufficiently closed to y we can make t'u(c') - t*u(c*) > - /3, hence 

V(y') > V(y) - 3. 
clearly V(y') < V(y) for y' <y. 

These two together give us continuity of V. 
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