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The main concerns of the paper are the problems of estimating labour supply functions for use 
in models of optimum income taxation, and the calculation of the effect on the optimum linear 
tax rate of varying the elasticity of substitution, e, between leisure and goods from 0 to 1. 
Backward sloping supply curves are commonly observed and they imply e < 1. Our calculation 
of e from estimates of supply curves by Ashenfelter and Heckman gives e = 0.4. Optimum 
marginal rates decrease with e when taxation is purely redistributive but may be nonmonotonic 
if positive revenue is to be raised. It is proved that optimum (linear or nonlinear) taxation 
involves a marginal rate of 100 percent when e = 0. 

1. Introduction 

There are four main ingredients for a model of optimum income taxation: 
an objective function, a preference relation or supply function for individuals, 
a skill structure and distribution, and a production relation. They are closely 
intertwined. An individualistic social welfare function would take into account 
the preference structure of individuals. The supply of various kinds of skills 
will depend on individuals’ wishes or ability to produce these skills. The pro- 
duction relation must state how skills of different kinds are combined to produce 
outputs. 

The optimum income taxation problem as usually posed is to maximise a 
social welfare function, which depends on individual utilities, subject to two 
constraints. The first is that each individual should consume goods and suppiy 
factors in amounts which maximise his utility subject to the constraint of the 
tax function, which describes how much post-tax consumption can be acquired 
from pre-tax earnings. We are searching for the optimum function. The second 
is that the total labour supplied can produce the total quantity of goods 
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demanded. It is the former constraint which characterises the optimum income 
taxation problem and which makes it a problem of the second best. Without 
this constraint, that individuals are on their supply curves, we have a first-best 
problem. 

When taxation is discussed it is often in terms of a trade-off between equality 
and efficiency, or the distribution of the cake and its size. The optimum income 
taxation problem is one way of formalising this trade-off and it is, perhaps, 
surprising that it was not until Mirrlees (1971) that a suitable model was 
developed. We are still at the stage of understanding the structure of these models 
and the importance of the various components. It should be clear at the outset 
that the purpose of this paper is not to make recommendations to the Treasury 
as to appropriate tax rates, but to contribute to the understanding of the dis- 
cussion of equality versus efficiency through examination of a particular model. 

The particular concern of this paper is the supply function, and attention is 
focussed on the special case of labour supply. We shall examine the problem of 
estimation, which preference structures obtain support from the empirical 
literature on labour supply, and then the influence such estimates should have 
on our view of the appropriate level of income taxation. It will be suggested that 
most previous calculations of optimum tax rates may have been biased low. 

The next section presents the models of Mirrlees (1971) and Atkinson (1972) 
and contains a brief discussion of their numerical results.’ The problems of 
specifying and estimating ski!: distributions are discussed in section 3, together 
with calculations of the elasticity of substitution (E) between leisure and goods, 
based on empirical estimates of labour supply functions. 

The calculations of section 3 suggest that elasticities of substitution around 3 
are of interest, and in section 4 the optimum linear income tax, for values of E 
between 0 and 1, is calculated in a model similar to that of Mirrlees (1971). 
The extreme case of E = 0 is examined, in the Mirrlees model, in section 5 and 
we find the optimum income taxation (linear or nonlinear) involves marginal 
taxation at 100 percent. It is not surprising, therefore, that the calculations of 
section 4 show that, for small E, the optimum linear tax rate increases to 
100 percent as E decreases to zero. However, where taxation is imposed to raise 
revenue, as well as to redistribute, the optimum marginal rate may increase as E 
increases over a certain range. In section 6 the numerical discussion is evaluated. 

The remainder of this section is devoted to a brief examination of those 
elements of the model, the objective function and the production relation, 
which receive no further attention in the later discussion. 

Most previous writers have worked with a concave transformation of indi- 
vidual cardinal utilities. The transformation ranges from the linear utilitarian 
sum to the case where the ‘degree of concavity’ goes to infinity - the maximin, 

‘1 originally intended to do a survey of theoretical and empirical work in progress but became 
more involved with my own investigations. 
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or Rawlsian, solution. Some might wish to claim that one is merely specifying 
the value judgements of the decision-maker by using an arbitrary numbering of 
individual indifference curves together with a method by which individual 
utilities are aggregated. The specification of a particular cardinal numbering for 
individuals and the form of the social preference relation over utilities may well 
be difficult, if not impossible, to disentangle, but I find it hard to understand a 
quantitative comparison between different forms of social welfare function for 
the same indifference structure (for individuals) if some benchmark of cardinality 
is not involved. 

The cardinality problem is much less severe when a one argument utility 
function is used - see, for example, Atkinson (1973a). One can then suppose that 
the government defines its values over the vectors whose components are house- 
hold incomes. However, when supply functions are central to the model a one- 
argument utility function seems out of place. It then becomes more difficult 
to wriggle out of the problem of numbering individual indifference curves. It is 
possible that part of the attraction of maximin objective functions is that the 
cardinality problem is less troublesome - maximising the lowest utility level will 
give the same policy whichever cardinalisation is used when the same monotonic 
increasing transformation of utilities is applied to all individuals. 

The above discussion and most of the literature has supposed that the Bergson- 
Samuelson social welfare function (nondecreasing in each argument) is the 
appropriate tool for capturing social values in such analyses. Leaving aside the 
question of whether it shouZd be used, it is possible that many people have some 
different underlying notion of welfare or distributional justice when they discuss 
income taxation. We illustrate the possible phenomenon with a few quotations 
and arguments which might be thought plausible and yet imply non-Paretian 

objectives. We begin with three quotations on inequality each of which clearly 
involves a non-Paretian position. 

Tawney : ’ 

When the press assails them with the sparkling epigram that they desire not 
merely to make the poor richer but to make the rich poorer, instead of 
replying, as they should, that, being sensible men, they desire both, since the 
extremes of both of riches and poverty are degrading and anti-social, they 
are apt to take refuge in gestures of depreciation. 

Simons : 3 

The case for drastic progression in taxation must be rested on the case against 
inequality - on the ethical or aesthetic judgement that the prevailing distribu- 

Yke Atkinson (1973b, p. 19). I am grateful to Kevin Roberts for drawing my attention to 
this quote. 

%ee Simons (1938, p. 15). Kevin Roberts drew my attention to this quote too. 

JPE- D 
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tion of wealth and income reveals a degree (and/or kind) of inequality which 
is distinctly evil or unlovely. 

Fair (1971) quotes Plato as follows: 

Plato felt that no one in a society should be more than four times richer than 
the poorest member of society for ‘in a society which is to be immune from the 
most fatal disorders which might more properly be called distraction than 
faction, there must be no place for penury in any section of the population, 
nor yet for opulence, as both breed either consequence.’ 

Certain arguments on tax proposals and structures might seem plausible to 
many and also involve non-Paretian judgements. For example, Sadka (1973) 
has shown that with a finite number of individuals or skill levels the optimum 
marginal tax rate at the very top is zero. One can express his argument verbally 
as follows. Suppose that a given tax structure is a candidate for the optimum and 
it results in the most skilled person earning EY. Consider the announced 
marginal tax on the (Y+ 1) pound and suppose it is positive. Reduce it to zero. 
The most skilled person may work more and if he does he is better off. Similarly, 
others of lower skill may also work more. If they do, then they are better off 
(exploiting opportunities that were not available to them before) and they pay 
more tax since they move through tax brackets with nonnegative marginal rates. 
Thus, our change has produced more tax revenue and has made everyone at 
least as well off as before.4 A Paretian should approve. Many, however, might 
regard a zero marginal rate at the top as offensive. It is conceivable that they 
may wish to retain this view even after they have understood the above argument. 
We should note that one cannot deduce that, where the skill distribution has 
positive density, for all positive skill levels the optimum marginal tax rate tends 
to zero. Indeed, Mirrlees (1971) gives examples where it does not. The structure 
of the model is similar to an optimum growth model where we cannot infer from 
the result that a finite horizon model should have zero capital stock at the end, 
the conclusion that the capital stock tends to zero on the infinite horizon path. 

Some might propose a 100 percent tax on inheritance on the grounds of 
equality of opportunity for children, It is non-Paretian (if one rules out envy as 
the basis of the argument), since the ability to confer the inheritance makes the 
parent better off (the desire is to give rather than consume) and, presumably, the 
offspring as well.’ 

Many have found6 the ‘equal absolute sacrifice’ proposal an attractive basis 
for optimum income taxation. This abstracts from incentive problems and states 
that to raise a given revenue everyone should give up that amount of his income 

4One can throw away the extra tax revenue if it is so desired. The argument is clearly rather 
general. ‘Better off’ has been used here in the weak sense of ‘at least as well off.’ 

5Mirrlees drew my attention to this argument. 
6This principle is discussed and fitted to U.K. tax schedules in Stem (1973). 
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which makes the sacrifice of utility equal. It turns out that one can choose a utility 
function which fits the U.K. income tax structure rather well.’ Although it 
does not violate the Paretian condition, the proposal cannot be based on any 
symmetric strictly concave Bergson-Samuelson welfare function since, abstracting 
from incentive effects, such welfare functions lead to equal post-tax incomes. 

The above examples indicate that the standard welfare economics procedure 
based on the usual welfare functions would not be regarded as the obvious 
starting point by many who might be prepared to comment on income tax 
structures. 

Most of this paper will use a production structure with one basic input - 
labour in efficiency units - with a fixed wage. This does not mean that we are 
assuming constant returns to scale. We can regard the wage as the marginal 
product at the level of optimum total production and any profits that accrue 
as lump sum income for the government. Nevertheless, the assumption of one 
basic input is worrying. It is often asserted that a particular skill is lacking 
(say, management in the U.K.) and this carries with it a strong notion of 
complementarity with other factors rather than the complete substitutability 
assumed in the case of labour in efficiency units. Feldstein* has made a start 
in this direction and incorporates two different kinds of labour into his model. 

The frequent assumption of public ownership seems less serious. If, for 
example, there are profits in the system, one can carry out an analysis of the 
optimum levels (presumably subject to some constraints). The constraints on 
income taxation would then take account of the presence of these other taxes. 
Further work is necessary, however, and Atkinson and Stiglitz (1976) have begun 
an examination of appropriate combinations of various taxes. 

The absence of further discussion of the production assumptions should not 
be taken as a belief that they do not matter. The specification of the way different 
skills interact in the production process embodies an aspect of income taxation 
that many would regard as crucial. It is an important area for further research. 

The models discussed here will all be static and will not, therefore, involve 
capital and the elasticity of its supply in any essential way. These models allow 
the discussion of the important questions of labour supply and raise sufficient 
significant and difficult questions to warrant study. Some progress has been made 
with dynamics but the components of the models have to be kept rather simple.’ 

2. The model and numerical results of the studies of Mirrlees and Atkinson 

This discussion is not intended as a comprehensive survey since Atkinson 
(1973a) has recently provided a thorough discussion of previous numerical 

‘See Stem (1973). 
8Feldstein (I 973). The different types of labour combine through a Cobb-Douglas production 

function to produce output. 
?!ke, e.g., Feldstein (1973). 
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work. The main purpose of this section is to draw attention to the levels of 
calculated optimum marginal tax rates, in models similar to those of section 4 
which are, on the whole, lower than one might have predicted. Indeed Mirrlees 
(1971, p. 207) remarked ‘. . ., I must confess that I had expected the rigorous 
analysis of income-taxation in the utilitarian manner to provide arguments for 
high tax rates. It has not done ~0.‘~’ A partial response to these results has been 
the use of strongly egalitarian (‘highly concave’) social welfare functions and the 
limiting case the ‘maxi-min welfare function.‘” We shall suggest later that there 
is no need to use these more extreme social welfare functions to obtain tax rates 
that seem closer to observed rates, and that one has merely to use labour supply 
functions which seem closer to those which are usually estimated. For the 
moment, however, we give a brief sketch of these earlier results and, in the 
process, set out the model of income taxation to be used later. 

The original work on the current models of income taxation was that of 
Mirrlees (1971). In his model individuals supply labour of different qualities 
and hence face different pre-tax wage rates. They choose how much to supply 
by maximising u(c, I) subject to c = g(nlw), where c is consumption, I the hours 
worked, nw the hourly wage of an n-man - he produces n efficiency hours per 
hour worked - w is the wage per efficiency hour and g( a) the tax function giving 
post-tax income as q function of pre-tax income. 

The aggregate production constraint is X = J cf(n) dn = H(J n&z) dn) = 
H(Z), where X (total consumption) is a function H(Z) of effective labour 2, and 
f(n) is the density of the distribution of individuals. The problem is to vary 
g( .) to maximise J G(u)f dn, where G(a) is a concave function and the constraints 
are that the amounts individuals choose to supply of Iabour and consume of 
goods be compatible with the production relation. Note that the formulation 
involves taxation of nlw and does not require (nw) and I to be separately 
observable. If one can identify an n-man without affecting his behaviour, then 
the first-best optimum can be achieved by levying an appropriate lump sum tax 
for each n with a zero marginal rate of taxation. 

Mirrlees provided detailed calculations for the cases where u(c, I) = log c+ 
log (1 -I), n distributed lognormally (parameters of the associated normal 
distribution being F and a), H linear and G(u) = u or -e-“. Using a value of 
0 = 0.39, derived from the work of Lydall,” on the distribution of earnings, he 
obtained median marginal tax rates for the case of G(u) = u of 22% and 
20 “/ ’ 3 The higher rate was for the case where 7 y0 of product was required by 
the iovernment and the lower where 17 % could be added - the additions or 
subtractions corresponding respectively to cases where profits or revenues 

loThe utilitarian optimum ignoring incentives involves 100 percent taxation. One is initially 
surprised therefore when the introduction of incentives drops the rate down to 20 percent. 

%ke Atkinson (1972). 
‘?3ee Lydall(l968) and Mirrlees (1971). 
131nterpolated from Mirrlees (1971, tables I-IV, p. 202). 
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elsewhere outweighed or were outweighed by fixed costs, or necessary expendi- 
ture. With a net government expenditure of 12% of product and G(u) = -emu, 
the median margirJ rate rises to 33 %. 

The highest marginal rates for the three cases respectively are 26 %, 21% 
and 39%. The marginal rates rise at first but begin falling before the median 
is reached. Mirrlees proves that, for the log-normal distribution and where the 
elasticity of substitution between consumption and leisure is less than one, the 
marginal rate tends to zero as n tends to co. There is a higher limit in the case of 
the Pareto distribution where, with the same condition on the substitution 
elasticity, the marginal rate tends to l/(1 +y) as n + co when (nf’/‘) + - (7 +2). 
Examination of distributions of earnings (see section 3.2) suggests values of y 
from 0.5 to 2.5 giving limiting marginal rates from 67 % to 29 %. 

Higher rates can also be produced by widening the distribution of skills -if ts 
in the log normal case is increased to 1.0 (from 0.39), the median rate is 56% 
for the case G(u) = -e-” and a government requirement of 7% of product. 
Presumably with a wider distribution of skills, inequality considerations increase 
relative to those concerned with incentives. However, Mirrlees (1971, p. 207) 
suggests that such a cr ‘does not seem to be at all realistic. . .’ since it gives a 
dispersion of skills too wide to be compatible with observed distributions of 
earnings.r4 

There are two main features of the calculated tax schedules which look 
different from actual income tax structures.’ 5 Marginal rates are not mono- 
tonically increasing - most of the population is in the region where they are 
falling - and the highest marginal rates are low. For the ‘realistic’ case of 
IJ = 0.39, applying to 5 out of 6 of Mirrlees’ examples, the highest marginal 
rate is 39%. 

Atkinson (1972) and (1973a) discusses the effect of increasing the concavity 
of G(a) and the limiting case of maximin. It seems clear that he was in part 
influenced by the low rates in the Mirrlees calculations - see Atkinson (1972, 
p. 2) and (1973a, pp. 390-391). The maximin criterion in the Mirrlees model 
yields tax rates around 50 % for the median person [see Atkinson (1972, p. 28)]. 

We have already given the Sadka argument which explains why, for a finite 
population, we should expect zero marginal tax rates at the top of the distribution. 
This argument may also have some intuitive force for distributions with an 
infinite domain, provided the weight in the tail is not too big. We have noted, 
for example, that the log-normal gives a limiting marginal rate of zero but the 
Pareto does not. The zero limit of the marginal rate for certain distributions 
suggests that a declining rate at the upper end may be a feature of many models 
of optimum income taxation. We shall say no more (except for the special case 
of section 5) about the shape of the tax funtion, and concentrate on the labour 
supply function and its relation to optimum linear taxation. 

I’IWe discuss in section 3.2 whether the distribution of earnings gives a misleading impression 
of the distribution of skills. 

lSThese are announced rates rather than effective rates. 
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3. The estimation of supply functions and skill distributions 

3.1. Supply functions’6 

The work on optimum income taxation has dealt exclusively with situations 
where individuals have the same preference relation but differ in their earnings 
capacity. One can also imagine cases where individuals differ in their preference 
relations but face the same earnings function which is determined, as far as they 
are concerned, exogenously. In this subsection we shall be discussing such 
alternative specifications, and the different problems they pose for estimation. 

We shall suppose, for the moment (but see section 3.2) that the number of 
hours of work is the appropriate argument of an individual’s utility function 
and that the pre-tax wage measures the skill or efficiency of a worker per hour of 
work. For estimation (but not taxation) purposes we suppose that the wage 
and hours are separately observable. 

To make some of our formulae explicit we shall consider utility functions of 
the constant elasticity of substitution (CES) form, although it is clear that many 
of the problems we shall discuss do not depend on the particular form of the 
utility function. 

We suppose an individual maximises 

u(c, I) = [(l--U) c-“+cc(h(L-I))-“]-““, (1) 

subject to the budget constraint 

c = A+(nw)Z. (2) 

We thus have a linear tax schedule. The individual is characterised by the triple 
(h, n, L) and one could consider a distribution of this triple over the population. 
We shall be discussing some special cases. We should think of L as the number of 
hours available to the individual for allocation between work and leisure, given 
his family commitments, sleeping requirements, physical attributes and so on. 
The parameter h measures the ability to enjoy leisure and n the ability to produce 
efficiency hours of work from clock hours. Different specifications of the rela- 
tions between h, n and L may lead to very different interpretations of data on 
wages and hours. 

The first-order condition for maximisation of utility subject to the budget 
constraint is 

(A + WY> 
P-"(L-Z) 

= [_.~J, (3) 

where E = l/(1 +I*). 

‘@like comments of A.B. Atkinson on this subsection were particularly useful. 
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In the Mirrlees case individuals have identical preferences so that h and L are 
constant over the population. Putting h = 1 and taking logarithms, we have 

1% = &log(nw)+&log (4) 

We see immediately that where the total quantity of hours available (L) is known 
or specified, we can estimate E and a by regressing consumption per hour of 
leisure on the wage rate (nw). 

0-4 A 

@p$q - - - - - i 

j 

.-_ _ 

(nzw) - - - - --- 

Fig. 1 

Note that our assumption of identical preferences enables us to identify the 
supply function by merely plotting the relation between I and the post-tax wage 
rate per clock hour (nw) (see fig. 1). This formulation is, therefore, especially 
convenient for estimation purposes (see section 3.3). The skill distribution is 
then given by the distribution of wage rates. 

The above procedure is very sensitive to the assumption of identical 
preferences. We give two examples to illustrate this point. First, suppose L is 
constant in the population but h = n. In other words, individuals have identical 
available hours but those who produce more efficiency hours of work obtain a 
similarly increased satisfaction per hour of leisure. And suppose, for the sake of 
illustration, that A = 0. We see from (3) that I is independent of n. In other 
words, everyone works the same number of hours. Thus we might infer, on 
seeing a distribution of wages and no variation of hours, that the supply curve 
was inelastic when an increase in w (the wage per efficiency hour) would change 
hours worked. 
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A second example has been used by Hall (1974). He supposes h = n = 1 
but L varies in the population. He deals in particular with the case where 
E = 1 (equivalent to p = 0 or U(C, I) = c’-“(L-I)‘) so that we have (L-I) = 
a(_4 + wL)/w . He assumes L = (1 - f3)L, where 0 has the beta density on [O, 11: 
f(0) = 60( I- 0). He applies the model to the Penn-New Jersey negative income 
tax (NIT) experiment. Families were offered a choice between (A,, wO) 
(participation) and (A, w) (nonparticipation) with A0 > A, w,, c w. His model 
predicts both participation rates and changes in hours given participation fairly 
well. Hall argues that the representative individual is not a sensible concept 
when we see a dispersion of hours worked for a given (A, w), and that a theory 
of labour supply should account for this dispersion. 

3.2. Some problems of estimating the skill distribution 

In the previous subsection we suppose for our discussion of estimation that 
nw and I were separately observable. We had been interpreting 1 as clock-hours 
and regarding I as the relevant argument for the disutility of labour and as the 
basis of the productivity measure. The problem is more complicated than this, 
however. Both disutility and productivity of labour may be a function primarily 
of the effort required rather than the number of hours, although the latter is 
obviously of importance. In the absence of a direct measurement of effort we 
should discuss estimation problems when we can observe nwl, total pre-tax 
labour income, and not nw and 1 separately. Here we interpret I as effort. 

There is one special formulation” which makes the problem disappear. 
If individuals maximise (1 -a) log c+a log (l-1) subject to c = a(nwi)‘, where 
a and S define the tax function, then 1 is constant and (pre-tax) incomes are 
distributed as a constant times n. We can, therefore, read off the distribution of 
skills from the distribution of labour income. Since I is not directly observable, 
the assumption that it is constant is not violated, although we cannot estimate tl. 
It is clear, however, that the trick is rather special and will not work for more 
general utility and tax functions. 

In general then, if I is not directly observable, we cannot pass from a distribu- 
tion of labour income to a distribution of n unless we have full knowledge of the 
utility function and the tax function, when I can be deduced. We can, however, 
gain information on the utility function and skill distribution separately if the 
tax schedule changes. We can illustrate this as follows. Put E = 1 in (3), and we 
have 

(nwl) = (l-a)nwL-&4. (5) 

We can now use (5) to estimate CL. Let us suppose that the current post-tax wage 

“The formation was used by Vickrey (1947) and Bevan (1974). 
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per effective hour is one (where the model presumes a linear tax schedule). This 
is merely choosing a linear scale for n. A tax change occurs which increases 
A to A0 and decreases w from 1 to w,, - as in the Penn-New Jersey NIT experi- 
ment. We observe only nwl and A in both cases but we know that nw has 
decreased from n to nw, , where w0 is known - since 1 -w,, is the increase in the 
marginal tax rate. For a given individual we then have two equations in two 
unknowns (CI, n) which we can solve for OL and n. Given a population subject to 
the experiment we could find the distribution of n (and of a) in the population. 

The kind of experimental information we have just been discussing is rather 
rare.’ * Usually we have a given tax structure, a distribution of labour income and 
we may be uneasy about measuring effort by hours worked. We should like to 
know if the income distribution is a good proxy for the skill distribution. We 
saw at the beginning of this subsection a special case where the distributions 
were identical. This case is unusual, however, and the income distribution may 
be very misleading as an estimate of the distribution of skills. For example, one 
can imagine a utility function where an individual has a target level of consump- 
tion or income (c,,) upon which he insists, but he is not prepared to work to 
raise his consumption beyond this level, 

ifc 1 co, 

otherwise. 

If we have a community of individuals of different skills, all of whom have this 
utility function, we should observe a completely equal distribution of incomes. 
However, some individuals would have to exert a great deal of (unobservable) 
effort to achieve co and consequently would have low utility. Others would 
achieve co with comparative ease. 

This is an extreme example but it illustrates the point that where the un- 
observed supply curve of effort I with respect to nw is backward sloping, the 
distribution of skills is more unequal than the distribution of incomes. We shall 
see in section 3.3 that supply curves of hours are usually found to be backward 
sloping for much of their range. 

On the other hand there may be many factors in actual situations which affect 
wage rates but should not be described as innate ability: for example, age, 
education, luck or power. In ideal circumstances one would examine a popula- 
tion which had constant values of these complicating factors. While this may be 
possible for age or education it is difficult in the case of luck or power. Note that 
if the acquisition of education is sensitive to earnings, education should be 
included in supply functions and not ‘skill’ distributions. We return to this 
briefly below. 

18Hall (1974) makes use of the experimental Penn-New Jersey NIT data for his actual estima- 
tion (see section 3.1). 
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Suppose the wage rate M is equal to an (additive) combination of innate 
ability n and some other factor x. Then 

var (m) = var (n) + var (x) + 2 cov (n, X) . 

If the covariance is zero or positive the distribution of wage rates is more 
unequal than the distribution of abilities. It seems more likely that the factors 
mentioned are positively correlated with ability. 

We have seen that the relevant evidence for skill distribution must, therefore, 
be based on labour earnings and, where possible, rates, and be corrected for age 
and education. It is clear that a casual examination of the distribution of (earned 
plus unearned) income is insufficient. This is an important area for further 
research. 

One of the main problems for this research will be the specification of the func- 
tional form of the distribution to be fitted. Pareto (1897) found that N, = J-X-“, 
where N, is the number of incomes above X, gave a remarkably good fit for 
several countries. He estimated a and found that it was around 1.5. On the 
other hand, Lydall examines the upper tail of the distribution of employment 
incomes for different countries and finds o! ranging from 2.27 for France in 1964 
to 3.4 for Germany in 1964 (1968, p. 133). Lydall does examine employment 
incomes and, in some cases (1968, p. 33) tries to work with populations with 
given numbers of hours per week. He suggests further that, for precisely defined 
occupational characteristics (1968, p. 33), the log-normal distribution fits 
rather well. 

An interesting approach to the problem is the recent study by Schwartz 
(1975). He finds, disaggregating populations by race and years of education, 
that the power transformation of income which gives the closest approximation 
to normality is the cube root of income. 

We can come to no firm conclusions as to whether the current distribution 
of income gives an accurate picture of the distribution of skills. We saw that 
there were two powerful influences, backward bending supply curves and non- 
skill factors, pulling in opposite directions. It must be emphasised that the non- 
skill factors include a multitude of variables which depend on the institutions 
and organisation of society, and that the relative productivity of different skills 
depends on the capital stock. Further it is clear that the one-dimensional model 
of the skill distribution is a very crude representation of reality. But the problem 
is deeper than this. If skills are acquired, the motivation may be the potential 
reward, as for example in human capital models. We should then include 
acquired skills in the supply function rather than the skill distribution. This 
forces us to think of n as innate ability, a notion which is both slippery and 
controversial. And, what if skills (and effort) are not acquired (or supplied) for 
monetary reward? We have to reexamine our concepts of supply. Theoretical 
and empirical research on these problems is still in its infancy. 
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3.3. Supply curves as estimated 

Empirical estimates of the response of labour supply to changes in wages and 
income are usually expressed in terms of a supply function. For models of 
optimum income taxation we usually wish to work with explicit utility functions. 
The purpose of this section is to describe the calculation of the parameters of a 
CES utility function from the estimates of income and wage responses which have 
been found by others. 

We showed in section 3.1 that for the Mirrlees case we can estimate the labour 
supply function directly by assuming that everyone has the same supply function 
and differences in skills result in differences in wage rates (see fig. 1). We suppose 
that such an estimation has been performed and we have estimates of the 
(uncompensated) wage and income elasticities at some level of wages and for 
some lump-sum incomes. We want to infer a CES utility function. 

We suppose the individual problem is to maximise [( I- OL)C-” + cl(L - I)-r]-l’P, 
where c is consumption of goods, 2 is labour supply and L the maximum possible 
level of work. We assume that consumption is c = A+ wl. We are, therefore, 
assuming a linear tax schedule where w is the post-tax wage. We are not concerned 
here with the reason for the level of w so we suppress the ‘RZ’ factor. 

The first-order condition for the above problem is obtained by putting 
h = n = 1 ineq. (3); we then have 

L-1 p+l 

II 1 a 

A+wl 
=-. 

(1 -a)w (6> 

It is obvious from (6) that 

L-l 
-alog - II 1 A+wl 1 

a1ogw = K = &, 

the elasticity of substitution. We differentiate eq. (6) logarithmically with respect 
to w and A in turn, and after a little manipulation obtain 

a1 (A-pwZ)(L- I) 
-= 
aw wCj~+ l)(A+ wL) ’ 

ar w-0 -=--* 
aA A+wL 

Given w, I, (w[Z)(al/aw), (A/Z)(aZ/i3A), we can solve (6), (7) and (8) for L, a, p. 
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Ashenfelter and Heckman (1973) estimate income and substitution effects 
from a cross-section of 3,203 male heads of families from the national probability 
sample component of the 1967 U.S. Survey of Economic Opportunity. They 
restricted their sample to men not receiving welfare payments and whose wives 
were present but not working. They write (my notation), 

Al = SAw+B[l*Aw+AA]. (9) 

A represents differences from sample means, S is the substitution term, and I* 
is the average of the mean labour supply of the sample and 1, so that l*Aw 

represents an approximation to the income compensation and thus B an 
approximation to iT!iA. Eq. (9) is then estimated.” Hours were calculated using 
annual earnings divided by hourly wage rates. Dummy variables for race, region 
and size of town were included as well as age and age squared. The age terms 
give an increase in hours to age 44 and a decline thereafter. 

They find, for the mean of their sample, that w = 3.86 dollars per hour, 
1 = 2272 hours per year, A = 800 dollars per year, 2 ’ (w,ll)(al/dw) = - 0.15 and 
al/aA = -0.07. These numbers give values of L, a and p of 3190, 0.994 and 
1.45 (to 3 significant figures), respectively. Note that the value of a depends on 
the units of measurement of labour and income. The value of the elasticity of 
substitution, E = l/(1 +p), is 0.408. 

This is a rather striking result since the income tax models discussed in 
section 2 concentrated attention on the addiIog case where p = 0 and E = 1. 
We discuss the qualifications which must be attached to this estimate at the end 
of this subsection. For the moment, we examine its sensitivity to the values of 
A, (w/l)(al/aw) and al/dA - presumably the wage and hours of work at the mean 
of the sample can be taken as given. 

It is rather hard to measure the lump sum income A available to an individual. 
One has to make many judgements as to how to treat social security benetits,21 
returns on durable assets and so on. We therefore allowed A to vary across a 
large range, $0-2000. The results are shown in table 1. The estimates are rather 
insensitive to changes in A. For A = 0, we obtain E = 0.444; and for A = 2000, 
E = 0.362. 

Ashenfelter and Heckman compare the figure of -0.15 for (w/l)(al/aw) with 
‘Sherwin Rosen’s (1969) estimates of -0.07 to -0.30 from inter-industrial data, 
T. Aldrich Finegan’s (1962) estimates of -0.25 to -0.35 from inter-occupa- 
tional data, Gordon Winston’s (1966) estimates of -0.07 to -0.10 from inter- 
country data, and John Owen’s (1971) estimates of -0.11 to -0.24 from U.S. 

lgInstrumental variable techniques were used since I* is correlated with the disturbance term 
[see Ashenfelter and Heckman (1973)]. The income compensation term should really allow for 
any differences between marginal and average tax rates. 

2oI am grateful to Professor Ashenfelter for supplying me with this estimate of A. 
WI fact, workers receiving social security benefits were excluded from the sample. 
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time-series data.’ The Ashenfelter-Heckman figure of -0.15 is calculated from 
the sum of a substitution effect and an income effect. The former is estimated 
at 0.12 and the latter [3.86x (-0.07)J at -0.27). The standard error of the 
substitution coefficient is 26.0% of its estimated value and of the income 
coefficient 13.4 ‘A of its estimated value.” 

Given this breakdown of the -0.15 estimate, the range of the other estimates 
and the standard errors, we examine the sensitivity of the E estimate by using 
4 ways of changing (w/Z)(aZ/a w so that it ranges over -0.05 to -0.30. In ) 
table 2, col. (a), we vary (w/Z)(aZ/&v) holding the income term constant at -0.27. 
All the adjustment occurs in the substitution term and E decreases to 0.0685 

Table 1 

Central estimates of .s: 

A L l-u & 

(Dollars per year) (Hours per year) 

0 3113 0.9903 0.4449 
400 3152 0.9926 0.4255 
800 3190 0.9944 0.4077 

1200 3228 0.9957 0.3913 
1600 3267 0.9967 0.3762 
2000 3305 0.9975 0.3622 

‘(w/r)(al/aw) = -0.15, allaA = -0.07, w = $3.86, 1 = 2272 hours, as in 
Ashenfelter-Heckman (1973). 

for (w/Z)@Z/aw) = -0.25 (and A = 800). A value of (w/Z)(aZ/aw) below -0.27 
would, of course, give negative E and is not, therefore, entered in the table. 

In table 2, col. (b), we vary (w/Z)(aZ/aw) holding the substitution term constant. 
In col. (c) we vary (w/Z)(aZ/aw) by changing the income and substitution terms 
in the same proportion. For (w/Z)(aZjaw) = -0.30, for example, the income term 
contributes -0.54 and the substitution term +0.20. Finally, in col. (d), we 
vary (w/Z)(i3Z/aw) so that the modulus of the substitution and income terms moves 
in the same direction by equal proportions. The sensitivity was analysed in terms 
of the income and substitution terms since these are the coefficients estimated 
by Ashenfelter and Heckman and are the natural parameters for an analysis 
based on utility. Different methods of variation are used since we have two 
parameters and thus must consider errors scattered on a plane. Movements 
along the axes of this plane are represented in table 2, ~01s. (a) and (b). 

The row of table 2 corresponding to -0.15 replicates the central estimates 
since there is no change in income or substitution effects. Column (c) gives a 

z2See Ashenfelter and Heckman (1973, table 7.l,line4). 
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constant value of s - it is clear from dividing eqs. (7) and (8) that given A, w and Z, 
p (and hence s) depends only on 

It appears that our E estimate of 0.408 is, if anything, a little above the ‘average’ 
value one would obtain using the estimates of the authors cited by Ashenfelter 
and Heckman. 

Table 2 

Sensitivity of E estimate to assumptions on income and substitution effects.’ 

(a)” (b) (cY (d) 
w ar 
TFG I? L e L e L e L 

-0.05 0.7468 3190 0.6471 2780 0.4077 2517 0.6884 2895 
-0.10 0.5772 3190 0.5002 2972 0.4077 2816 0.5274 3036 
-0.15 0.4077 3190 0.4077 3190 0.4077 3190 0.4077 3190 
-0.20 0.2381 3x90 0.3441 3439 0.4077 3668 0.3152 3359 
- 0.25 0.0685 3190 0.2977 3730 0.4077 4303 0.2415 3546 
-0.30 not applicable 0.2623 4070 0.4077 5187 0.1816 3754 

‘A = $800, w = $3.86, I = 2272 hours; Ashenfelter-Heckman estimate (w/r)(al/aw) = 
+0.12-0.27 = substitution term+ income term. 

%ol. (a): vary (w/r)(al/aw) holding income term constant. 
‘Cal. (b): vary (w/l)(a//aw) holding substitution term constant. 
%ol. (c): vary (w/f)(LV/aw) by changing income and substitution terms in same proportion. 
‘Cal. (d): vary (w/l)(al/aw) by changing income and substitution terms so that they con- 

tribute to the changes in the same direction and in proportion to their absolute magnitudes. 

Twice the standard error of the substitution term is 2 x 0.12 x 0.26, i.e. 0.062; 
and twice the standard error of the income term is, in absolute value, 2 x 0.27 x 
0.13, i.e. 0.069. The sensitivity of the E estimate to errors in the Ashenfelter - 
Heckman substitution term alone can be examined by looking down column (a), 
and to the income term alone by looking down column (b). 

The estimates for E of this subsection are, of course, qualified by the discussion 
of the preceding two subsections. Our use of the Mirrlees specification is 
important. 

We should also be aware that the nature of the sample, men with nonworking 
wives, is likely to produce a supply function of hours that is rather inelastic 
[see Hall (1973)]. It is a subgroup of considerable numerical importance, 
however. Rosen (1976) estimates for a sample whose supply would be rather 
more elastic than average, women with working husbands, elasticities around 0.8. 
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We have used estimates from a particular source, but they do seem to be 
representative of findings on labour supply both in terms of parameter estimates 
and that the supply curve is backward sloping over much of its range. It is 
clear from eq. (7) that this phenomenon requires ~1 > 0, and so E < 1, in which 
case we have a backward sloping curve for L > I > A/,uw. If one believes that 
supply curves are backward sloping over some range and that the CES is a good 
specification, then one must conclude that E is less than one. 

Finally, we should reiterate that it may not be labour supply in hours that is 
changed when the wage is changed but, for example, enthusiasm or effort. If the 
discouragement of these factors is seen as important by governments they may 
regard the estimates of E appearing here as too low for a model of the decision 
problem they face. 

4. The optimum linear tax in the Mirrlees model for constant elasticity of 
substitution 

4.1. The model and computation of optima 

The problem is to choose t and G to maximise 

1 * 
-J u’(c,, LlfW h, 
v 0 

subject to 

5; nZ,,f(n) dn = G+R. (JO) 

The wage rate for an efficiency unit is one, there is a lump sum grant G, no 
other lump sum income, and a constant marginal tax rate t, so that the individual 
budget constraint is 

c = (I-t)nZ+G. (11) 

Skills are distributed with density function f(n) and we normalise so that 
@f(n) dn = 1. The skill 1 eve1 IZ, is that below which individuals do no work, 
where c, , I,, are chosen by the individual to maximise u(c, I) subject to (11). 

U(C, Z) = [or(l-I)-“+(1 -a)c-p]-l’p, (12) 

where E = I/&+ 1) and hence, manipulating the first-order conditions, 

I, = 
1 -G&l - t)-c~-8 

1 +k(l -t)‘-5+-C ’ 
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where k = [LX/( 1 - a)r . Then 

G’bk’i” 

4 =I_t* 

We have written the government constraint as a revenue constraint. This 
procedure is equivalent (see below) to using a production relation. We can inter- 
pret R as a fixed cost of production. Units are such that the marginal product of 
an efficiency hour is one. For a comparison of optima for different parameter 
values we should think of the marginal product as constant. For a single problem 
we can suppose that the unit is given by the marginal product at the optimum. 
An alternative view of R is as a public good. Note, however, that the public 
good does not influence labour supply or the distribution of utilities. For the 
case v = 1, for example, we could have u,(c,,, in, R) = u(c,, l,)+p,(R), and the 
optimum for the ZQ, problem for given R would be the same as the one we have 
posed. For the calculation for a particular E and v, one can think of the given R 
as being optimum and the tax rate must then be chosen given that R. One can 
obviously extend the model to include optimisation with respect to R, although 
this will be more complicated in the case where R influences labour supply. 

The equivalence between the production constraint specification and that of 
a tax revenue constraint is seen as follows : 

tax revenue = wages-consumption 
= output-profit-consumption. 

The production constraint is that 

output = consumption+ government expenditure. 

Combining the above two equations, we have 

tax revenue+profit = government expenditure. 

If we count any fixed cost of production as government expenditure, measure 
profit before any fixed cost, and write R = government expenditure -profit, 
we have eq. (10). 

Optimum taxation was calculated for the two Mirrlees log-normal cases 
where ,i& 0 (the mean and standard deviation of the associated normal distribu- 
tion) are taken as (- 1,0.39) and (- 1,l) with the former regarded as the more 
realistic case, 

f(n) = l nc7 $4274 exp 1 -(log, n--ii)’ 

I 2a2 - 

The parameter a was set so that in the absence of taxation or grants the 
individual with mean skill would work for 3 of the day in the case E = +. Values 
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of E ranged from 0.1 to 0.9 and 0.99. The tax rate (t) was varied between 0 and 1 
to search for the maximum. The maximand was calibrated using ‘C and *C 
defined as follows: 

; U”(OC, 0) = ; u’(%, 3) = f 
s 

; U’(C”, I,)f(n) dn. (13) 

In other words, ‘C is that consumption which, if equally distributed with zero 
work hours, would give the same social welfare integral as the allocation 
((c,, I,)} arising from a given tax rate t. A similar interpretation covers *C, 
where we instead set work hours to half the day. Note that ‘C 2 G, since the 
utility of each individual is at least u(G, 0), and ‘C r Y, where Y (total output) 
is (G+R)/t (from (lo)), because consumption is unequally distributed and 
positive work is required. 

The values of v were 1, - 1, -2. The case v = 1 shows no preference for 
equality. The utility function (12) is homogeneous of degree 1 in (c, 1 -I), and 
hence the indirect utility function can be written (~+G)u(w), where w is the 
post-tax wage, and it is easily checked that v(w) = [(l -c~)E+cPw~-~]-~‘(~-~). 
Thus where v = 1, the social marginal valuation of a unit increase of lump-sum 
grant G to an individual facing wage w is v(w), which is independent of G. One 
can determine which value of v captures one’s values as follows. Consider two 
individuals, A and B, with the same wage, w, but A has a lump sum income of 
3w and B of w. Thus, A’s ‘full’ (lump sum plus w times endowment of hours 
(one)) income is twice that of B. If we considered one marginal unit of lump sum 
income to B twice as valuable as that to A, we should be opting for v = 0; and if 
we considered the marginal unit 4 times as valuable, we should be choosing 
v = - 1 (since the social indirect valuation function is (l/v)(w + G)“u’(w) and 
hence the marginal valuation is (w-i-G) ‘-‘z?(w)). Note that at the optimum these 
marginal valuations are unequal. See Stern (1973), where the distribution is 
calculated explicitly. 

The calculations of Mirrlees (1971) (see section 2) correspond to p = v = 0 
and CI = 3 since he worked with the utility function log c+log (1 -I). 

The maximin, or Rawlsian welfare function, corresponds to v = - co. The 
objective becomes the maximisation of G since the worst-off individual, whose 
welfare is to be maximised, has a zero wage rate. 

Where R > 0, there is a minimum feasible t, which we call tb, which satisfies 
(10) with G = 0. Lower values of t would require negative G and this would 
prevent the worst-off individuals having positive consumption. Note that, for 
0 I1 < 1 and E < l,tJ,“nl,f(n)& is monotonic increasing in t for G = 0 
since in this case the supply curve is backward sloping. Hence values of t larger 
than tb allow a lump sum grant G, and thus there exists a G 2 0 corresponding 
toeacht: t, S t < 1. 

The computation procedure for a given E was as follows. For a given t, the 
G satisfying (10) was calculated using Newton’s method. Finite integrals were 
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calculated using Gauss-Legendre quadrature and infinite integrals using Gauss- 
Laguerre quadrature. With ? and G known we can calculate the level of the 
maximand. In this manner tables (such as table 4) are constructed giving values 
of G and ‘C over a (one-dimensional) grid of tax rates t, for each E. 

We search, for each E, over the grid of t to find the optimum. The procedure 
depends on the existence of at most one local maximum. It is clear from an 
inspection of tables 4a and 4b that this is satisfied for our problem. The existing 
grid is examined to find a triple of values oft such that the maximand is higher 
at the middle value t2 than the two outer values t, and t,. The optimum must 
then lie in the range (tl, t3). (There is an obvious modification if the largest 
value of the maximand lies at one of the boundaries of the grid.) A fourth point, 
t4, is defined as the midpoint of the larger of the intervals between t3 and t, , t, . 
One of the outer values (tl or t3) is then replaced by t, so that we again have a 
triple with the maximand highest at the interior point. It is clear that in two 
moves we must have an interval at most half the length of that of the original. 
The process is continued until the length of the interval is less than a specified 
value (here 0.001) and then the interior point of the triple is taken as the opitmum. 
Thus our optimum tax rates are accurate to +O. 1%. 

The calculations presented in tables 3, 4a and 4b are for the case fi = - 1, 
~7 = 0.39.Wehavev = 1, -1, -2, - co;andR = 0,0.05,0.10,0.15.Amethod 
for understanding how v measures our value judgements has already been given. 
The magnitude of R can be judged by comparison with the mean of they(n) 
distribution, E (= 0.3969 in the case ,E = - 1, CJ = 0.39). Output ti is the 
maximum conceivable output - it would be produced if everyone worked all 
day (& = I, all n). Alternatively, one can compare R with output Y (= (G + R)/t) 
which is given in table 4. ‘C,,, is the value of ‘C associated with topt, the optimum 
t, and ‘Cb is the value associated with tb . 

A pictorial expression of the results is given in the graphs of figs. 2 and 3. 

4.2. Discussion of the results 

The purpose of the calculations is to examine the sensitivity of the optimum 
tax rate to the parameters E, v and R. We also report, but do not give details on, 
the results of changing 0, a measure of the dispersion of the distribution of skills. 

Table 3(a) gives the optimum tax rates for different values of E and v for the 
case R = 0 where taxation is purely redistributed. The results are illustrated in 
fig. 2a. As E increases from 0 to I, the optimum tax rate decreases (from 
100 percent at E = 0 for all v - see section 5) along a curve which is convex to the 
origin. Higher values of v (less egalitarian) give lower tax rates as one would 
expect. The calculations of Mirrlees correspond to the case (v = 0, E = 1) and 
of Atkinson to the case (v = - 03, E = 1). The Mirrlees median rates of around 
20 percent compare reasonably with the middle of the interval between v = 1 and 
v = - 1. Atkinson found an optimum t of 64 percent for the linear case with 
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R = 0, and a value of CL close to the one we are using [see Atkinson (1972, 
table 2, a = 0S)J. Hence our results correspond with previous studies. 

Results with higher values of R are given in tables 3(b), 3(c) and 3(d), and 
portrayed graphically in figs. 2b, 2c and 2d. It remains true that for a given R 
and E, optimum tax rates increase with v and, understandably, for a given E and 
v they increase with the expenditure requirement R. However, for a given R 
and v it is not necessarily true that the optimum tax rate decreases with E. 

R=O 

t 
opt 

t 
opt 

t 
opt 

t 
opt 

OL 
0 

I 

0.5 

Fig. 2a 

I 

E 1.0 

v Z-00 

= -2 

= -1 

=l 

For example, for v = 1 and R = 0.10, the optimum tax rate, as a function of E, 
has a minimum of approximately 35 percent around E = 0.35. This failure of 
monotonicity is more likely the higher is v and the higher is R. 

The reason for the nonmonotonicity is fairly straightforward and can best 
be understood by examining the behaviour of t,, the minimum feasible tax rate, 
as a function of E. From the calculations it can be seen that tb increases with E. 
The region below the t, curve (see figs. 2b, 2c and 2d) is infeasible. For higher 
(less egalitarian) values of v the optimum has lower tax rates and lower G. When 
the optimum involves G very close to zero, the optimum tax rate is close to t,, 
which increases with E, and thus the optimum lying near to the frontier of the 
infeasible region also increases with E . 
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Mirrlees (1971, pp. 206-7) found that the use of a much wider dispersion of 
skills (d = 1) gave tax rates which were very much higher. The same conclusion 
emerges here. For Y = 1, R = 0, u = 1, the optimum tax for E = 0.4 was 
62.3x, and for E = 0.99 was 42.9x, compared with c = 0.39, which gives a 
rate of 22.5 % for E = 0.4 and 12.5 % for E = 0.99. Further, the higher values 
of E together with CJ = 1 provided the only cases where the proportion of the 
population not working was high. For R = 0, v = 1, E = 0.99, the optimum 

0 0.5 E 1.0 

Fig. 2d 

proportion of the population not working was 11% (and compare with the 
n, figures in table 3). 

The total product in our examples usually lies in the range 0.25 to 0.30 and 
thus a government revenue requirement of 0.15 is very large. Government 
expenditure on goods and services in the U.K. is approximately 20 % of GNP.’ 3 
Thus 0.05 might be viewed as an appropriate figure for R. We have argued that 
v = 1 represents no egalitarian preference and have given a method for judging 
which values of v capture one’s values. I prefer v = - 1, corresponding to an 
assertion that the social marginal valuation of income should decrease as the 

23The major components of this 20 percent are health services, education and defence. It is 
arguable whether these should be cIassified as public goods - tied costs since at least the iirst 
two in the list may also be productive and none are equally available to all. 
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square of income. 24 Our estimate of E is 0.4 - see section 3. Our central case, 
therefore, is E = 0.4, R = 0.05 and v = - 1, which gives an optimum tax rate 
of 54x, a grant G of 0.089 and income Y of 0.257. Thus the minimum (0.089) 
below which no income is allowed to fall is 34% of the average income (total 
population is one, so Y is also the average income). The utilitarian approach 
therefore gives taxation rates which are rather high without any appeal to 
extreme social welfare functions, and need only invoke labour supply functions 
of the type which are commonly observed. Total net direct and indirect tax rates 
were around 50% for a broad range of British incomes in 1974 (see Economic 
Trends, Feb. 1976). 

f 
OC 

0.180 - 

0.170 - 

0.160 

t 

E =0.4 

R=O.05 

0.1501 8 I I) 
0 0.5 1.0 

Fig. 3a. (Horizontal axis is tax rate (t).) 

The redistributive benefits of taxation can be judged by the comparison of 
‘Cb and “C,,, in table 3. The former gives the welfare level when taxes cover 
only R (and G = 0) and the Iatter gives the welfare level with the optimum linear 
income tax. In the central case we have ‘C, = 0.167 and “C,,,, = 0.174. Thus 
the redistributive benefits of taxation are worth approximately 5 % of income. 

It might be argued that such a figure is small when compared with the possible 
incentive and administrative costs of taxation. This argument would be mistaken. 
If R is positive, a tax system is necessary, with its administrative costs. The 
difference in administrative costs between a tax rate tb and the optimum is that 
associated with a positive grant G. The incentive aspects of taxation are already 

Vke. Stem (1973). 
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incorporated in the model. It would be reasonable to argue that our estimate of E 
is too small because, for example, in a fully articulated model risk-taking, savings 
and effort should all be responsive to rewards, but that is a different position. 
Whichever value of E one selects there will still be benefits to be obtained from 
redistribution and, if a tax system is necessary in any case, the benefits, if they 
are agreed to be such, should be taken. That being said it seems that the benefits 
are not large for our central case. It is clear that this conclusion is very sensitive 
to our specification of v. Where v = - co, the maximin welfare function, the 

4 
OC 

0.15- 

0. lo- 

o. 05- 

Fig. 3b 

measure ‘C is equal to G. Hence, for this case, ‘C, = 0. The redistributive 
benefits of taxation, here raising the income of the least-skilled from zero, are 
very large. Where v = 1 and we have no special preference for equality the 
redistributive benefits are very small (see table 3 and fig. 3). 

A further suggestion that emerges from the examination of the welfare measure 
OC is that uncertainty about the level of E might lead us to choose a tax rate 
lower than the optimum (under certainty) associated with our mean estimate of s, 
if our central estimates of E are in a region where the optimum t falls with E. 
The reason (see figs. 3a and 3b) is that, for a given E, increases in taxation above 
the optimum seem to give larger welfare losses than deviations below the 
optimum. Further underestimates of E lead to bigger changes in the choice of t 
than overestimates. 
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An example of the full set of results available from the author for each of the 
cases discussed here is given in tables 4a and 4b, for the case Y = - 1, R = 0.05. 
Table 4a shows the G available from given t, for each E, together with the t giving 
maximum G (t,_,, for v = - co). Table 4a is independent of Y. The values of the 
maximand for E, t (calibrated using ‘C and *C) are shown in table 4b, followed 
by the optimum 2 and fb with corresponding values of other figures associated 
with t and tb. 

The objective of this section has been to display the sensitivity of optimum 
tax schedules to the elasticity of supply (given by E), social values (given by v) 
and the expenditure requirement (R). It would, perhaps, be misleading to say 
that rates are more sensitive to E than to v and R since we have no precise measure 
of sensitivity. But we can claim that values of E based on observation do give 
values of the optimum tax rate substantially higher than those which Mirrlees 
(1971) was surprised to find so low (see section 2) and that an argument for very 
high rates (say above 70%) must be based (if it is rooted in our model) on a 
claim that E is very low (say less than 0.1 or 0.2) rather than an extreme view of 
values (v) or the government revenue requirement (R). 

5. The optimum tax schedule in the Mirrlees model for the case e = 0 

We saw in section 2 that hitherto attention has been focussed on the addi-log 
case where the elasticity of substitution E is one. We saw also in section 3.3 that 
current estimates of labour supply elasticities give E around or less than one-half. 
We should, therefore, see E = 1 as a polar case with E = 0 as another polar case. 
It transpires, not surprisingly, that the case E = 0 is much easier to work out 
than the case E = 1, and the answer is independent of the production function 
and distribution of skills. 

The result is that the optimum tax rate, amongst both linear and general 
schedules, is 100%. This is a fairly obvious result since consumption and 
leisure are consumed in fixed proportions and there are no dead-weight losses 
from income taxation. This does not mean that the first-best optimum can be 
achieved, however. We should emphasise however that a zero elasticity of 
substitution does not imply inelastic labour supply. The substitution effect of a 
wage change is zero, but we still have the income effect which gives a backward 
bending supply curve. An inelastic labour supply is the prerogative of the case 
E = 1 where (in the absence of a lump sum income) substitution and income 
effects exactly cancel. 

The CES utility function for the case E = 0 is 

u(c, I) = Min (c, 1 -I). (14) 

We consider first the optimum income taxation problem for the utilitarian 
maximand where individual utilities are given by (14). We pose this formally as: 
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Problem P. Find c, , I, and a function g( *) such that I,” u&z) dn is maximised 
where u,, = u(c,, I,,) (U as (14)) and g( *) is such that (i) the individual problem 
maximise U(C, I), subject to c 2 g(nl) c 2 0, 1 2 1 2 0, has a solution 
(c., f,,), (ii) J,tJ c&z) dn $ J$ nl,,f(n) dn. The density function f(n) satisfies 
S(n) 2 0, j,“f(n) dn = 1 and co > ii = I,” nf(n) dn. 

We call an allocation {(c., I,)} which satisfies (ij and (ii) feasible. Note that as 
the problem is posed we are assuming that where there is more than one pair 
(c,, I,) which maximises u the government can select whichever such pair it 
wishes. Mirrlees (1971, proposition 2) shows that we can restrict attention to g(*) 
that are nondecreasing and right-continuous. Note that, as the problem is posed, 
units are such that the n-man produces n if he has zero leisure and the kinks in 
his indifference curves in (c, Z) space lie on the line joining (0, 1) and (1,O). 

Theorem I. An optimum for problem P is c, = E/(S+ l), I,, = l&i+ l), all 
n, and g(x> = g/(6+ 1) all x. 

ProoJ Consider a feasible allocation {(cf, Zz)}. If l-l,” > cz, then we can 
replace 1.” by 1; = 1 -cz and both (i) and (ii) remain satisfied. If c,” > 1 -I.“, 
then we can replace c,” by ci = 1 -Ii and again (i) and (ii) remain satisfied. We 
can, therefore, confine attention to feasible allocations ((c,, In>> where 
c,, = 1 -Z,,. The utility maximising (e,,, /,) (where we now take c, = 1 - 1.) 
satisfies 

g(nZ,) 5 l-l, 2 lim g(a). 
o+nln 

It is clear (see fig 4) that c, is nondecreasing with n [see also Mirrlees (1971, 
theorem l)]. 

Now 

s,” u,f(n) dn = s,” c,f(n) dn = A. 

From (ii), we have, putting I,, = 1 -c,, 

A S E-j,” c,nf(n) dn. 

But c, is a nondecreasing function of n, hence ’ * 

(15) 

(16) 

j,” c,nf(n) dn 2 (J,” c.f(n) W(Jo” nf(n) W * (17) 

2sWhere c,, is continuous, write c(n*) = 5, the average of c. Then since c is nondecreasing, 
n(c--E) 2 n*(c-E)and 

Jncf-?iE=Jn(c--E)f5 n’j(c-Z)f= 0. 

c. is continuous as defined here, but if not, a similar argument using lim inf in defining n* will 
work. 
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(16) and (17) imply 

A+AFi 5 E, 

or 
- 

AIL. -- 
n+l 

But E/(6+ 1) is exactly the utility integral obtained from putting c,, I. and g(-> 
as in the statement of the theorem, We, therefore, have the desired result. 

C 

Fig. 4 

Suppose the constraint (ii) in problem P is replaced by Jr c,,f(n) dn 5 

H(Jo” n&f(n) W, where H( .) is a monotonic increasing function satisfying 
H(5) > 0 (where everyone works full-time positive output is possible) and 
H(0) < 1 (satiation is not possible with zero work input). Call the modified 
problem P’. 

Theorem 2. An optimum for the problem P’ is c,, = c*, I,, = 1 - 19, g(x) = c*, 
all x, where c* satisfies c* = H(Fi-c*ii). Note that under the conditions imposed 
on H(a) the equationfor c* defines a unique c* and0 -C c* < 1. 

Proof. We follow the proof of theorem 1 but (16) becomes 

A 5 H(5 - j,” c,&(n) dn) . (16’) 
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(16’) and (17) imply 

A g H(n-An). 

Hence A s c* (check from the definition of c* and the conditions on H- see 
fig. 5). But c* can be achieved by putting c,, 1, and g(a) as in the theorem, and 
we have the desired result. 

/I C- 1 c 
0 

Fig. 5 

One can easily see that c* lies between 0 and 1 by plotting c and H(E-cfi) 
against c and looking at the point of intersection (this also provides a demonstra- 
tion that A S c*) (see fig. 5). 

Replace the maximand in problem P by s,” G(u)S(n) dn, where u(c, I) is as in 
eq. (14) and G is concave and increasing. Call this problem Q. 

Theorem 3. An optimum for problem Q is given by the solution described 
in theorem 1. 

Proof. We can again restrict attention to allocations where c, = 1 -I,, 
and where the maximand becomes 

j,” %)f(n) dn. (18) 

The problem Q” : rnaximise (18) subject to j; c.f(n) dn I ii&i + l), has a solu- 
tion with a higher utility integral than problem Q since ii/@ + 1) is the maximum 
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output obtainable under an income taxation scheme and Q” is, therefore, a less 
constrained problem than Q. But a solution to problem Q”, 

c, = & , (and Z, = l/@+l)), 

can be achieved with the tools of problem Q and we, therefore, have an optimum 
for problem Q. 

Remark. A similar statement to theorem 3 applies if we modij-y problem P’ 
to Q’ by introducing G(a). 

We should note two points about these theorems. First, if G is convex we 
should not expect a solution with IOO’A marginal tax rates. Presumably, one 
might be prepared to reduce total output for the ‘benefits’ of unequal consump- 
tion. Secondly, we are forced to rely rather heavily on the notion that the govern- 
ment can choose from the set of bundles that maximise utility for the individual. 

The full optimum involves maximising J,” u,,f(n> dn, subject to I,” c&r) dn 5 
&$‘nlJ(n) dn. As b f e ore, we can restrict attention to configurations where 
c, = 1 -Z,, and hence jc u,&z) dn = j,” c&z) dn. Taking a Lagrange multiplier 
v for the constraint, we have 

-l+(n+l) v S 0 
1 2 0 

I ’ comp7 

-1+(n+1) v 2 0 
1 5 1 comp9 1 

as necessary and sufficient conditions for optimality. Thus, the optimum 
requires 2 6 that for 

1 
n 5 --1, 

V* 
c,= 1, l.=O, 

1 
n > --1, 

V* 
f&=0, l,=l, 

@We need not be specific about c., at n = (l/v*) - 1 if there is no probability,atom concen- 
trated on this level of n. 



N.H. Stern, Optimum income taxation 159 

with v* determined by 

total consumption = Jr -“‘~~‘*f(n) dn = JG _V.j,V* nf(n) dn 

= total output. 

The 1.h.s. decreases from 1 to 0 as v goes from 0 to 1, and the r.h.s. increases 
from 0 to Fi as v goes from 0 to 1, and we therefore have a unique solution for 
some v* > 0. 

The solution was calculated for n distributed log-normally with the parameters 
used by Mirrlees (1971). The cases are specified by ji = - 1, TV = 0.39 and 
ji = - 1, B = I, where b and cr are the mean and standard deviation of the 
underlying normal distribution. Mirrlees suggested cr = 0.39 was the more 
realistic. In the former case v * = 0.766 and the proportion of the population 
not working is 32.0%. The ratio /I of output in the optimum income taxation 
solution to output in this, the full optimum, is 0.889. Output is the obvious 
measure of welfare here since the utility function is linear in consumption and the 
Atkinson (1970) equally-distributed-equivalent (EDE) measure is equal to 
output itself. 

The corresponding figures for ji = - 1, [r = 1 are v* = 0.727, 50.8 % of 
the population not working, and a ratio p of output in the optimum income tax 
case to output in the full optimum of 0.744. With the wider spread of skills, 
more of the population is idle, yet the increased availability and use of skills 
at the upper end gives a greater proportional output increase in the movement 
from optimum income taxation to the full optimum. 

The full optimum here provides an illustration of the Mirrlees result that the 
full optimum has utility decreasing with skill level, provided leisure is a normal 
good. The form of decrease is rather bizarre, however, with consumption 
dropping from its maximum, one, to its minimum, zero, at n = (l/v*) - 1. 

The full optimum was also calculated for maximand I,” G(u)S(n) dn, where 
G(x) = log, x and - l/x. The analysis is similar and the solution, where 
h(.) 3 G’-‘(v), is 

c, = h((n+l)v*) if h((n+l)v*) S 1, 

C” = 1 if h((n+l)v*) 2 1, 

with 1, = 1 - c, and v* determined from 

J,” CA) h = j&&*)-1) 4J(4 h, 

if&,/v*) - 1 > 0, where x0 is defined by h(x,) = 1, and 

if (x0/v*)- 1 5 0. 



160 N.H. Stern, Optimum income taxation 

The solutions for the two log-normal cases and G(x) = log,x, and G(x) = 
- l/x, involved the whole population working. In all four cases x0 = 1. The 
value of the maximand at the full optimum was calibrated by c* where 
G(c*) = s,” G(c,)f(n) dn (again analogous to Atkinson’s EDE). We then 
calculated the ratio p of output (equals consumption per head) in the optimum 
income tax case to c*. For J = - 1, c = 0.39, we have 

j? = 0.994, GW = log&, 

p = 0.997, G(x) = -l/x. 

ForF = -1, cr = 1, wehave 

p = 0.935, G(x) = log,x, 

p = 0.963, G(x) = -l/x. 

In the case where E = 0, therefore, a small amount of inequality aversion 
(concavity of G( .)), brings the full optimum rather close to the (completely 
equal) optimum income tax solution. Presumably the increased availability and 
use of skills at the upper end is again giving bigger output increases, for the 
case 0 = 1, when we move from optimum income taxation to the full optimum. 

The small welfare difference between the full optimum and the optimum 
income taxation solutions contrasts with the impression one has from Mirrlees’ 
(1971, p. 206) calculations that the full optimum gives substantial welfare 
differences from the optimum income taxation solution. 

6. Concluding remarks 

We have discussed most of the ingredients of a model of optimum income 
taxation both in terms of how the different components should be specified and 
the effects of varying the specifications of optimum tax schedules. It was 
suggested that the Bergson-Samuleson social welfare function, nondecreasing 
in each argument and which is almost universally adopted in the literature on 
welfare economics, may not be a good representation of the values of many who 
would wish to comment on appropriate income taxation. This did not involve 
the rejection of the criterion, and the usual form of welfare function was used 
in most of the paper. Our particular concern, however, was the elasticity of 
labour supply and the related problem of the skill distribution. 

It was argued in section 3 that the assumption that individuals differ only in 
skills, and not in preferences between work and leisure, is very convenient for 
estimation purposes. Since backward bending supply curves of hours of work 
are generally observed in practice, such a specification must lead to estimates 
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of the elasticity (E) of substitution between work and leisure which are consider- 
ably less than one. We used the figure E = 0.4. On the other hand, a specification 
where individuals differ in their preferences as well as their skills can produce 
very different results, and we saw how a completely inelastic labour supply might 
be inferred when supply was in fact sensitive to the wage rate (positively or 

negatively). 
We suggested that it is hard to guess whether the distribution of earnings 

overestimates or underestimates the dispersion of the distribution of skills since 
backward bending supply curves make the earnings dispersion narrower, and 
nonskill factors wider, than the dispersion of skills. 

There are deeper questions, however, concerning the supply of effort and skills. 
If a skill is acquired, then the motive for acquisition should be in the model. 
Thus any distribution of fixed skills in the model should be of unacquired skills. 
We do not know how to measure skill or the difference between acquired and 
unacquired skills, if indeed the distinction is sound. Similarly, the measurement 
of effort is extremely complex and very difficult to disentangle from skill. The 
motive for supply of effort may not always be monetary reward - for example, 
many work who would receive more on public welfare. It is precisely because of 
the incentives for the individual to conceal his levels of skill and effort, that we 
build models of income taxation rather than ability taxation. 

Our central estimate (see section 4), using E = 0.4, of the optimum linear 
income taxation rate was 54x, compared with levels of 20 or 30% which 
emerge from models where E = 1. We found that the optimum tax rate was 
rather sensitive to E and proved in general, (see section 5) that for E = 0, the 
optimum tax rate (linear or nonlinear) is 100 %. 

Very high tax rates can only be justified by appeal to low E and not to high 
revenue requirements or extreme preference for equality. The optimum tax 
rates are, however, rather sensitive to : E, social values (v) and revenue require- 

ments (R). 
An interesting feature to emerge was, where there is a large revenue to be 

raised and values are not particularly egalitarian, that the optimum tax rate may 
not be monotonic in the elasticity of substitution. The reason is that the minimum 
tax required to raise the revenue increases with E when the desired grant G is 

small. 
We found that, in our central case, the gains from optimum linear taxation, 

as compared with minimum taxation to meet revenue requirements, were not 
large but that this conclusion was, not surprisingly, very sensitive to distribu- 

tional values. On the other hand, in the case where E = 0, there is no loss from 
a restriction to optimum linear income tax as opposed to nonlinear, and the 
optimum income tax solution gives welfare close to the full optimum. 

Finally we should emphasise that the study of optimum income taxation is in 
its infancy, there is much work, empirical and conceptual as well as theoretical, 
to do, and therefore all our estimates and calculations must be viewed with 
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circumspection and as attempts to understand the best model currently available 
rather than prescriptions for policy. 
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